Building an Arduino Based Potentiostat and Instrumentation for Cyclic Voltammetry

Total Page:16

File Type:pdf, Size:1020Kb

Building an Arduino Based Potentiostat and Instrumentation for Cyclic Voltammetry JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 Building an Arduino based potentiostat and Instrumentation for Cyclic Voltammetry Joshi P.S1, Sutrave D.S2 1Walchand Institute of Technology, Solapur-413006, Solapur University, Maharashtra, India 2D.B.F Dayanand College of Arts and Science, Solapur-413002, Solapur University, Maharashtra, India. [email protected], [email protected] Abstract: Potentiostat is prime devices in modern electrochemical research particularly in the investigation of mechanism reaction related to redox chemistry reaction and other chemical phenomena. Cyclic voltammetry can be performed with most of the commercially available potentiostats. A potentiostat consisting of operational amplifiers is reported. An Arduino based instrumentation designed for cyclic voltammetry characterization was used to study the redox reaction occurring at the electrode-electrolyte interface. The specific capacitance was calculated which is in good agreement in comparison with standard electrochemical workstation. The simple design, construction, easy to operate, low cost and good performance are the advantages of the instrumentation. Keywords: Electrochemistry, Potentiostat, Cyclic voltammetry, Arduino Introduction Cyclic voltammetry (CV) has become a significant and broadly used electroanalytical technique in many areas of chemistry. It is generally used for the study of redox processes, in the analyses of electrochemical reactions between ions and surface atoms of electrodes under the investigation for understanding reaction intermediates for obtaining stability of reaction products, for qualitative information on electrode reaction mechanisms, qualitative properties of the charge transfer reactions between electrolyte ions and electrons from the electrode surface[1-3].Thus it is a powerful technique to study the redox reaction which plays a key role for charge storage mechanism in the study of supercapacitor. Cyclic voltammetry is based on varying the applied potential at a working electrode in both forward and reverse directions (at some scan rate) while observing the current. This technique involves a linear and a cyclic variation of electrode potential between the working and reference electrodes within a potential window by measuring the current that flows between working and counter electrodes. A certain potential is applied to a certain surface of electrode by potentiostat, which increases or reduces the amount of electrons on the surface. This forces the electrolyte to be triggered to consume electrodes to compensate for this. The exchange of electrons per time i.e. electrode’s current is measured by potentiostat. So, potentiostat is the electronic hardware which controls the three electrode cell and usually described in terms of simple operational amplifiers. Presently several companies manufacture high quality potentiostats capable of performing various voltammetric techniques. Cypress systems, ACM Instruments, EcoChiemie Netherlands, EG & G Princeton Applied Research are the top manufacturers. As per the requirement, the potentiostats may vary by size, power, sophistication and price. Though number of companies is manufacturing potentiostat instruments that deliver high precision but they are at equally high cost. These manufacturers usually make available the software for data analysis, electrochemical cells and the electrodes. Typically, these instruments along with software cost from $5,000 to $20,000. Due to such a high cost, these instruments are not easily reachable for academic reason or for preliminary research study. Also there are a number of low cost potentiostats which deliver low accuracy or resolution. The three basic components of a potentiostat are control amplifier which supplies power to maintain the controlled potential between working and reference electrode, an electrometer which measures the potential difference between the reference and working electrode and I-V converter hat measures the current between working and counter electrode. The major goal of the work is to create a microcontroller based scanning system which can accept the given input voltage range (in both positive and negative directions) and record the corresponding change in current. This voltage is provided by potentiostat. Hence the main concern is to design a potentiostat having simple circuit with a low cost and low component count . Volume V, Issue XII, December/2018 Page No:163 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 Potentiostat Design: Potentiostat consists of operational amplifiers as shown in figure. The circuit has two parts. First part as shown in figure 1. Provides the necessary power supply or potential to working electrode. This is then fed back to the same through electrolyte and reference electrode. The amplifier in this stage protects the DAC output from loading. This keeps the DAC voltage non-distorted upto the working electrode end of potentiostat. The buffer stage at the working electrode end ensures that the potential at working and reference electrode remains equal. This is the main and utmost required condition in cyclic voltammetry analysis and potentiostat design. Fig 1.Schematic of Potentiostat –Part 1 Second part , Transimpedence amplifier is as shown in figure 2. This stage converts the small amount of current through electrolyte into the voltage. Fig.2 .Schematic of Potentiostat –Part 2 The proposed instrumentation for cyclic voltammetry system using this potentiostat consists of ADC[4], DAC [5] , an Arduino microcontroller board (Arduino mega, Arduino)[6] to control the parameters, keypad[7] , LCD[8], USB flash drive[9] and an electrochemical cell. Figure 3. shows the photograph of PCB developed. Volume V, Issue XII, December/2018 Page No:164 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 Fig. 3. Photograph of PCB developed. The detail functioning of each component is published elsewhere[10].System will start and initialize to get parameters. The required parameters such as scan rate and voltage scan range are given as input through keypad. After settings, user will press the START button. The system will scan in the predefined loop/ range.LCD will indicate the completion of cycle/ scan. The data is stored in USB flash drive. Figure 4. shows our developed system with electrochemical cell and computer. Fig. 4. Set-up for Cyclic Voltammetry Specific Capacitance determination: Cyclic voltammetry was carried out using an electrochemical cell consisting of metal oxide thin film as working electrode, Pt auxiliary electrode as counter electrode and a saturated Calomel electrode as reference electrode. For this Mn doped Ruthenium Oxide (at % 2) thin film was used as working electrode. The cyclic voltammetry was carried out in a potential window -0.8 V to 0.6 V for three different scan rates 10 mV/Sec, 50 mV/Sec and 100 mV/Sec in a 0.1 M KOH electrolyte. Here the voltage is stepped in 0.1 V upto final voltages. Volume V, Issue XII, December/2018 Page No:165 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 After completion of the predefined scan, the data is stored in USB flash drive and used for further analysis. The data stored in USB was used for further analysis. Figure 5. shows the cyclic voltammogram plotted from the data. The rectangular shape of CV curve showed the supercapacitive behaviour. Also the area under the curve was increased with increase in scan rate which in turn decreased the specific capacitance. Our system showed the similar results as the laboratory tests. Fig. 5. Cyclic voltammogram for Mn: RuO2 thin film electrode from developed CV system Table 1. shows the specific capacitance comparison between CHI 608E electrochemical workstation and our developed system for different scan rates. These values are comparatively less than the laboratory test values. Table 1. Specific Capacitance CHI 608E Developed Scan rate Electrochemical System (mV/sec) workstation (F/g) (F/g) 10 307 262 50 229 149 100 202 124 The difference in value may be because of low resolution and sophistication. CONCLUSION It is demonstrated that the fabrication and design of a simple potentiostat is capable of performing cyclic voltammetry according to user-inputted parameters. It is possible to accept the voltage in both directions, to generate the step voltage increase of 0.1 V, to measure the corresponding current and to store the data in USB flash drive which can be used for analysis and to display the input variables, start and end of the process. The system is set for three different scan rates i.e 10 mV/Sec, 50 mV/Sec and 100 mV/Sec. The results obtained show the rectangular shape of voltammogram giving supercapacitive behaviour. Successful scanning in both positive and negative voltage windows, generation of satisfactory and bipolar current, increase in current density, increase in area under the curve and decrease in specific capacitance with increase in scan rate are seen from results .The similar observations are seen as compared to laboratory tests. Volume V, Issue XII, December/2018 Page No:166 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 References [1] Princeton Applied Research, Applied Instrument Group, Basics of voltammetry and polarography, Application Note P-2, pp 1-12. [2] J. Wang, Analytical Electrochemistry, Chapter 2, John Wiley & Sons (2000). [3] R.S. Nicholson and I. Shain, Theory of stationary electrode polarography, single scan and cyclic methods applied to reversible,
Recommended publications
  • 07 Chapter2.Pdf
    22 METHODOLOGY 2.1 INTRODUCTION TO ELECTROCHEMICAL TECHNIQUES Electrochemical techniques of analysis involve the measurement of voltage or current. Such methods are concerned with the interplay between solution/electrode interfaces. The methods involve the changes of current, potential and charge as a function of chemical reactions. One or more of the four parameters i.e. potential, current, charge and time can be measured in these techniques and by plotting the graphs of these different parameters in various ways, one can get the desired information. Sensitivity, short analysis time, wide range of temperature, simplicity, use of many solvents are some of the advantages of these methods over the others which makes them useful in kinetic and thermodynamic studies1-3. In general, three electrodes viz., working electrode, the reference electrode, and the counter or auxiliary electrode are used for the measurement in electrochemical techniques. Depending on the combinations of parameters and types of electrodes there are various electrochemical techniques. These include potentiometry, polarography, voltammetry, cyclic voltammetry, chronopotentiometry, linear sweep techniques, amperometry, pulsed techniques etc. These techniques are mainly classified into static and dynamic methods. Static methods are those in which no current passes through the electrode-solution interface and the concentration of analyte species remains constant as in potentiometry. In dynamic methods, a current flows across the electrode-solution interface and the concentration of species changes such as in voltammetry and coulometry4. 2.2 VOLTAMMETRY The field of voltammetry was developed from polarography, which was invented by the Czechoslovakian Chemist Jaroslav Heyrovsky in the early 1920s5. Voltammetry is an electrochemical technique of analysis which includes the measurement of current as a function of applied potential under the conditions that promote polarization of working electrode6.
    [Show full text]
  • Hydrodynamic Electrodes and Microelectrodes
    CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion and kinetics (i.e. charge transfer as described for instance by the different formulations of the Butler-Volmer equation). In most cases, diffusion is the most significant transport limitation. Diffusion limitations arise inevitably, since any reaction consumes reactant molecules. This consumption depletes reactant (the so-called electroactive species) in the vicinity of the electrode, which leads to a non-uniform distribution (see the previous notes). ______________________________________________________________________ Note: In principle, we would have to consider the accumulation of product species in the vicinity of the electrode as well. This would not change the basic phenomenology, i.e. the interplay between kinetics and transport would remain the same. But it would make the mathematical formalism considerably more complicated. In order to simplify things, we, thus, focus entirely on the reactant distribution, as the species being consumed. ______________________________________________________________________ In this part, we are considering a semiinfinite system: The planar electrode is assumed to have a huge surface area and the solution is considered to be an infinite reservoir of reactant. This simple system has only one characteristic length scale: the thickness of the diffusion layer (or mean free path) δδδ. Sometimes the diffusion layer is referred to as the “Nernst layer” . Now: let’s consider again the interplay of kinetics and diffusion limitations. Kinetic limitations are represented by the rate constant k 0 (or equivalently by the 0=== 0bα b 1 −−− α exchange current density j nFkcred c ox ).
    [Show full text]
  • Μstat 4000P Multi Potentiostat
    µStat 4000P Multi Potentiostat 01 Ref. STAT4000P Following the format of our multipotentiostats with a size of only 22x20x7 cm, includes 4 channels that can act at the same time as 4 independent potentiostats; it also includes one multichannel that can act as a poten- tiostat where up to 4 working electrodes share an auxiliary and a reference electrode. With µStat 4000P users can perform up to 4 different electrochemical techniques at the same time; or carry out the study of one technique’s parameter in just one step by applying the same electrochemical technique in several channels but selecting different values for the parameter under study. These are just exam- ples of the enormous capabilities that our new instrument offers. µStat 4000P can be applied for Voltammetric or Amperometric measurements, including 12 electroanalytical techniques. In addition, µStat 4000P owners can later upgrade their instrument to a µStat 4000P by just purchasing an extension. This self-upgrade does not require any hardware modification, but it is implemented by means of a Galvanostat software update kit. This Multi Potentiostat is Li-ion Battery powered (DC charger adaptor also compatible), and can be easily connected to a PC via USB or through Wireless connection. µStat 4000P is controlled by the powerful software “DropView 8400” which is included and that allows plotting of the measurements and performing the analysis of results. DropView software provides powerful functions such as experimental control, graphs or file handling, among others. Available
    [Show full text]
  • Basics and Applications of a Quartz Crystal Microbalance Monitoring Surface Interactions Via Small-Scale Mass Changes
    Basics and Applications of a Quartz Crystal Microbalance CORROSION BATTERY TESTING Monitoring Surface Interactions via Small-scale Mass Changes COATINGS PHOTOVOLTAICS gamry.com Contents Basics of QCM ........................................................................................................................3 Calibration of a QCM ................................................................................................... 13 Investigation of a Thin Polymer Film ..........................................................................21 The eQCM 10M System ..................................................................................................... 26 The QCM-I System .............................................................................................................. 27 References .......................................................................................................................29 Additional Resources .................................................................................................... 30 2 gamry.com Basics of a Quartz Crystal Microbalance This section provides an introduction to the quartz crystal microbalance (QCM) which is an instrument that allows a user to monitor small mass changes on an electrode. The reader is directed to the numerous reviews 1 and book chapters1 & 2 for a more in-depth description concerning the theory and application of the QCM. A basic understanding of electrical components and concepts is assumed. The two major points of this section are:
    [Show full text]
  • A Practical Organic-Mediated Hybrid Electrolyser That Decouples
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018 Supplementary Information for: A Practical Organic-Mediated Hybrid Electrolyser that Decouples Hydrogen Production at High Current Densities Niall Kirkaldy,a Greig Chisholm,a Jia-Jia Chena and Leroy Cronin*a a WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK * Corresponding author, [email protected] 1 Contents SI-1. General Experimental Remarks .................................................................................................. 3 SI-2. Electrochemical Characterisation ............................................................................................... 4 SI-3. Gas Headspace Measurements................................................................................................... 6 SI-4. Hybrid PEME Construction and Operation ................................................................................. 7 SI-5. PEME Characterisation Methods ................................................................................................ 8 SI-6. PEME Efficiency Calculations .................................................................................................... 10 SI-7. Cost Calculations ....................................................................................................................... 11 2 SI-1. General Experimental Remarks 9,10-anthraquinone-2,7-disulfonic acid disodium salt was purchased from Santa Cruz Biotechnology
    [Show full text]
  • Pulse Voltammetry Software Brochure
    Data Analysis density. This feature is particularly useful for comparing data from electrodes of different areas. The analysis of the software data is performed in the Echem Analyst. Specific analysis routines have been created to Baseline Add: Baselines can be added to the data graph by either drawing a Freehand Line or by extrapolating a handle this software data files. The general features of the Echem Analyst are described in a separate brochure entitled part of the baseline with the Linear Fit feature. Redefining Electrochemical Measurement “Overview of Gamry Software.” Integrate: Integration of the current in Differential Pulse These specific routines include: Voltammetry and Square Wave Voltammetry is possible by defining a baseline and then selecting the portion of the Pulse Voltammetry Software Peak Find: Use the Region Selector button to select a curve you want to integrate. Then select Integrate from the portion of the curve that includes the region where the drop-down menu and the result is reported on the curve The Pulse Voltammetry Software adds Differential Pulse peak is located. Click on the Peak Find button to find the and also on a new tab. This software incorporates the following pulse techniques: peak position and the peak height. A perpendicular line is Voltammetry, Square Wave Voltammetry, and other drawn on the chart from the peak to the baseline. Background Subtract: A background file can be recognized pulse voltammetry techniques to the Gamry ● Square Wave subtracted from the current active data file by selecting software product family. For qualitative and mechanistic ● Square Wave Stripping Subtract from the menu and choosing the file.
    [Show full text]
  • Emstat-Go-Description.Pdf
    z Rev. 1-2019 EmStat Go potentiostat ...............................................................................................................2 Sensor Extension module .........................................................................................................2 Sleeves in any color .................................................................................................................3 Modular design ........................................................................................................................3 Optional battery for connecting via Bluetooth ...........................................................................3 Reduce your time-to-market ....................................................................................................4 Supported techniques ..............................................................................................................4 Voltammetric techniques ......................................................................................................4 Techniques as a function of time ..........................................................................................4 Custom software options .............................................................................................................5 Specifications of general parameters ...........................................................................................6 General pretreatment............................................................................................................6
    [Show full text]
  • Development and Evaluation of a Calibration Free Exhaustive Coulometric Detection System for Remote Sensing
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2014 Development and evaluation of a calibration free exhaustive coulometric detection system for remote sensing. Thomas James Roussel University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Roussel, Thomas James, "Development and evaluation of a calibration free exhaustive coulometric detection system for remote sensing." (2014). Electronic Theses and Dissertations. Paper 1238. https://doi.org/10.18297/etd/1238 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. DEVELOPMENT AND EVALUATION OF A CALIBRATION FREE EXHAUSTIVE COULOMETRIC DETECTION SYSTEM FOR REMOTE SENSING by Thomas James Roussel, Jr. B.A., University of New Orleans, 1993 B.S., Louisiana Tech University, 1997 M.S., Louisiana Tech University, 2001 A Dissertation Submitted to the Faculty of the J. B. Speed School of Engineering of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Mechanical Engineering University of Louisville Louisville, Kentucky May 2014 Copyright 2014 by Thomas James Roussel, Jr. All rights reserved DEVELOPMENT AND EVALUATION OF A CALIBRATION FREE EXHAUSTIVE COULOMETRIC DETECTION SYSTEM FOR REMOTE SENSING By Thomas James Roussel, Jr.
    [Show full text]
  • High Speed Controlled Potential Coulometry
    c1CYCLIC CHELONO, DIFPU- c2SOLVE GENERATED EQUA- 903 FORMAT (5HRR =, F10.5, SION CONTROLL, PLANE TION BEGIN AT 96 READ 8HFRACT =, F10.5) ELECTRODE, READ IN K IN NOSIG FOR ACCURACY GO TO 920 NOSIG RR FRACT, TWO 96 IF(M- 1)300,100,102 300 PRINT905 SOLUBLE ElPECIES 100 Z=Y 905 FORRSAT (2X,5HEItROR) READ 900,K,NOSlG, RR, M=M+l 920 STOP FRACT 102 IF (Z) 98,200,99 EXD DIMENSION X (100),T (1 00) , 98 IF (Y) 71,200,73 END R(100) 99 IF (Y) 73,200,71 C GENERATION OF EQUA- 71 T(N) = T(N) + 10.0 **(-LA) LITERATURE CITED TIONS GO TO 10 (1) Alden, J. R., Chambers, J. Q., Adams, DO200N = 1,K 73 T(N) = T(K) - 10.0 **(-LA) R. N., J. Electroanal. Chem. 5, 152 T(N) = 0.0 LA=LA+I (1963). M=l 199 IF (NOSIG - LA) 300,200,71 (2) Bard, A. J., ANAL. CHEM. 33, 11 (1961). LA = 0 200 CONTIXUE (3) Churchill, R. V., “Operational Mathe- 10 DO 80 I = 1,N c3EQUATION SOLVED PRINT matics,” p. 39, McGraw-Hill, New York, SUM = 0.0 ANSWER 1958. DO 60 J = I,N DO201 J = 1,K,2 (4) Galus, Z., Lee, H. Y., Adams, R. N., = 201 R(J) = T(J)/T(J 1) J. Electroanal. Chem. 5, 17 (1963). 60 SUM SUM -- T(J) + (5) Murra,y, R. W., Reilley, C. N., Ibid., X(1) = SQRTF(SUM) PRINT 903, RR, FRACT 3, 182 (1962). 80 CONTIXUE PRINT 901 (6) Piette, L.
    [Show full text]
  • Electrogravimetry and Coulometry
    Electrogravimetry and Coulometry • Based on an analysis that is carried out by passing an electric current for a sufficient length of time to ensure complete oxidation or reduction of the analyte to a single product of known composition • Moderately sensitive, more accurate, require no preliminary calibration against standards i.e. Absolute analysis is possible 4/16/202 1 0 2 Electrogravimetry - The product is weighed as a deposit on one of the electrodes (the working electrode) • Constant Applied Electrode Potential • Controled Working Electrode Potential Coulometry - • The quantity of electrical charge needed to complete the electrolysis is measured • Types of coulometric methods Controlled- potential coulometry Coulometric titrimetry 4/16/202 2 0 3 Electrogravimetric Methods • Involve deposition of the desired metallic element upon a previously weighed cathode, followed by subsequent reweighing of the electrode plus deposit to obtain by difference the quantity of the metal • Cd, Cu, Ni, Ag, Sn, Zn can be determined in this manner • Few substances may be oxidized at a Pt anode to form an insoluble and adherent precipitate suitable for gravimetric measurement 3 e.g. oxidation of lead(II) to lead dio4/1xi6/20d2 e in HNO acid 3 0 4 • Certain analytical separations can be accomplished Easily reducible metallic ions are deposited onto a mercury pool cathode Difficult-to-reduce cations remain in solution Al, V, Ti, W and the alkali and alkaline earth metals may be separated from Fe, Ag, Cu, Cd, Co, and Ni by deposition of the latter group of elements onto mercury 4/16/202 4 0 5 Constant applied potential (no control of the working electrode potential) Electrogravimetric methods Controlled working electrode potential 4/16/202 5 0 6 Constant applied potential electrogravimetry • Potential applied across the cell is maintained at a constant level throughout the electrolysis • Need a simple and inexpensive equipment • Require little operator attention • Apparatus consists of I).
    [Show full text]
  • Introduction to Pulsed Voltammetric Techniques: DPV, NPV and SWV I
    EC-Lab – Application Note #67 04/2019 Introduction to pulsed voltammetric techniques: DPV, NPV and SWV I – INTRODUCTION (NPV, DPV, SWV) voltammetric techniques are The pulse voltammetric techniques are compared. electroanalytical techniques mainly used to detect species of very small concentrations. II – THEORETICAL DESCRIPTION (10-6 to 10-9 mol L-1). They were developed to At low concentration, the measured current is improve voltammetric polarography expe- mainly constituted by capacitive current. The riments, in particular by minimizing the intrinsic characteristics of the pulsed capacitive (charging) current and maximizing techniques allow the user to improve the the faradaic current. detection process, for example the detection The polarography was invented by Prof. limit (DL) can reach 10 nmol L-1. Indeed, the Heyrovský (for which he won a Nobel prize) faradaic current IF Eq. (1) decreases more and consists in using a droplet of mercury as slowly than the capacitive current IC Eq. (2), an electrode, that grows, falls and is renewed. the subtraction (Fig. 1) of the current just The main advantages of using a mercury drop before and after the potential pulse (some mV electrode are that i) its surface and the during some ms) gives mainly the faradaic diffusion layer are constantly renewed, and current. not modified by deposited material during The faradaic current is given by the following electrochemical processes and ii) the proton equation [2]: reduction on mercury occurs at very high = F (1) cathodic overpotentials. Thus, it is possible to observe reactions occurring at large potential With n the Fnumber of� electrons involved in values.
    [Show full text]
  • A Micro Computer Controlled High Speed High Resolution Cyclic
    A micro computer controlled high speed high resolution cyclic voltammeter by Russell Allen Bonsteel A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Montana State University © Copyright by Russell Allen Bonsteel (1986) Abstract: In cyclic voltammetry, the technique of applying known voltages to an electrochemical cell and recordings the response waveform on an x-y recorder is a area of significant growth. In its infancy, the voltages applied to the cell were delivered by manual control through a network of vacuum tubes, resistors, and capacitors. The waveform response curves were both crude in accuracy and precision. The next generation of electronics brought about the operational amplifier. While this increased the accuracy of the waveforms, reproducibility was still lagging because of the manual timing application of the input voltages, especially for multiple run sequences. It is proposed that by using state of the art integrated circuits and computer control that the manual application of the voltages can be eliminated and thereby increase both the precision and the reproducibility of the voltammetric waveform. With the implementation of the integrated circuits and computer control new schematic designs had to be employed. Solid state analog switches were used to route precise currents or voltages to carefully matched operational amplifiers. Timing routines were generated to maximize the amount of data to be collected and stored in computer memory. A sophisticated language called FORTH was ascertained to be the best vehicle to communicate between the computer and the cyclic voltammetric interface. The results were excellent on the implementation of the voltages to the electrodes in the chemical cell.
    [Show full text]