Trials: Black Spot (Diplocarpon Rosae Wolf) Resistance and Ploidy

Total Page:16

File Type:pdf, Size:1020Kb

Trials: Black Spot (Diplocarpon Rosae Wolf) Resistance and Ploidy HORTSCIENCE 45(12):1779–1787. 2010. et al., 2009). Pesticides are not used during the trials and cultural management practices use techniques that support environmental Evaluation of Roses from the stewardship. This includes pre-plant incorpo- Ò ration of compost, maintenance of a 7.6- to Earth-Kind Trials: Black Spot 10.2-cm layer of organic mulch, and irrigation methods that conserve water. Before a rose (Diplocarpon rosae Wolf) can earn regional Earth-Kind designation, it must exhibit consistent, superior performance across multiyear and multilocation trials rep- Resistance and Ploidy resenting different soil types and other envi- David C. Zlesak1 ronmental conditions typical in the region. A University of Wisconsin–River Falls, 410 S. 3rd Street, River Falls, WI 54022 large number of cultivars are advertised as low maintenance by nurseries wanting to capital- Vance M. Whitaker ize on the popularity of lower maintenance University of Florida Horticultural Sciences, Gulf Coast Research and roses. It is difficult for consumers to know which roses truly possess the highest levels Education Center, 14625 CR 672, Wimauma, FL 33598 of pest and environmental tolerances. Earth- Steve George Kind designation gives consumers confidence that they are choosing roses that will have AgriLife Research and Extension, Texas A&M, 17360 Coit Road, Dallas, TX a high likelihood of success when basic plant 75252 care is provided. Disease susceptibility poses a major chal- Stan C. Hokanson lenge to roses and limits their success as Department of Horticultural Science, University of Minnesota, 1970 Folwell low-maintenance landscape shrubs. Fungi Avenue, St. Paul, MN 55108 that attack roses include Diplocarpon rosae (Wolf) (causal agent of black spot), Podos- Additional index words. rose chromosome count, rose disease, fungal isolate, Diplocarpon phaera pannosa (Wallr.: Fr.) de Bary (causal rosae pathogenic race agent of powdery mildew), and Cercospora Abstract. Regional, replicated cultivar trials of landscape roses are an ongoing compo- puderi B.H. Davis (one of the causal agents nent of the Earth-KindÒ program, which was started at Texas A&M University in the of rose leaf spot) (Horst and Cloyd, 2007). Of 1990s to support environmental landscape stewardship. The rose trials within the Earth- these, black spot is the most serious in the Kind program identify and promote the most regionally adapted rose cultivars and are outdoor landscape across most regions as a re- conducted without fertilizers or pesticides and greatly reduced irrigation. Black spot sult of the potential for rapid disease develop- (caused by Diplocarpon rosae Wolf) is the most serious disease of outdoor-grown roses ment that typically leads to leaf yellowing and worldwide as a result of the potential for rapid leaf yellowing and defoliation. Earth-Kind defoliation (Dobbs, 1984). Black spot has been designated cultivars for the south–central United States and roses under trial in other the most prevalent and widespread disease in regions or considered for future Earth-Kind trials (n = 73 roses) and two susceptible the Earth-Kind rose trials (Mackay et al., control cultivars were challenged with North American Races 3, 8, and 9 of D. rosae, 2008). Plants repeatedly defoliated from black which were previously characterized at the University of Minnesota. Young expanded spot become weakened and quickly fall out of leaves were inoculated using detached leaf assays. Lesion length (LL) was measured for contention for Earth-Kind designation. susceptible reactions and cultivar ploidy was determined using root tip squashes. Diploid, Diplocarpon rosae is capable of infecting triploid, and tetraploid cultivars (n = 20, 30, and 23, respectively) were identified, and only the genus Rosa. Asexual spores (condia) race-specific resistances and partial resistances were also identified. Race-specific overwinter on stems and fallen leaves and are resistance was generally more prevalent in newer rose cultivars and rose cultivars more transported to new growth in the spring through recently included in Earth-Kind trials. Nine cultivars were resistant to all three races water droplets. If free water remains present, (Brite Eyesä, ‘Grouse’, Home RunÒ, Knock OutÒ, Paprikaä, Peachy Creamä, Pink the conidia form germ tubes that penetrate the Knock OutÒ, Rainbow Knock OutÒ, and Yellow Submarineä). Blushing Knock OutÒ, leaf epidermis. Lesions may appear in as little a sport of Knock OutÒ, was susceptible to Race 8. Partial resistance rank for LL was as 4 d as sub-cuticular mycelia radiate from the generally consistent across races for roses susceptible to multiple races. The application point of infection. Condia-bearing acervuli of these data includes: characterizing the minimum resistance level needed for roses to burst through the leaf cuticle followed by leaf warrant inclusion in Earth-Kind field trials, the identification of additional race-specific abscission in susceptible cultivars (Horst and resistance genes, identifying resistance-breaking isolates of D. rosae, understanding race Cloyd, 2007). composition in field trials based on infection patterns of key cultivars, selection of parents Multiple studies have been conducted to for resistance breeding efforts, and continued comparisons between LL and growing characterize the pathogenic race structure of bodies of Earth-Kind field resistance data. D. rosae and then to use the characterized races to identify genes conferring host resis- tance (Debener et al., 1998; Whitaker et al., Garden roses (Rosa sp.) are among the toward pesticides, emerging legislation put- 2007a, 2007b, 2010a; Yokoya et al., 2000). most popular flowering shrubs in the world. ting greater limits on pesticide availability Isolates are distinguished from one another Diversity for traits such as form, color, and and use, busy lifestyles, and greater avail- based on their differential ability to infect a fragrance of flowers, plant habit, size, envi- ability of lower maintenance rose cultivars common set of rose genotypes. Those isolates ronmental adaptability, and extended season (Harp et al., 2009). with the same host infection pattern are des- of flowering all contribute to their widespread Earth-KindÒ Rose Trials are a component ignated as a race. Collections that have been cultivation and versatility (Zlesak, 2006). Lower of the overall Earth-Kind program, started at preserved for continued research include six maintenance cultivars that can tolerate regional Texas A&M (the term Earth-KindÒ and asso- races discovered in Germany (Debener et al., environmental conditions without routine de- ciated logo are trademarks of the Texas Agri- 1998), four from Great Britain (Yokoya et al., pendence on pesticides and excessive care Life Extension Service, Texas A&M System) 2000), and three races from a genetically di- are especially increasing in popularity (Harp and help to serve the horticulture community verse set of 50 isolates originating in east- et al., 2009; Lonnee, 2005). Factors fueling by identifying the most adaptable landscape ern North America (Whitaker et al., 2007a, this trend include negative consumer attitude roses through regional cultivar trials (Harp 2007b). Whitaker et al. (2010b) evaluated HORTSCIENCE VOL. 45(12) DECEMBER 2010 1779 this international collection, identified 11 Using a collection of races to characterize of cultivars were obtained in the summer of unique races among them, and standardized roses marketed for low-maintenance land- 2007 and maintained on an outdoor gravel the race nomenclature. These studies and others scape use would be helpful beyond highlight- pad. They were transferred to a cold room and have uncovered genetic resistance within rose ing the resistance of roses for growers and provided with a 4 °C vernalization treatment species and cultivars that is race-specific. Such consumers. Knowledge of the genetic resis- for 10 weeks before being pruned, repotted race-specific resistance can only be character- tance of these roses would guide the selection as necessary, and brought to the greenhouse ized with controlled inoculations of roses with of cultivars that could serve as controls to help (23 ± 4.0 °C; St. Paul, MN; lat. 45° N) in mid- individual races as opposed to a field setting differentiate the presence of known races in Jan. 2008. Day extension with supplemental where the presence and prevalence of specific field trials where race composition is not light was used until 2200 HR (400-W metal races are not known. Using characterized races known. Additionally, when cultivars with re- halide lamps; 150 mmolÁm–2.s–1 at plant for inoculations under controlled conditions is sistance to all known races become infected, level) to encourage strong, vigorous growth. also advantageous when surveying for partial pathologists may characterize the infective Sulfur was burned in the greenhouse from resistance (Whitaker and Hokanson, 2009a; isolate(s) in search of new pathogenic races. 22:00 to 02:00 HR nightly to discourage Xue and Davidson, 1998). A widespread cultivar screen with known powdery mildew. Sulfur burners were turned Detached leaf assays have been an effi- races would also allow breeders to identify off a minimum of 3 d before leaves were cient tool to characterize the resistance of desirable genetic resistances among a core set collected for detached leaf assays. rose seedling populations, and they have been of highly resistant cultivars. If knowledge of In late May 2008, a subset of roses needing found to be strongly correlated with whole resistance
Recommended publications
  • Ornamental,Tree and Turf Pest Control
    AG1158 Ornamental,Tree and Turf Pest Control Commercial Applicator – Classification 4 Noncommercial Applicator – Classification 9 Training Manual Cooperative Extension Service University of Arkansas, U.S. Department of Agriculture, and County Governments Cooperating Edited by: Dr. John D. Hopkins, Professor and Extension Urban Entomologist, University of Arkansas Cooperative Extension Service Contributors: Dr. John Boyd, Professor and Extension Weed Scientist, University of Arkansas Cooperative Extension Service Dr. John D. Hopkins, Professor and Extension Urban Entomologist, University of Arkansas Cooperative Extension Service Dr. Rebecca McPeake, Professor and Extension Specialist - Wildlife, University of Arkansas Cooperative Extension Service Dr. Stephen Vann, Assistant Professor and Extension Plant Pathologist, University of Arkansas Cooperative Extension Service (retired) 2 Preface This manual provides information for the Arkansas commercial pesticide applicator wishing to become certified in Classification 4 – Ornamental, Tree and Turf Pest Control – and the noncommercial pesticide applicator wishing to become certified in Classification 9 – Ornamental, Tree and Turf Pest Control. To become a certified applicator in the desired category, a candidate must pass both a general standards exam and pass an examination based primarily on the material presented in this manual and (Circular 6) Arkansas Pest Control Law (Act 488 of 1975, as amended). Information covered in the general standards examination is contained in “A Guide for Private and Commercial Applicators: Applying Pesticides Correctly.” Refer to (Circular 6) Arkansas Pest Control Law (Act 488 of 1975, as amended) for specific requirements for Classification 4 and 9. The Arkansas State Plant Board administers the examinations. Up-to-date study materials can be obtained from the Arkansas State Plant Board, #1 Natural Resources Drive (P.O.
    [Show full text]
  • Table of Contents for Plants, Pests & Pathogens North Carolina State University
    TABLE OF CONTENTS FOR PLANTS, PESTS & PATHOGENS NORTH CAROLINA STATE UNIVERSITY PLANTS, PESTS, AND PATHOGENS 2009 May 2009 Diseases How to take a good tree sample Normal leaf drop of magnolia and holly Abiotic problems . Cold injury . Mechanical damage . High pH / iron chlorosis Anthracnose (Colletotrichum) on liriope Oak leaf blister (Taphrina) Exobasidium leaf gall of camellia, rhododendron Quince rust (Gymnosporangium clavipes) on callery pear Seiridium canker on Leyland cypress Dog vomit slime mold (Fuligo septica) Lacebug injury on azalea Insects and another arthropod Some common spring scales Galls . Eriophyid mite galls . Homopteran galls . Midge galls . Wasp galls Millipede (live on web cam) June 2009 Diseases Powdery mildews Daylily leaf streak (Aureobasidium microstictum) Armillaria (mushroom) root rot Southern blight (Sclerotium rolfsii) . Comparison of southern blight and southern bacterial wilt Tomato spotted wilt virus on tomato . Plant virus “Need to know” facts Glyphosate injury on tomato Root knot nematodes Downy mildew of cucurbits (Pseudoperonospora cubensis) Insects Carrot beetle (Bothynus (=Ligyrus) gibbosus) True bugs . A predatory stink bug (Euthyrhynchus floridanus) . Leaf-footed bug (Leptoglossus sp.) . Stink bug (Euschistus sp.) Townsend scale (Abgrallaspis townsendi) Snail fecal material True flies . Migrating darkwinged fungus gnat larvae (Bradysia sp.) . Warble/bot fly (Cutereba buccata) European earwig (Forficula auricularia) Page 1 of 19 TABLE OF CONTENTS FOR PLANTS, PESTS & PATHOGENS NORTH CAROLINA STATE UNIVERSITY July 2009 Diseases Leaf spot on Loropetalum caused by Pseudocercospora Entomosporium leaf spot on Indian hawthorn Botryosphaeria canker on redbud Two rusts on hemlock . Hemlock-hydrangea rust (Thekopsora hydrangea) . Hemlock twig rust (Melampsora farlowii) Phytoplasma diseases . Confirmations and suspicions on crape myrtle . Aster yellows on marigold, carrot, coneflower .
    [Show full text]
  • A Study of Rose Care Treatment AUTHOR
    TITLE: Morris Arboretum Nursery Trial: A Study of Rose Care Treatment AUTHOR: Prima W. K. Hutabarat The Charles S. Holman Endowed Rose and Flower Garden Intern DATE: June 2012 ABSTRACT: The Arboretum’s IPM program has been striving to reduce pesticide use in the Rose Garden. In 2010, Justin Jackson, the Rose Garden Section Leader, proposed a sustainable landscape management plan that would incorporate compost tea into the Rose Garden’s IPM program. The study of improving the quality of the compost has been on-going. The intent of this project was to determine the efficacy of three organic fungicides. The project was divided into two phases, the pre-trial phase and trial phase. A treatment plan was applied from the end of spring until the end of fall, 2012. The four treatments for the trial were control (just water), compost tea, CEASE, and Green Cure. CEASE and Green Cure were sprayed onto the leaves once a week as recommended and compost tea was sprayed and drenched once a month. Black spot and downy mildew were found on almost all of the rose leaves or canes in the entire Rose Garden. As a fungal disease, the intensity of damage caused by black spot and downy mildew tends to be influenced mostly by weather conditions and the disease resistance of the rose varieties. Many hybrid tea, grandiflora, and floribunda roses are susceptible, whereas many of the shrub roses show more resistance. This observation also shows that the resistance level might be variable in different places and conditions. Nine weeks after planting, which includes four weeks of treatment that took place in early June, the rose plots did not have comparable treatment results in growth, vigor, and performance.
    [Show full text]
  • Diplocarpon Rosae) Genetic Diversity in Eastern North America Using Amplified Fragment Length Polymorphism and Implications for Resistance Screening
    J. AMER.SOC.HORT.SCI. 132(4):534–540. 2007. Distribution of Rose Black Spot (Diplocarpon rosae) Genetic Diversity in Eastern North America Using Amplified Fragment Length Polymorphism and Implications for Resistance Screening Vance M. Whitaker and Stan C. Hokanson1 Department of Horticultural Science, University of Minnesota, 258 Alderman Hall, 1970 Folwell Avenue, St. Paul, MN 55108 James Bradeen Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108 ADDITIONAL INDEX WORDS. AMOVA, dendrogram, fungal isolate, Jaccard’s coefficient, pathogenic race, principal component analysis ABSTRACT. Black spot, incited by the fungus Diplocarpon rosae Wolf, is the most significant disease problem of landscape roses (Rosa hybrida L.) worldwide. The documented presence of pathogenic races necessitates that rose breeders screen germplasm with isolates that represent the range of D. rosae diversity for their target region. The objectives of this study were to characterize the genetic diversity of single-spore isolates from eastern North America and to examine their distribution according to geographic origin, host of origin, and race. Fifty isolates of D. rosae were collected from roses representing multiple horticultural classes in disparate locations across eastern North America and analyzed by amplified fragment length polymorphism. Considerable marker diversity among isolates was discovered, although phenetic and cladistic analyses revealed no significant clustering according to host of origin or race. Some clustering within collection locations suggested short-distance dispersal through asexual conidia. Lack of clustering resulting from geographic origin was consistent with movement of D. rosae on vegetatively propagated roses. Results suggest that field screening for black spot resistance in multiple locations may not be necessary; however, controlled inoculations with single-spore isolates representing known races is desirable as a result of the inherent limitations of field screening.
    [Show full text]
  • The List Below Illustrates the Types of Pathogens/Problems Found on Plants Submitted to the Plant Diagnostic Lab in 2015
    The list below illustrates the types of pathogens/problems found on plants submitted to the plant diagnostic lab in 2015. The general format of the list shows the common name for the disease, followed by the scientific name of the pathogen, followed by a number in parentheses that indicates the number of times this problem was diagnosed in the lab. Apple (Malus x domestica) Abiotic (Potassium deficiency suspected) (1) Alternaria blotch (Alternaria mali) (1) Bitter rot (Colletotrichum sp.) (1) Burrknot (genetic) (1) Cedar apple rust (Gymnosporangium juniperi-virgianae) (1) Cedar apple rust resistance reaction (Gymnosporangium juniperi-virgianae) (2) Flyspeck (Schizothyrium pomi) (1) Leaf spot (Gloeosporium sp.) (1) Leaf spot (Pseudocercospora sp.) (1) Arborvitae (Thuja sp.) Arborvitae Needle blight (Phyllosticta thujae) (2) Needle blight (Passalora sp.) (2) Needle blight (Pestalotiopsis sp.) (2) Needle blight suspected (various fungi) (1) Root rot (Phytophthora sp.) (1) Root rot (Phaeolus schweinitzii) (1) Arborvitae (Thuja sp. ‘Green Giant’) Abiotic (1) Sphaeropsis canker (Sphaeropsis sp.)- opportunistic pathogen (1) Wood boring insect (1) Ash (Fraxinus sp.) Anthracnose (Plagiostoma fraxini) (1) Sapstain (Fusarium sp. suspected) (1) Scale insects (1) Sooty mold (fungus) (2) Aucuba (Aucuba japonica) Anthracnose stem blight (Colletotrichum sp.) (2) Azalea (Rhododendron sp.) Abiotic (high soil pH) (2) Abiotic (oedema) (1) Abiotic (winter burn) (2) Armillaria root rot (Armillaria sp.) (1) Cercospora leaf spot suspected (Cercospora sp.) (1) Leaf blight (Pestalotiopsis sp.) (1) Phomopsis canker (Phomopsis sp.) (2) Root rot (Phytophthora sp.) (1) Secondary fungus (Seiridium sp.) (1) Whiteflies suspected (1) Banana, Japanese (Musa basjoo) Root rot (Pythium sp.) (1) Bamboo (Bambusa sp.) Leaf spot (Colletotrichum sp.) (1) Bean, Green (Phaseolus vulgaris) Abiotic (anoxia) (1) Abiotic (herbicide suspected) (1) Ashy stem blight (Macrophomina phaseolina) (1) Phyllosticta leaf spot (Boeremia exigua var.
    [Show full text]
  • Black Spot of Rose in Hawai'i
    Plant Disease January 2012 PD-80 Black Spot of Rose in Hawai‘i Scot Nelson Department of Plant and Environmental Protection Sciences mong the plant diseases tissue around the spots turns yel- affecting roses (Rosa sp.) low, and this discoloration may inA Hawai‘i (Table 1), black spot eventually cover the entire leaf- is the most destructive and wide- let. Lesions enlarge slowly over spread. The plant-pathogenic several weeks, developing tan- fungus Diplocarpon rosae Wolf colored centers. Close inspec- (Marssonina rosae, asexual tion of older lesions reveals tiny stage) causes this familiar leaf black spore-producing structures spot disease throughout the called acervuli that produce world. These spots cause leaves white, slimy masses of spores. to die or fall prematurely, pro- Spots may coalesce to form large gressively weakening the plant blighted areas on the leaflets. and reducing the number of The pathogen may also infect blooms. stipules, pedicels, peduncles, Here we describe the patho- sepals, petals, and fruit. Infected gen, disease symptoms and canes have purplish lesions that epidemiology, and integrated later become black and blistered. management practices for rose Severely diseased leaflets die and fall from Highly susceptible cultivars may growers and home gardeners. plants prematurely. Lesions may also appear lose most of their leaves. on petioles and stems. Pathogen Epidemiology First reported in Sweden in 1815 and in the United States For spore germination and infection to occur, D. rosae in 1830, D. rosae now occurs in South America, China, requires either high relative humidity (95%) or free water Canada, Australia (Mangandi and Peres 2009), and on the surface of leaflets for at least seven hours (Watt throughout Europe.
    [Show full text]
  • Plant Pathology Circular No. 327 Fla. Dept. Agric. & Consumer Serv
    Plant Pathology Circular No. 327 Fla. Dept. Agric. & Consumer Serv. January 1990 Division of Plant Industry BLACK SPOT OF ROSE (ROSA SP.) Robert M. Leahy1 Roses have long been considered a premier flowering woody ornamental used extensively in gardens, landscapes, and in cut flower arrangements. They are grown commercially in containers, as field liners, and in greenhouses. The increasing popularity of roses over the years is due not only to their aesthetically pleasing shape and gentle fragrance but also to the extensive breeding of this flowering ornamental. Dozens of varieties are available today, each sporting its own unique form and color. Fig. 1. Early and late symptoms of black spot. Chlorosis follows infection and spots may coalesce as disease developes. Fig. 2. Severe infection of black spot showing minute black acuvuli. PATHOGEN: The most important disease of roses world wide is black spot caused by the fungus, Diplocarpon rosae Wolf. This disease is found in all areas of the world where cultivated roses are grown, but is seen rarely in glasshouse-grown rose crops (1). Black spot frequently reaches epidemic proportions on outdoor grown roses. Diplocarpon rosae is seen most commonly in its anamorphic or asexual state, Marssonina rosae (Lib.) Died. (1). Colorless, two-celled conidia (asexual spores) of M. rosae develop in subcuticular acervuli on leaves and young shoots during the summer months (4). As these spores germinate, they penetrate directly through the leaf cuticle and develop nutrient-absorbing haustoria in subcuticular tissues within 15 hours after infection (3,4). This fungal pathogen is specific to Rosa spp. and various races of Diplocarpon rosae have been described (4).
    [Show full text]
  • Woody Landscape Plant Breeding in Minnesota (45°N): It's Not All About
    Woody Landscape Plant Breeding in Minnesota (45º N): It’s not all about Cold Hardiness S.C. Hokanson, V.M. Whitaker, J.M. Bradeen, M.C. Long, S.K. Krebs*, R.A. Blanchette, J. Juzwik, K. Zuzek and S. McNamara University of Minnesota, St. Paul, MN, USA *Holden Arboretum, Kirtland, OH, USA Keywords: Rhododendron, powdery mildew, Cornus alternifolia, dogwood canker, Rosa ×hybrida, rose black spot Abstract The Woody Landscape Plant Breeding project at the University of Minnesota has been in existence since 1954. The project was initiated largely to develop an extended palette of cold-hardy woody landscape plants for northern landscapes. Since its inception, it has been responsible for the release of 49 woody plant cultivars including large stature shade trees, small stature flowering trees, shrubs, roses, and deciduous azaleas. Given the project’s success at building a cold-hardy germplasm pool for a number of woody taxa, recent breeding efforts have been directed towards other traits such as disease resistance in several plant taxa. Projects include an examination of the nature of resistance to powdery mildew disease (Microspharae spp.) in deciduous azalea (Rhododendron subg. Pentanthera (G. Don) Pojark) species and cultivars in both field and growth chamber studies; a physiological race and an Amplified Fragment Length Polymorphism (AFLP) molecular characterization of the rose black spot pathogen (Diplocarpon rosae Wolf) and identification of resistance genes to the disease in cultivated rose (Rosa ×hybrida). Recently, a high- throughput screening protocol to facilitate the identification of resistance to golden canker disease incited by the fungal pathogen (Cryptodiaporthe corni (Wehm.) Petrak) in a tree native to the upper midwestern U.S., Pagoda dogwood (Cornus alternifolia L.) has been initiated.
    [Show full text]
  • Roses for Utah Landscapes
    Roses for Utah Landscapes Larry A. Sagers, USU Extension Horticulture Specialist, Thanksgiving Point Roses for Utah Landscapes Roses are the most popular flowering shrubs in The ARS breaks roses into three major groups – Utah. Their long blooming season and the great Species, Old Garden and Modern Roses. After a diversity of size and color of the blossoms are rose is classified according to the three main unequaled. Most roses are easy to grow when given groupings, it is then further classified by color, the right growing conditions and the pest problems scent, growth habit, ancestry, introduction date, are controlled. blooming characteristics and size. The rose is known as the “Queen of the Flowers.” Gardeners have cultivated them for thousands of years. They were grown in Greek and Roman times and many cultivars descended from plants in ancient gardens in China, Persia or Turkey. Roses belong to the genus Rosa - they are part of a larger Rosaceae plant family. This family includes numerous blooming and edible plants, including apple, pear, cherry, peach, plum, hawthorn, strawberries, raspberries, cotoneaster, pyracantha, firethorn, potentilla, serviceberry and spirea. Selecting Roses Roses are classified by their growth habits and flowering characteristics. Select roses by size, shape, color, and desired bloom period. Provide the right growing conditions to stimulate abundant, attractive blooms. Roses are short lived if planted in poor or hostile sites. Because of their long history as a cultivated plant and the huge number of cultivated varieties, classifying roses is a difficult and ongoing task. Experts do not agree on the number of categories or Modern Rose, Pleasure floribunda the characteristics which separate those roses as there are more than 20,000 named rose cultivars (cultivated varieties).
    [Show full text]
  • Development of Diplocarpon Rosae on Different Rose
    DEVELOPMENT OF DIPLOCARPON ROSAE ON DIFFERENT ROSE CULTIVARS by CHRISTOPHER KNIGHT B.Sc. (Hull), M.Sc., D.I.C. (London) A thesis presented in part fulfilment of the requirements for the Degree of Doctor of Philosophy in the Faculty of Science of the University of London. DECEMBER 1975 Department of Botany, Imperial College of Science and Technology, Silwood Park, Sunninghill, Ascot, Berkshire. - 1 - ABSTRACT The development of Diplocarpon rosae Wolf was examined principally on five floribunda rose cultivars: Allgold, Frensham, Iceberg, masquerade and Orange Sensation, both in the field and in the laboratory. A simple standard laboratory test using leaf discs was developed to evaluate the resistance of these cultivars to different isolates of D. rosae. The variability of isolates from different cultivars was demonstrated and distinct races or strains identified. The development of the disease on the five cultivars was followed in a field trial over two successive seasons. Disease initiation and increase was associated with infection periods similar to those used for forecasting apple scab outbreaks, but no simple relationship could be demonstrated between the rate of disease increase and the weather preceding an assessment of disease. The onset of the epidemic was also related to the availability of strains of D. rosae able to grow on the cultivars. The results are discussed in relation to race-specific and race-non-specific resistance of these cultivars. Experiments indicated that D. rosae could overwinter on fallen leaves either as conidia in existing acervuli or as a mycelium which gave rise to the perfect state. The collections of the acigerous stage of D.
    [Show full text]
  • Annualreport-2015-WRC.Pdf
    THE INDIAN ROSE ANNUAL XXXI 2015 THE INDIAN ROSE FEDERATION EDITORS M.S.VIRARAGHAVAN Hillview, Fernhill Road GIRIJA VIRARAGHAVAN } Kodaikanal 624101, Tamil Nadu, India Tel: 04542 240324 Email: [email protected] [email protected] Published by THE INDIAN ROSE FEDERATION 852, Napier Town, Jabalpur 482001 Madhya Pradesh www. indianrosefederation.org www. indianrosefederation.com DURING THE XXXIII ALL INDIA ROSE CONVENTION & WORLD REGIONAL CONFERENCE HYDERABAD 29th November - 3rd December 2014 Printed by Kala Jyothi Process Pvt. Ltd. 1-1-60/5, RTC ‘X’ Roads, Musheerabad, Hyderabad - 500 020. India Phone: 040-2764 5536 E-mail: [email protected] ii ROSE ETERNAL NEW LIGHT ON THE OLD WORLD OF ROSES TOWARDS THE CREATION OF A PAN - ASIA CONSCIOUSNESS OF THE ROSE iii ACKNOWLEDGEMENT Publication of this Annual has been made possible with the generous assistance of INDIAN ROSE FEDERATION I.R.F. ACCREDITED PUBLICATIONS - Roses for Profit & Pleasure (Book) : Mumbai ❋ Member THE WORLD FEDERATION OF ROSE SOCIETIES (WFRS) (This annual is not for sale) iv THE INDIAN ROSE FEDERATION PATRONS Guru Nanak Trust, Ludhiana Patron Shri. Vijay Pokarna Patron Nawab Shah Alam Khan Patron Dr. (Mrs.) Meena Pimpalapure Patron Shri. G. P. Sahu Patron Shri. Subbarami Reddy Patron Shri. Adil Bapuna Patron Mr. Manchar Irani Patron Mrs. Sanyogita Dhanwatay Patron Mrs. Suniena Pateria Patron Shri. K. P. Kedia Patron Mrs. Chandralekha Jagtap Patron Mr. Deepak Tilak Patron Dr. (Mrs.) Aruna Bhabulkar Patron Mr. Suresh Pingale Patron Shri. Ajay Kumar Jain Patron Mrs. Nalini Khasnis Patron Mr. Lakhmendra Maheshwari Patron v THE INDIAN ROSE FEDERATION Past Presidents Justice K. K. Dubey Dr.
    [Show full text]
  • The Inheritance of Several Traits in Three Diploid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University INHERITANCE OF FLOWER, STEM, LEAF, AND DISEASE TRAITS IN THREE DIPLOID INTERSPECIFIC ROSE POPULATIONS A Thesis by DAVID ANDREW SHUPERT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2005 Major Subject: Horticulture INHERITANCE OF FLOWER, STEM, LEAF, AND DISEASE TRAITS IN THREE DIPLOID INTERSPECIFIC ROSE POPULATIONS A Thesis by DAVID ANDREW SHUPERT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, David H. Byrne H. Brent Pemberton Committee Members, Javier F. Betran Stephen R. King Head of Department, Tim D. Davis August 2005 Major Subject: Horticulture iii ABSTRACT Inheritance of Flower, Stem, Leaf, and Disease Traits in Three Diploid Interspecific Rose Populations. (August 2005) David Andrew Shupert, B.S., Purdue University Co-Chairs of Advisory Committee: Dr. David H. Byrne Dr. H. Brent Pemberton Three F1 plants (WOB13, WOB21, and WOB26) from the hybridization of the diploid parents Rosa wichuraiana ‘Basye’s Thornless’ and ‘Old Blush’ (Rosa chinensis) were backcrossed to ‘Old Blush’ to produce three interspecific backcross populations to observe the segregation of several morphological and disease resistance traits. The qualitative traits of bloom habit, flower color, flower form, and presence of stem prickles were characterized in two locations in College Station, Texas. The quantitative traits of flower size, petal size, and number of flowers per stem were measured in College Station, Texas, and number of leaflets per leaf, powdery mildew resistance, and black spot resistance were measured in College Station and Overton, Texas.
    [Show full text]