A Semionotid Fish from the Crato Formation (Aptian, Lower Cretaceous) of Brazil: Palaeoecological Implications

Total Page:16

File Type:pdf, Size:1020Kb

A Semionotid Fish from the Crato Formation (Aptian, Lower Cretaceous) of Brazil: Palaeoecological Implications ORYCTOS,Vol. 1 :37 - 42 Octobre1998 A SEMIONOTIDFISH FROMTHE CRATOFORMATION (APTIAN, LOWER CRETACEOUS)OF BRAZIL: PALAEOECOLOGICALIMPLICATIONS Paulo M. BRITO1 , David M. MARTILL, and SvtvieWENZ3 tDepartmento Biologia Animal e Vegetal, Universidade do Estado do Rio de Janeiro, R. J. Brazil & Laboratoire Ichthyologie, Museum national d'Histoire naturelle, Paris, France. '?Departmentof Geology, University of Portsmouth, Portsmouth,pOl 3eL, UK. 3 Laboratoire de Paléontologie- URA 12 CNRS, 8 Rue Buffon, F-75005 Paris, France. Abstract : A partial example of an articulated fish cf. Araripelepidotes sp. from the Nova Olinda Member of the Crato Formation (Aptian, Lower Cretaceous,Araripe Basin, Bra\zil) is the first record of this taxon from this for- mation. Fishes other than Dastilbe spp. are extremely rare in the erato Formation and we consider the implications in terms of the overall ichthyofauna diversity and palaeoecology. Key words: Pisces,Lower Cretaceous,Brazil Un poissonsemionotidé de la Formation Crato (Aptien, Crêtacéinférieur) du N. E. du Brésil: implications paléoécologiques Résumé : Un exemplaire incomplet, articulé, d'un poisson semionotidé,provenant du Membre Nova Olinda de la Formation Crato (Aptien du Bassin d'Araripe, Brésil) est identifié comme étant un cf . Araripelepidotes sp. C'est la première fois que ce type de poisson est signalé dans ce niveau. A l'exception de Dastilbe spp. les poissons sont extrêmementrares dansla Formation Crato. Le problème de la diversité de I'ichthyofaune et les implications paléo- écologiquesde cette découvertesont abordées.(traduit par la rédaction). Mots clés: Pisces, Crétacé inférieu4 Brésil INTRODUCTION thoughts on the palaeoenvironment, especially with regard to the palaeosalinity. Although the Nova The Crato Formation of the Araripe Basin, north Olinda Member of the Crato Formation (Aptian, east Brazll is one of the most important Meso zoic Lower Cretaceous,Araripe Basin, north east Brazll) fossil conservation lagerstâtte, and is particularly is well known for its exceptional preservation and well-known for yielding abundant, diverse and well abundanceof fossils, the ichthyofauna is of very low preservedinsects and plants (Martill, 1993).As of yet, diversity (only two genera so far being recorded) and no detailed palaeoecological analysis of the forma- only the gonorhynchiform teleost Dastilbe elongatus tion has been published and questions remain as to (Silva Santos, 1947) occurs abundantly.On the other the exact nature of the palaeoenvironment. The pur- hand, winged insects are extremely abundant and pose of this paper is to document the first discovery include a wide range of insect orders. Other verte- of a semionotid fish; cf. Araripelepidotes sp., from brates such as birds, pterosaurs, crocodiles, lizards the Crato Formation and consider the palaeoecologi- and frogs have all been reported (Martill & Filgueira, cal implications of this fossil in the light of current 1994; Maisey, I99I). Perhaps remarkably, if one 37 ORYCTOS,VOL.1,1998 excludesDastilbe spp. pterosaursappear to be more THE NEW SPECIMEN abundantthan fish (seeMartill & Frey, this volume). Very rare examples of the ichthyodectiform fish The presentstudy is basedon a single specimen Cladocyclussp. from the Crato Formation were first (PMB.VP-I44) housedin the Departmentof Biology reportedby Wenzand Campos (1985) from Barbalha, of the State University of Rio de Janeiro (UERJ). Cearâ.More recently Maisey (1996) claimed that Although the new specimenis incomplete,it is an specimensof Cladocyclusfrom the Crato limestones articulatedexample of a semionotidfish on a slab of representeda freshwater speciesof this taxon. We creamcoloured limestone typical of the Nova Olinda discussthis considerationbelow. Memberof the CratoFormation (Figs . l, 2).It lacks the skull and anterior trunk region, thus preventing accurategeneric and specificidentification. SYSTEMATICS ClassOsteichthyes Subclass Actinopterygii Figure 1. cf . ' Araripelepidotes sp. from the Nova Olinda InfraclassNeopterygii Member of the Crato Formation (Aptian, Lower Cretaceous) Order Semionotiformes of the Araripe Basin, n.e. Brazll. Scale bar in centimetres. entire Family Semionotidae Specimennumber PMB.VP-I44. Photographshowing specimen on slab of typical Crato limestone. Note that the Genuscf . AraripelepidotesSilva Santos,1985 skull and anterodorsal part of the trunk appears to have (seealso Silva Santos, 1990) decayedaway prior to preservation. 1CICM 38 BRITO, MARTILL & WENZ- SEMIONOTID FROM BRAZIL As preserved the specimen is approximately 250 caudal fin is slightly forked (Fig.2). mm in length, and represents a fish with an original The body is subcylindrical with a moderate ele- estimated length of between 240 mm and 300 mm vation anterior to the dorsal fin. Dorsal and anal fins (this estimate obtained by comparing the length bet- are situated in the posterior part of the body. All the ween base of the ventral lobe of the caudal fin and fins are preceded by strongly developed fulcra. The base of pectoral fins with that reconstructed by body is coveredby rhombic, smooth, isometric scales Maisey (I99I, p. 118) for Araripelepidotes). The covered by a thick layer of ganoin. The scales differ body measuresapproximately 180 mm from the pec- depending on their position in the body. The most toral girdle to the caudal pedicle. The anomaly bet- dorsal anterior scales are larger with serrated poste- ween the actual length of the specimen and the esti- rior edges; the mid and posterior scales are diamond mated length of the complete fish is due to the tapho- shaped and lack serration. nomic forward flexure of the right pectoral fin. The It is difficult to place the Crato specimen preci- anteroventral region of the trunk shows some disrup- sely in a taxonomic position, as it lacks the skull tion, and the missing skull is due to post mortem loss bones and the body shows only the most generalised during drifting. The paired pectoral fins are present, characters' of the Semionotidae. Semionotids are as is the anal fin and parts of the dorsal fin. The cau- common in the Mesozoic rift and pre-rift basins in dal fin is entire, although the dorsal and ventral lobes the north-east of BrazII, and are known by at least 4 have "closed" slightly to give the caudal region a nar- species of Lepidotes, and one species of row appearance.A slight taper of the distal portions Araripelepidotes in the SantanaFormation. of the caudal fin suggest that in this specimen the 39 ORYCTOS,VOL.1,1998 In the Araripe basin, Lepidotes sp. is known only the anatomy of Dastilbe from the Crato Formation by disarticulated material from the Missao Velha and considers that two species may occur; a small Formation. From the Romualdo Member of the species with a dorsal fin ray count of 10 and larger SantanaFormation is known Araripelepidotes temnu- examples with a fin ray count of 13. In the Nova rus (Agassiz, 1841), a smaller and more slender Olinda Member specimens of both large and small semionotid, as well as a possible distinct semionotid Dastilbe spp. occur in abundance;smaller individuals taxon, âS yet undescribed (Brito &. Wenz in prep.). in super abundance, whereas examples of Recently, Wenz & Brito (1992) described two primi- Cladocyclus ate extremely tate, and usually represent tive gar fishes; Obaichthys decoratus and O? laevis, small individuals (size range 150 to 300 mm) compa- also from the Romualdo Member. red with examples of Cladocyclus from the The new Crato specimen can be distinguished Romualdo Member of the Santana Formation where from all other Lepidotes known in Brazllby its body lengths of over 1 m are recorded (Maisey, I99I: p. shape (subcylindrical), the absenceof a pronounced 190). The new specimen described here with pro- hump in front of the dorsal fin and the dimensions of bable affinities to Araripelepidotes indicates that its body. other fish species were entering the Crato Formation It can be distinguished from Obaichthys by the water body, but only very rarely. presence of large scales in the front part of the body The low diversity of the Crato Formation ich- (Obaichthys spp. have similar sized scales throu- thyofauna is in marked contrast to the high diversity ghout), and the absenceof opisthocoelous vertebrae. Santana Formation ichthyofauna which has to date In addition, the vertebrae of the new specimen are not yielded some twenty genera (Maisey I99I; Martill fully ossified, whereas in gars the vertebrae are well 1993). Of those recorded from the Crato Formation, ossified throughout. Araripelepidotes and Cladocyclus are also well Although no single synapomorphycan be poin- known from the Romualdo Member of the Santana ted out, we can separatethe Crato specimen from all Formation, but the gonorhynchiform Dastilbe elon- other Brazllian semionotifoffns sensu Olson and gatus has yet to be recorded. This anom aly has McCune I99I (theseauthors combine Semionotidae, important implications for any reconstruction of the Macrosemiidae and Lepisosteidae in the palaeoenvironment of the Crato Formation water Semionotiformes), except Araripelepidotes . body. The Santana Formation ichthyofauna probably However, the absenceof the skull makes any identi- represents a mixed salinity assemblage with both fication tenuous. The new specimen is certainly more marine, freshwater and brackish forms. No certain similar to Araripelepidotes (e.g. shape of the body, marine fossils (ammonites, brachiopods, etc.) have shape and dimension of the scales) than to any other been found commonly
Recommended publications
  • A New Angiosperm from the Crato Formation (Araripe Basin, Brazil) and Comments on the Early Cretaceous Monocotyledons
    Anais da Academia Brasileira de Ciências (2014) 86(4): 1657-1672 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140339 www.scielo.br/aabc A new angiosperm from the Crato Formation (Araripe Basin, Brazil) and comments on the Early Cretaceous Monocotyledons FLAVIANA J. DE LIMA1, ANTÔNIO A.F. SARAIVA2, MARIA A.P. DA SILVA3, RENAN A.M. BANTIM1 and JULIANA M. SAYÃO4 1Programa de Pós-Graduação em Geociências, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Av. Acadêmico Hélio Ramos, s/n, Cidade Universitária, 50740-530 Recife, PE, Brasil 2Laboratório de Paleontologia, Universidade Regional do Cariri, Rua Carolino Sucupira, s/n, 63100-000 Crato, CE, Brasil 3Laboratório de Botânica Aplicada, Universidade Regional do Cariri, Rua Carolino Sucupira, s/n, 63100-000 Crato, CE, Brasil 4Laboratório de Biodiversidade do Nordeste, Universidade Federal de Pernambuco, Rua do Alto Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brasil Manuscript received on July 1, 2014; accepted for publication on September 9, 2014 ABSTRACT The Crato Formation paleoflora is one of the few equatorial floras of the Early Cretaceous. It is diverse, with many angiosperms, especially representatives of the clades magnoliids, monocotyledons and eudicots, which confirms the assumption that angiosperm diversity during the last part of the Early Cretaceous was reasonably high. The morphology of a new fossil monocot is studied and compared to all other Smilacaceae genus, especially in the venation. Cratosmilax jacksoni gen. et sp. nov. can be related to the Smilacaceae family, becoming the oldest record of the family so far.
    [Show full text]
  • Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
    Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition.
    [Show full text]
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • An Unusual Occurrence of Amber in Laminated Limestones: the Crato Formation Lagerstätte (Early Cretaceous) of Brazil
    [Palaeontology, Vol. 48, Part 6, 2005, pp. 1399–1408] AN UNUSUAL OCCURRENCE OF AMBER IN LAMINATED LIMESTONES: THE CRATO FORMATION LAGERSTA¨ TTE (EARLY CRETACEOUS) OF BRAZIL by DAVID M. MARTILL*, ROBERT F. LOVERIDGE*, JOSE´ ARTUR FERREIRA GOMES DE ANDRADE and ANDRE HERZOG CARDOSOà *Palaeobiology Research Group, School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL UK; e-mail: [email protected] Centro de Pesquisas Paleontolo´gicas da Chapada do Araripe – DNPM, Crato, Ceara´, Brazil àUniversidade Regional do Cariri – URCA, Crato, Ceara´, Brazil Typescript received 24 May 2004; accepted in revised form 12 November 2004 Abstract: Sub-ellipsoidal to irregular clasts of amber occur to Brachyphyllum sp., cf. Wollemia sp. and cf. Agathis sp. within millimetrically laminated limestones of the Nova Irregular, septate tubular structures may represent micro- Olinda Member, Crato Formation (Early Cretaceous, ?Aptian) inclusions and are considered to be fungal hyphae. of the Araripe Basin in Ceara´, north-east Brazil. The amber is associated with resin-filled cones, foliage and palyno- Key words: Amber, Araucariaceae, Agathis, Brachyphyllum, morphs attributed to the Araucariaceae and may be referred Wollemia, Cretaceous, Crato Formation, Brazil. The Crato Formation Konservat Lagersta¨tte of the Ara- (de Lima 1979). The flora has not been studied in detail, ripe Basin in north-east Brazil represents one of the most but it includes complete plants (roots, stems, leaves and diverse fossil assemblages for the Early Cretaceous. Only fruiting bodies) of a variety of pteridophytes, gymno- the lowest part of the formation, the Nova Olinda Mem- sperms, cycads, gnetaleans and angiosperms (Crane and ber, yields the famous well-preserved fauna and flora, Maisey 1991).
    [Show full text]
  • (Early Cretaceous, Araripe Basin, Northeastern Brazil): Stratigraphic, Palaeoenvironmental and Palaeoecological Implications
    Palaeogeography, Palaeoclimatology, Palaeoecology 218 (2005) 145–160 www.elsevier.com/locate/palaeo Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): stratigraphic, palaeoenvironmental and palaeoecological implications Emmanuel Faraa,*, Antoˆnio A´ .F. Saraivab, Dio´genes de Almeida Camposc, Joa˜o K.R. Moreirab, Daniele de Carvalho Siebrab, Alexander W.A. Kellnerd aLaboratoire de Ge´obiologie, Biochronologie, et Pale´ontologie humaine (UMR 6046 du CNRS), Universite´ de Poitiers, 86022 Poitiers cedex, France bDepartamento de Cieˆncias Fı´sicas e Biologicas, Universidade Regional do Cariri - URCA, Crato, Ceara´, Brazil cDepartamento Nacional de Produc¸a˜o Mineral, Rio de Janeiro, RJ, Brazil dDepartamento de Geologia e Paleontologia, Museu Nacional/UFRJ, Rio de Janeiro, RJ, Brazil Received 23 August 2004; received in revised form 10 December 2004; accepted 17 December 2004 Abstract The Romualdo Member of the Santana Formation (Araripe Basin, northeastern Brazil) is famous for the abundance and the exceptional preservation of the fossils found in its early diagenetic carbonate concretions. However, a vast majority of these Early Cretaceous fossils lack precise geographical and stratigraphic data. The absence of such contextual proxies hinders our understanding of the apparent variations in faunal composition and abundance patterns across the Araripe Basin. We conducted controlled excavations in the Romualdo Member in order to provide a detailed account of its main stratigraphic, sedimentological and palaeontological features near Santana do Cariri, Ceara´ State. We provide the first fine-scale stratigraphic sequence ever established for the Romualdo Member and we distinguish at least seven concretion-bearing horizons. Notably, a 60-cm-thick group of layers (bMatraca˜oQ), located in the middle part of the member, is virtually barren of fossiliferous concretions.
    [Show full text]
  • The Branchial Skeleton in Aptian Chanid Fishes
    Cretaceous Research 112 (2020) 104454 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes The branchial skeleton in Aptian chanid fishes (Gonorynchiformes) from the Araripe Basin (Brazil): Autecology and paleoecological implications * Alexandre Cunha Ribeiro a, , Francisco Jose Poyato-Ariza b, Filipe Giovanini Varejao~ c, Flavio Alicino Bockmann d a Departamento de Biologia e Zoologia, Universidade Federal de Mato Grosso, Av. Fernando Corr^ea da Costa, 2367, Cuiaba 78060-900, Mato Grosso, Brazil b Centre for Integration on Palaeobiology & Unidad de Paleontología, Departamento de Biología, Universidad Autonoma de Madrid, Cantoblanco, E-28049, Madrid, Spain c Instituto LAMIR, Departamento de Geologia, Universidade Federal do Parana, Av. Cel. Francisco H. dos Santos, 100, Jardim das Americas, Curitiba 81531- 980, Parana, Brazil d Laboratorio de Ictiologia de Ribeirao~ Preto, Departamento de Biologia, FFCLRP, Universidade de Sao~ Paulo, Av. Bandeirantes 3900, Ribeirao~ Preto 14040- 901, Sao~ Paulo, Brazil article info abstract Article history: Gonorynchiformes are a small, but morphologically diverse group of teleost fishes with an extensive Received 17 October 2019 fossil record. Most extant gonorynchiforms are efficient filter feeders, bearing long gill rakers and other Received in revised form morphological specializations, such as microbranchiospines and an epibranchial organ. The analyses of 28 January 2020 the gill arch of the Brazilian gonorynchiform fishes Dastilbe crandalli and Tharrias araripis from the Aptian Accepted in revised form 12 March 2020 of the Araripe Basin, Northeast Brazil, demonstrate significant morphological variation suggestive of Available online 19 March 2020 distinct feeding habitats as well as ontogenetic dietary shifts in these closely related gonorynchiforms. © 2020 Elsevier Ltd.
    [Show full text]
  • Exceptional Fossil Preservation During CO2 Greenhouse Crises? Gregory J
    Palaeogeography, Palaeoclimatology, Palaeoecology 307 (2011) 59–74 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Exceptional fossil preservation during CO2 greenhouse crises? Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, USA article info abstract Article history: Exceptional fossil preservation may require not only exceptional places, but exceptional times, as demonstrated Received 27 October 2010 here by two distinct types of analysis. First, irregular stratigraphic spacing of horizons yielding articulated Triassic Received in revised form 19 April 2011 fishes and Cambrian trilobites is highly correlated in sequences in different parts of the world, as if there were Accepted 21 April 2011 short temporal intervals of exceptional preservation globally. Second, compilations of ages of well-dated fossil Available online 30 April 2011 localities show spikes of abundance which coincide with stage boundaries, mass extinctions, oceanic anoxic events, carbon isotope anomalies, spikes of high atmospheric carbon dioxide, and transient warm-wet Keywords: Lagerstatten paleoclimates. Exceptional fossil preservation may have been promoted during unusual times, comparable with fi Fossil preservation the present: CO2 greenhouse crises of expanding marine dead zones, oceanic acidi cation, coral bleaching, Trilobite wetland eutrophication, sea level rise, ice-cap melting, and biotic invasions. Fish © 2011 Elsevier B.V. All rights reserved. Carbon dioxide Greenhouse 1. Introduction Zeigler, 1992), sperm (Nishida et al., 2003), nuclei (Gould, 1971)and starch granules (Baxter, 1964). Taphonomic studies of such fossils have Commercial fossil collectors continue to produce beautifully pre- emphasized special places where fossils are exceptionally preserved pared, fully articulated, complex fossils of scientific(Simmons et al., (Martin, 1999; Bottjer et al., 2002).
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Revista Brasileira De Paleontologia, 21(3):245–254, Setembro/Dezembro 2018 a Journal of the Brazilian Society of Paleontology Doi:10.4072/Rbp.2018.3.05
    Revista Brasileira de Paleontologia, 21(3):245–254, Setembro/Dezembro 2018 A Journal of the Brazilian Society of Paleontology doi:10.4072/rbp.2018.3.05 THROWING LIGHT ON AN UNCOMMON PRESERVATION OF BLATTODEA FROM THE CRATO FORMATION (ARARIPE BASIN, CRETACEOUS), BRAZIL FRANCISCO IRINEUDO BEZERRA Programa de Pós-Graduação em Geologia, Departamento de Geologia, Universidade Federal do Ceará, 64049-550, Fortaleza, CE, Brazil. [email protected] JOÃO HERMÍNIO DA SILVA Campus de Juazeiro do Norte, Universidade Federal do Cariri, 63000-000, Juazeiro do Norte, CE, Brazil. [email protected] AMAURI JARDIM DE PAULA, NAIARA CIPRIANO OLIVEIRA, ALEXANDRE ROCHA PASCHOAL, PAULO TARSO C. FREIRE Departamento de Física, Universidade Federal do Ceará, 60455-970, Fortaleza, CE, Brazil. [email protected], [email protected], [email protected], [email protected] BARTOLOMEU CRUZ VIANA NETO Departamento de Física, Universidade Federal do Piauí, 64049-550, Teresina, PI, Brazil. [email protected] MÁRCIO MENDES Departamento de Geologia, Universidade Federal do Ceará, 64049-550, Fortaleza, CE, Brazil. [email protected] ABSTRACT – Fossilization results from several physical-chemical-geological processes. Original labile and non-bioclastic structures rarely survive throughout this process. In particular, the Crato Formation (Araripe Basin) is one of the most significant Cretaceous Konservat- Lagerstätten due to its well-preserved invertebrates, mainly three-dimensional insects. In general, Crato insects exhibit brown-orange color, constituted by goethite or hematite replacements. In this context, we used the scanning electron microscopy coupled to energy dispersive spectrometer and Raman spectroscopy to analyze Araripeblatta dornellesae, a 115 million-years-old fossil from Crato Formation, Araripe Basin.
    [Show full text]
  • New Azhdarchoid Pterosaur (Pterosauria
    Anais da Academia Brasileira de Ciências (2017) 89(3 Suppl.): 2003-2012 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720170478 www.scielo.br/aabc | www.fb.com/aabcjournal New azhdarchoid pterosaur (Pterosauria, Pterodactyloidea) with an unusual lower jaw from the Portezuelo Formation (Upper Cretaceous), Neuquén Group, Patagonia, Argentina ALEXANDER W.A. KELLNER1 and JORGE O. CALVO2 1Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia, Museu Nacional/ Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil 2Grupo de Transferencia Proyecto Dino, Universidad Nacional del Comahue, Parque Natural Geo- Paleontológico Proyecto Dino, Ruta Provincial 51, Km 65, Neuquén, Argentina Manuscript received on June 22, 2017; accepted for publication on September 4, 2017 ABSTRACT A new azhdarchoid pterosaur from the Upper Cretaceous of Patagonia is described. The material consists of an incomplete edentulous lower jaw that was collected from the upper portion of the Portezuelo Formation (Turonian-Early Coniacian) at the Futalognko site, northwest of Neuquén city, Argentina. The overall morphology of Argentinadraco barrealensis gen. et sp. nov. indicates that it belongs to the Azhdarchoidea and probable represents an azhdarchid species. The occlusal surface of the anterior portion is laterally compressed and shows blunt lateral margins with a medial sulcus that are followed by two well- developed mandibular ridges, which in turn are bordered laterally by a sulcus. The posterior end of the symphysis is deeper than in any other azhdarchoid.
    [Show full text]
  • From the Early Cretaceous Crato Formation
    Journal of South American Earth Sciences 92 (2019) 222–233 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames A new genus of pipimorph frog (Anura) from the Early Cretaceous Crato T Formation (Aptian) and the evolution of South American tongueless frogs ∗ ∗∗ Ismar Souza Carvalhoa, , Federico Agnolinb,c, , Mauro A. Aranciaga Rolandob, Fernando E. Novasb, José Xavier-Netod, Francisco Idalécio Freitase, José Artur Ferreira Gomes Andradef a Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMN/IGEO 21.949-900 Cidade Universitária - Ilha do Fundão, Rio de Janeiro, Brazil b Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET, Buenos Aires, Argentina c Fundación de Historia Natural ‘Félix de Azara’, Universidad Maimónides, Buenos Aires, Argentina d Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília (DF), Brazil e Geopark Araripe, Rua Carolino Sucupira s/n, Pimenta, 105 Centro, 63.100-490 Ceará, Brazil f Departamento Nacional da Produção Mineral, Ceará, Praça da Sé, 105 Centro, 63.100-440 Ceará, Brazil ARTICLE INFO ABSTRACT Keywords: Pipimorpha is a clade of tongueless anurans with a wide fossil record. Furthermore, the oldest South American Crato Formation fossils come from the Late Cretaceous (Cenomanian) of Patagonia, Argentina. The aim of the present con- Lower Cretaceous tribution is to describe a new genus and species of Pipimorpha from the Crato Formation (Aptian, Early Pipimorpha Cretaceous), Araripe Basin, Brazil. The new specimen consists of a nearly complete skeleton that shows several Brazil anatomical similarities with other fossils from South America.
    [Show full text]
  • Relationships of Lower Euteleostean Fishes
    CHAPTER 12 Relationships of Lower Euteleostean Fishes G. DAVID JOHNSON COLIN PATTERSON National Museum of Natural History Natural History Museum Smithsonian Institution London, England Washington, D.C.- We all make mistakes; then we're sorry. What are the relationships of and within the Os- Popular song meroidei? (6) What are the relationships of and within Salmonidae? (7) Where does Lepidogalaxias belong? (8) What are the relationships within stomiiform fishes? (9) What of the Myctophoidei, as recognized by I. Introduction Greenwood et al. (1966, i.e., Aulopiformes and Myc- tophiformes in current terminology)? In that agenda, In the first Interrelationships of Fishes lower eutel- items (8) and (9) are treated elsewhere in this volume eosts, or "protacanthopterygians" as they were then and do not concern us, but items (1) through (7) do. called, were omitted, with only a comment in the Some classifications and/or cladograms of lower eu- Preface citing Weitzman (1967, on osmeroids and teleosts, dating back to the first application of cladistic stomiatoids), McDowall (1969, on osmeroids and ga- method, are summarized in Fig. 1. As is obvious from laxioids), Rosen and Greenwood (1970, on gonoryn- incongruence between all the patterns in Fig. 1, there chiforms and ostariophysans), Greenwood and Rosen has been protracted argument on how lower euteleos- (1971, on argentinoids and alepocephaloids), and Nel- tean groups are interrelated, how they are related to son (1970b, on salangids and argentinids; 1972, on neoteleosts (stomiiforms and eurypterygians, John- esocoids and galaxioids). son, 1992), and what group is basal to other euteleosts. Ten years later, in Ontogeny and Systematics of Fishes, The most substantial treatment of these problems is Fink (1984a) summarized the history of protacantho- in Begle's (1991,1992) cladistic analyses of Osmeroidei pterygians as "erosion" and "attrition, most notably (1991) and Argentinoidei (1992) (Fig.
    [Show full text]