The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Translation EF-Tu: Trna
University of Illinois at Urbana-Champaign Luthey-Schulten Group NIH Resource for Macromolecular Modeling and Bioinformatics Computational Biophysics Workshop Evolution of Translation EF-Tu: tRNA VMD Developer: John Stone MultiSeq Developers Tutorial Authors Elijah Roberts Ke Chen John Eargle John Eargle Dan Wright Zhaleh Ghaemi Jonathan Lai Zan Luthey-Schulten August 2014 A current version of this tutorial is available at http://www.scs.illinois.edu/~schulten/tutorials/ef-tu CONTENTS 2 Contents 1 Introduction 3 1.1 The Elongation Factor Tu . 3 1.2 Getting Started . 4 1.2.1 Requirements . 4 1.2.2 Copying the tutorial files . 4 1.2.3 Working directory . 4 1.2.4 Preferences . 4 1.3 Configuring BLAST for MultiSeq . 5 2 Comparative Analysis of EF-Tu 5 2.1 Finding archaeal EF1A sequences . 6 2.2 Aligning archaeal sequences and removing redundancy . 8 2.3 Finding bacteria EF-Tu sequences . 11 2.4 Performing ClustalW Multiple Sequence and Profile-Profile Align- ments . 12 2.5 Creating Multiple Sequence with MAFFT . 16 2.6 Conservation of EF-Tu among the Bacteria . 16 2.7 Finding conserved residues across the bacterial and archaeal do- mains . 20 2.8 EF-Tu Interface with the Ribosome . 21 3 Computing a Maximum Likelihood Phylogenetic Tree with RAxML 23 3.1 Load the Phylogenetic Tree into MultiSeq . 25 3.2 Reroot and Manipulate the Phylogenetic Tree . 25 4 MultiSeq TCL Scripting: Genomic Context 27 5 Appendix A 30 5.1 Building a BLAST Database . 30 6 Appendix B 31 6.1 Saving QR subset of alignments in PHYLIP and FASTA format 31 6.2 Calculating Maximum Likelihood Trees with RAxML . -
Crystal Structure of a Translation Termination Complex Formed with Release Factor RF2
Crystal structure of a translation termination complex formed with release factor RF2 Andrei Korosteleva,b,1, Haruichi Asaharaa,b,1,2, Laura Lancastera,b,1, Martin Laurberga,b, Alexander Hirschia,b, Jianyu Zhua,b, Sergei Trakhanova,b, William G. Scotta,c, and Harry F. Nollera,b,3 aCenter for Molecular Biology of RNA and Departments of bMolecular, Cell and Developmental Biology and cChemistry and Biochemistry, University of California, Santa Cruz, CA 95064 Contributed by Harry F. Noller, October 30, 2008 (sent for review October 22, 2008) We report the crystal structure of a translation termination com- and G530 of 16S rRNA, and recognized separately by interac- plex formed by the Thermus thermophilus 70S ribosome bound tions with Gln-181 and Thr-194. Stop codon recognition by RF1 with release factor RF2, in response to a UAA stop codon, solved also involves a network of interactions with other structural at 3 Å resolution. The backbone of helix ␣5 and the side chain of elements of RF1, including critical main-chain atoms and con- serine of the conserved SPF motif of RF2 recognize U1 and A2 of the served features of 16S rRNA (9). stop codon, respectively. A3 is unstacked from the first 2 bases, Many studies have implicated the conserved GGQ motif in contacting Thr-216 and Val-203 of RF2 and stacking on G530 of 16S domain 3, present in the release factors of all three primary rRNA. The structure of the RF2 complex supports our previous domains of life, in the hydrolysis reaction. Although the side proposal that conformational changes in the ribosome in response chain of the conserved glutamine has been proposed to play a to recognition of the stop codon stabilize rearrangement of the role in catalysis (10, 11), elimination of its side-chain amide switch loop of the release factor, resulting in docking of the group by mutation of this residue to alanine, for example, universally conserved GGQ motif in the PTC of the 50S subunit. -
Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full -
Structural Aspects of Translation Termination on the Ribosome
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eScholarship@UMMS University of Massachusetts Medical School eScholarship@UMMS RNA Therapeutics Institute Publications RNA Therapeutics Institute 2011-08-01 Structural aspects of translation termination on the ribosome Andrei A. Korostelev University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/rti_pubs Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, and the Therapeutics Commons Repository Citation Korostelev AA. (2011). Structural aspects of translation termination on the ribosome. RNA Therapeutics Institute Publications. https://doi.org/10.1261/rna.2733411. Retrieved from https://escholarship.umassmed.edu/rti_pubs/33 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in RNA Therapeutics Institute Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. REVIEW Structural aspects of translation termination on the ribosome ANDREI A. KOROSTELEV1 RNA Therapeutics Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA ABSTRACT Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2. -
Kids First Pediatric Research Program (Kids First) Poster Session at ASHG Accelerating Pediatric Genomics Research Through Collaboration October 15Th, 2019
The Gabriella Miller Kids First Pediatric Research Program (Kids First) Poster Session at ASHG Accelerating Pediatric Genomics Research through Collaboration October 15th, 2019 Background The Gabriella Miller Kids First Pediatric Research Program (Kids First) is a trans- NIH Common Fund program initiated in response to the 2014 Gabriella Miller Kids First Research Act. The program’s vision is to alleviate suffering from childhood cancer and structural birth defects by fostering collaborative research to uncover the etiology of these diseases and support data sharing within the pediatric research community. This is implemented through developing the Gabriella Miller Kids First Data Resource (Kids First Data Resource) and populating this resource with whole genome sequence datasets and associated clinical and phenotypic information. Both childhood cancers and structural birth defects are critical and costly conditions associated with substantial morbidity and mortality. Elucidating the underlying genetic etiology of these diseases has the potential to profoundly improve preventative measures, diagnostics, and therapeutic interventions. Purpose During this evening poster session, attendees will gain a broad understanding of the utility of the genomic data generated by Kids First, learn about the progress of Kids First X01 cohort projects, and observe demonstrations of the tools and functionalities of the recently launched Kids First Data Resource Portal. The session is an opportunity for the scientific community and public to engage with Kids First investigators, collaborators, and a growing community of researchers, patient foundations, and families. Several other NIH and external data efforts will present posters and be available to discuss collaboration opportunities as we work together to accelerate pediatric research. -
From Thermus Thermophilus HB8
Crystal Structure of Elongation Factor P from Thermus thermophilus HB8 Genetic information encoded in messenger RNA molecules. Several proteins were found to possess is translated into protein by the ribosome, which is a domain(s) similar to a portion of tRNA, by which they large ribonucleoprotein complex. It has been clarified interact with the ribosome. The C-terminal domain of that diverse proteins called translation factors and elongation factor G (EF-G) has a shape similar to that RNAs are involved in genetic translation. Translation of the anticodon-stem loop in the elongation factor Tu elongation factor P (EF-P) is one of the translation (EF-Tu)• tRNA• GDPNP ternary complex. Release factors and stimulates the first peptidyl transferase factor 2 (RF2) and ribosome recycling factor (RRF) activity of the ribosome [1]. EF-P is conserved in were also found to possess a protruding domain, by bacteria, and is essential for their viability. Eukarya which they are believed to bind to the ribosome A site and Archaea have an EF-P homologue, eukaryotic [3]. In contrast with these factors, the entire structure initiation factor 5A (eIF-5A). of the EF-P mimics the overall shape of the tRNA We succeeded in the determination of the crystal molecule (Fig. 2). In addition, it is notable that EF-P is structure of EF-P from Thermus thermophilus HB8 at an acidic protein and most of its surface is negatively 1.65 Å resolution, using beamline BL45PX [2]. The charged. The overall tRNA-like shape of the EF-P crystallographic asymmetric unit contains two nearly molecule and the charge distribution seem to be identical EF-P monomers (Fig. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Allosteric Collaboration Between Elongation Factor G and the Ribosomal L1 Stalk Directs Trna Movements During Translation
Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation Jingyi Feia, Jonathan E. Bronsona, Jake M. Hofmanb,1, Rathi L. Srinivasc, Chris H. Wigginsd and Ruben L. Gonzalez, Jr.a,2 aDepartment of Chemistry, bDepartment of Physics, cThe Fu Foundation School of Engineering and Applied Science and dDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 1Current address: Yahoo! Research, 111 West 40th Street, 17th Floor, NewYork, NY 10018 2To whom correspondence may be addressed. E-mail: [email protected] Classification: Biological Sciences, Biochemistry ABSTRACT Determining the mechanism by which transfer RNAs (tRNAs) rapidly and precisely transit through the ribosomal A, P and E sites during translation remains a major goal in the study of protein synthesis. Here, we report the real-time dynamics of the L1 stalk, a structural element of the large ribosomal subunit that is implicated in directing tRNA movements during translation. Within pre-translocation ribosomal complexes, the L1 stalk exists in a dynamic equilibrium between open and closed conformations. Binding of elongation factor G (EF-G) shifts this equilibrium towards the closed conformation through one of at least two distinct kinetic mechanisms, where the identity of the P-site tRNA dictates the kinetic route that is taken. Within post-translocation complexes, L1 stalk dynamics are dependent on the presence and identity of the E-site tRNA. Collectively, our data demonstrate that EF-G and the L1 stalk allosterically collaborate to direct tRNA translocation from the P to the E sites, and suggest a model for the release of E-site tRNA. -
The Genomic Landscape of Pancreatic and Periampullary Adenocarcinoma Vandana Sandhu1,2, David C
Published OnlineFirst August 3, 2016; DOI: 10.1158/0008-5472.CAN-16-0658 Cancer Molecular and Cellular Pathobiology Research The Genomic Landscape of Pancreatic and Periampullary Adenocarcinoma Vandana Sandhu1,2, David C. Wedge3,4, Inger Marie Bowitz Lothe1,5, Knut Jørgen Labori6, Stefan C. Dentro3,4,Trond Buanes6,7, Martina L. Skrede1, Astrid M. Dalsgaard1, Else Munthe8, Ola Myklebost8, Ole Christian Lingjærde9, Anne-Lise Børresen-Dale1,7, Tone Ikdahl10,11, Peter Van Loo12,13, Silje Nord1, and Elin H. Kure1,2 Abstract Despite advances in diagnostics, less than 5% of patients with and Wnt signaling. By integrating genomics and transcrip- periampullary tumors experience an overall survival of five years tomics data from the same patients, we identified CCNE1 and or more. Periampullary tumors are neoplasms that arise in the ERBB2 as candidate driver genes. Morphologic subtypes of vicinity of the ampulla of Vater, an enlargement of liver and periampullary adenocarcinomas (i.e., pancreatobiliary or intes- pancreas ducts where they join and enter the small intestine. In tinal) harbor many common genomic aberrations. However, this study, we analyzed copy number aberrations using Affymetrix gain of 13q and 3q, and deletions of 5q were found specificto SNP 6.0 arrays in 60 periampullary adenocarcinomas from Oslo the intestinal subtype. Our study also implicated the use of the University Hospital to identify genome-wide copy number aber- PAM50 classifier in identifying a subgroup of patients with a rations, putative driver genes, deregulated pathways, and poten- high proliferation rate, which had impaired survival. Further- tial prognostic markers. Results were validated in a separate cohort more, gain of 18p11 (18p11.21-23, 18p11.31-32) and 19q13 derived from The Cancer Genome Atlas Consortium (n ¼ 127). -
Detecting Translational Regulation by Change Point Analysis of Ribosome Profiling Datasets
bioRxiv preprint doi: https://doi.org/10.1101/003210; this version posted March 5, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Detecting translational regulation by change point analysis of ribosome profiling datasets Zupanic A1, Meplan C2, Grellscheid SN3, Mathers JC1, Kirkwood TBL1, Hesketh JE2, Shanley DP1 1Centre for Integrated Systems Biology of Ageing & Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, NE4 5PL, UK 2Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK 3School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK Running title: Translational regulation in ribosome profiles Keywords: ribosome profiling, translation regulation, change point, mathematical model Corresponding author: Daryl Shanley Centre for Integrated Systems Biology of Ageing & Nutrition, Institute for Ageing and Health, Newcastle University, NE4 5PL, UK Email: [email protected] Fax: +441912481101 1 bioRxiv preprint doi: https://doi.org/10.1101/003210; this version posted March 5, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Ribo-Seq maps the location of translating ribosomes on mature mRNA transcripts. While ribosome density is constant along the length of the mRNA coding region, it can be altered by translational regulatory events. -
Insights Into Diphthamide, Key Diphtheria Toxin Effector
Toxins 2013, 5, 958-968; doi:10.3390/toxins5050958 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Brief Report Insights into Diphthamide, Key Diphtheria Toxin Effector Wael Abdel-Fattah 1,†, Viktor Scheidt 1,†, Shanow Uthman 2, Michael J. R. Stark 3 and Raffael Schaffrath 1,2,* 1 Institut für Biologie, FG Mikrobiologie, Universität Kassel, Kassel D-34132, Germany; E-Mails: [email protected] (W.A.-F.); [email protected] (V.S.) 2 Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; E-Mail: [email protected] 3 Centre for Gene Regulation & Expression, University of Dundee, Dundee, DD1 5EH, Scotland; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-561-804-4175; Fax: +49-561-804-4337. Received: 14 March 2013; in revised form: 17 April 2013 / Accepted: 26 April 2013 / Published: 3 May 2013 Abstract: Diphtheria toxin (DT) inhibits eukaryotic translation elongation factor 2 (eEF2) by ADP-ribosylation in a fashion that requires diphthamide, a modified histidine residue on eEF2. In budding yeast, diphthamide formation involves seven genes, DPH1-DPH7. In an effort to further study diphthamide synthesis and interrelation among the Dph proteins, we found, by expression in E. coli and co-immune precipitation in yeast, that Dph1 and Dph2 interact and that they form a complex with Dph3. Protein-protein interaction mapping shows that Dph1-Dph3 complex formation can be dissected by progressive DPH1 gene truncations. This identifies N- and C-terminal domains on Dph1 that are crucial for diphthamide synthesis, DT action and cytotoxicity of sordarin, another microbial eEF2 inhibitor. -
Eef2k) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy
International Journal of Molecular Sciences Review Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy Bin Zhang 1 , Jiamei Zou 1, Qiting Zhang 2, Ze Wang 1, Ning Wang 2,* , Shan He 1 , Yufen Zhao 2 and C. Benjamin Naman 1,* 1 Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; [email protected] (B.Z.); [email protected] (J.Z.); [email protected] (Z.W.); [email protected] (S.H.) 2 Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; [email protected] (Q.Z.); [email protected] (Y.Z.) * Correspondence: [email protected] (N.W.); [email protected] (C.B.N.) Abstract: Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The Citation: Zhang, B.; Zou, J.; Zhang, expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in Q.; Wang, Z.; Wang, N.; He, S.; Zhao, many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient Y.; Naman, C.B.