Unit 4: Native Plants Our Medicine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geologic Map of the East Bay 7.5' Quadrangle
GEOLOGIC MAP OF THE EAST BAY 7.5’ QUADRANGLE NORTHWEST MONTANA Michael H. Hofmann and Marc S. Hendrix Montana Bureau of Mines and Geology Open File Report MBMG 496 2004 This report has been reviewed for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards. Partial support has been provided by the EDMAP component of the National Cooperative Geologic Mapping Program of the U. S. Geological Survey under Contract Number 02HQAG0096. GEOLOGIC MAP OF THE EAST BAY 7.5’ QUADRANGLE NORTHWEST MONTANA Michael H. Hofmann and Marc S. Hendrix Introduction This project focused on mapping the distribution of Pleistocene and Holocene sediments along the northeastern Mission Valley in western Montana (USGS East Bay 7.5’ quadrangle). Holocene and Pleistocene sediments are most common in the area south of Flathead Lake, whereas Precambrian rocks of the Belt Supergroup crop out in the easternmost part of the map area. Pleistocene sediments in the map area are dominated by till and glacial outwash related to advances of the Flathead Lobe of the Cordilleran Ice Sheet and advances of smaller alpine glaciers flowing down west-facing valleys of the Mission Range. Pleistocene sediments also include sub-lacustrine sediments related to glacial Lake Missoula. Holocene sediments in the map area consist of a complex suite of eolian, alluvial, fluvial, and colluvial sediments. Early studies of Pleistocene deposits from the Mission Valley describe evidence for three major advances of the Flathead lobe of the Cordilleran ice sheet, including at least one major advance to the southern part of the Mission Valley, about 45 km south of the mapping area (Elrod, 1903; Davis, 1920; Nobles, 1952; Alden, 1953; Richmond and others, 1965; Richmond, 1986; Ostenaa and others, 1990). -
Introduction the Age of Biology
INTRODUCTION THE AGE OF BIOLOGY An organism is the product of its genetic constitution and its en- vironment . no matter how uniform plants are genotypically, they cannot be phenotypically uniform or reproducible, unless they have developed under strictly uniform conditions. — Frits Went, 1957 A LITERARY and cinematic sensation, Andy Weir’s The Martian is engi- neering erotica. The novel thrills with minute technical details of com- munications, rocket fuel, transplanetary orbital calculations, and botany. The action concerns a lone astronaut left on Mars struggling to survive for 1,425 days using only the materials that equipped a 6-person, 30-day mission. Food is an early crisis: the astronaut has only 400 days of meals plus 12 whole potatoes. Combining his expertise in botany and engineer- ing, the astronaut first works to create in his Mars habitat the perfect Earth conditions for his particular potatoes, namely, a temperature of 25.5°C, plenty of light, and 250 liters of water. Consequently, his potatoes grow at a predicted rate to maturity in 40 days, thus successfully conjur- ing sufficient food to last until his ultimate rescue at the end of the novel. Unlike so many of the technical details deployed throughout the novel, the ideal conditions for growing potatoes are just a factoid. Whereas readers of the novel get to discover how to make water in a process oc- cupying twenty pages, the discovery of the ideal growing conditions of the particular potatoes brought to Mars is given one line.1 Undoubtedly, making water from rocket fuel is tough, but getting a potato’s maximum 3 © 2017 University of Pittsburgh Press. -
De Plantis, Once Belonging to Maimonides’.[3]
Fragment of the Month: January 2017 Plants on Maimonides’ bookshelf: T-S Ar.41.41 by Gabriele Ferrario Which were the favourite books of Moses Maimonides? Which titles would have found space on his bookshelf? Maimonides’ letter to the Hebrew translator of most of his Judaeo-Arabic production, Samuel ibn Tibbon, contains revealing passages regarding the books that Maimonides considered the basis of any solid philosophical education.[1] No wonder the place of honour is occupied by the works of Aristotle, which became available to the Arabic-speaking world thanks to the spectacular effort of Arabisation of Greek sciences conducted under the Abbasid caliphs. Maimonides describes Aristotelian treatises as ‘the roots and foundations of all works on the sciences’. But Aristotle’s philosophy was not always easy to understand for a medieval reader, and Maimonides recognised the utility of later commentaries and systematisations of Aristotelian works produced by philosophers of Late Antiquity and Islam, in particular the works by Alexander of Aphrodisias (2nd–3rd c.), Themistius (d. 390 CE), and Averroes (d. 1198). As much as praising his favourite authors, Maimonides is very keen on downplaying the importance of authors he fancied less, and writes to Ibn Tibbon that reading commentaries by Abū Yaḥyā ibn al-Biṭrīq (9th century), Yaḥyā ibn ʿAdī (10th c.) and by Abū al-Faraj ibn al-Tayyib (11th c.) would be a waste of time. A similarly dismissive approach characterises Maimonides’ stance towards Plato and other Greek classical philosophers: Aristotle said it all, why should one look for anything else? Among Muslim philosophers, Maimonides praises Al-Fārābī (10th c.), particularly for his logical works, Ibn Bajja (the Latin Avempace, 11th–12th c.) and Averroes (12th c.) for his numerous Aristotelian commentaries; he also remarks that books by Avicenna (11th c.) are worth studying, even if they are not as good as Al- Fārābī’s. -
Chapter Upper Cretaceous Reservoirs
CHAPTER 9 UPPER CRETACEOUS RESERVOIRS P. Viney, Petrel Robertson; Part B: Belly River Fm; and J.F. Chappell, L.L. & E. Canada; Part A: Cardium Fm INTRODUCTION The Bearpaw Fm, over 150 m thick in southcentral Alberta it would appear that exploration dollars directed towards them could Walker (1987, 1988), Swagor (1975) and Swagor et al. (1976). (14-18-2-23W4M), thins to the north and grades into the non-marine yield a good rate of return. Interest in exploration for these Cardium Fm conglomerate reser The evolution of the Alberta Basin during Upper Cretaceous time sequence of the overlying Horseshoe Canyon Fm (Edmonton Gp). voirs was reactivated in the early 1980's due to the discovery of and its effect on the geologic section is covered in the introduction to The four major Upper Cretaceous reservoirs are: 1) The Cardium; several new Cardium Fm pools and the recognition that modern this text. Strata of the Upper Cretaceous underlie most of the area Production has been obtained from the Upper Cretaceous section 2) The lower Belly River; 3) The Dunvegan-Doe Creek; and 4) The seismic reflection technology could be used in their detection covered by the Western Canada Sedimentary Basin in an almost con for many years. However, prospecting for Upper Cretaceous hydro Belly River fluvial. (Chappell, 1984, 1985; Wren, 1984). The Carrot Creek Cardium S tinuous sequence of deposition. From the Base of Fish Scales Zone, carbons did not begin in earnest until the discovery of Cardium pool, located in 53-12 and 13 W5M (Fig. 9.4), is a typical example. -
Research Natural Areas on National Forest System Lands in Idaho, Montana, Nevada, Utah, and Western Wyoming: a Guidebook for Scientists, Managers, and Educators
USDA United States Department of Agriculture Research Natural Areas on Forest Service National Forest System Lands Rocky Mountain Research Station in Idaho, Montana, Nevada, General Technical Report RMRS-CTR-69 Utah, and Western Wyoming: February 2001 A Guidebook for Scientists, Managers, and E'ducators Angela G. Evenden Melinda Moeur J. Stephen Shelly Shannon F. Kimball Charles A. Wellner Abstract Evenden, Angela G.; Moeur, Melinda; Shelly, J. Stephen; Kimball, Shannon F.; Wellner, Charles A. 2001. Research Natural Areas on National Forest System Lands in Idaho, Montana, Nevada, Utah, and Western Wyoming: A Guidebook for Scientists, Managers, and Educators. Gen. Tech. Rep. RMRS-GTR-69. Ogden, UT: U.S. Departmentof Agriculture, Forest Service, Rocky Mountain Research Station. 84 p. This guidebook is intended to familiarize land resource managers, scientists, educators, and others with Research Natural Areas (RNAs) managed by the USDA Forest Service in the Northern Rocky Mountains and lntermountain West. This guidebook facilitates broader recognitionand use of these valuable natural areas by describing the RNA network, past and current research and monitoring, management, and how to use RNAs. About The Authors Angela G. Evenden is biological inventory and monitoring project leader with the National Park Service -NorthernColorado Plateau Network in Moab, UT. She was formerly the Natural Areas Program Manager for the Rocky Mountain Research Station, Northern Region and lntermountain Region of the USDA Forest Service. Melinda Moeur is Research Forester with the USDA Forest Service, Rocky Mountain ResearchStation in Moscow, ID, and one of four Research Natural Areas Coordinators from the Rocky Mountain Research Station. J. Stephen Shelly is Regional Botanist and Research Natural Areas Coordinator with the USDA Forest Service, Northern Region Headquarters Office in Missoula, MT. -
Flathead County·S ' Agriculture and Suggestions to Prospective Farmers
7~.73 ~ :16 b lll...tt H .eireular No.j2i..: June, 1950 Facts About Flathead County·s '_Agriculture and Suggestions to Prospective Farmers , Prepared jointly by W. W. Mauritson, Flathead County Agent and H. R. Stucky, Extension Economist, Montana Extension Service Montana Extension Service in Agriculture and Home Economics, R. B. Tootel, director. Montana State College and United States Department of Agriculture cooperating. Distributed in furtherance of Acts of Congress, May 8 and June 30, 1914. TRIPPET Facts About Flathead County'5 Agriculture and Suggestions to Prospective Farmers (Prepared jointly by W.W. Mauritson, Flathead County Agent and H. R. Stucky, Extension Economist, Montana Extension Service) This circular is intended to give prospective farmers brief in formation regarding farming in Flathead County and to offer some suggestions about things to be considered in buying or renting a farm. The reader will find that soils, topography and climate vary considerably from area to area. For that reason a personal study and investigation should be made before purchasing or leasing land. The County Extension Agent, the Vocational Agricultural Instructor of Flathead County High School and the Soil Conserva tion Service will gladly furnish more detailed information upon request. Agricultural Background The first white visitors to the area now known as Flathead County were the trappers and fur traders. These were followed by settlers from Idaho and California who started farming and raising livestock. The first sod is reported to have been broken with oxen in the late 1880's. Because of a lack of transportation, these early settlers produced only enough farm products for home use and the local market. -
Bigfork North/South EA
Environmental Assessment & Programmatic Section 4(f) Evaluation For Bigfork North & South STPP 52-1(18) 27 Control No. 4035 Prepared for: Montana Department of Transportation June 2004 Environmental Assessment & Programmatic Section 4(f) Evaluation For Bigfork North and South STPP 52-1(18) 27 Control No. 4035 This document is prepared in conformance with the Montana Environmental Policy Act (MEPA) requirements and contains the information required for an Environmental Assessment under the provisions of ARM 18.2.237(2) and 18.2.239. It is also prepared in conformance with the National Environmental Policy Act (NEPA) requirements for an Environmental Assessment under 23 CFR 771.119. Submitted Pursuant to 42 USC 4332(2)(c) 49 U.S.C. 303 & Sections 2-3-104, 75-1-201 M.C.A. By the U.S. Department of Transportation Federal Highway Administration And the Montana Department of Transportation Submitted by: Date: Montana Department of Transportation Environmental Services Reviewed and Approved for Distribution: Date: Federal Highway Administration One may contact the following people for additional information regarding this document: Jean A. Riley, P.E. Craig Genzlinger Engineering Section Supervisor Missoula Operations Engineer Environmental Services Bureau Montana Division Montana Department of Transportation Federal Highway Administration 2701 Prospect Avenue 2880 Skyway Drive PO Box 201001 Helena, Montana 59602 Helena, MT 59620-1001 Table of Contents Executive Summary ............................................................................................ES-1 -
GEOLOGY and OIL and GAS PROSPECTS of the HUNTLEY FIELD, Montanj
GEOLOGY AND OIL AND GAS PROSPECTS OF THE HUNTLEY FIELD, MONTANj By E. T. HANCOCK. INTRODUCTION. The Huntley field is in Yellowstone and Big Horn counties, south- central Montana, and embraces an area of about 650 square miles, part of which lies northwest and part southeast of Yellowstone River. The field has railroad facilities that are exceptionally good for this general region, being traversed by the main lines of the Northern Pacific and the Chicago, Burlington & Quincy railroads. These roads furnish excellent shipping facilities at Huntley, Warden, Ballantine, Pompeys Pillar, and other points. Acknowledgments. In presenting this report the writer desires to express his thanks to David White for valuable suggestions and criticisms, to T. W. Stanton and F. H. Knowlton for the identifica tion of fossils, and to C. E. Dobbins for assistance in the detailed mapping. He also wishes to call attention to the public service rendered by oil and gas operators who have furnished records of deep borings and by individuals who have contributed in various ways to the success of the investigation. Earlier investigations. The Huntley field is in reality an ex tension of the Lake Basin field, which was mapped by the writer during the summer of 1916.1 The geologic investigation of the region including the Lake Basin and Huntley fields began with the Northern Transcontinental Survey of 1882. Prior to that time geologists had described certain struc tural features and the stratigraphic succession at points closely ad jacent to these fields, such as Judith Gap, the canyon of the North Fork of the- Musselshell, and the Bridger Range, but almost noth ing had been written concerning the geology of the area herein de scribed. -
Lakeside Neighborhood Plan Committee
Lakeside Neighborhood Plan 2010 Lakeside Neighborhood Plan Committee Lakeside Neighborhood Plan Committee Debra Spaulding, Chairperson John Ulrich, Vice-Chairperson Barbara Miller, Secretary/Project Manager Bob Berreth, Treasurer Eric Giles (through March 13, 2008), & Andrew Hagemeier (after March 13, 2008), Primary Advisors, Flathead County Planning & Zoning Department Lona Santana Trevor Schaefer Mark Tanburg Rich & Jan Williams Bruce Young Special Thanks to Contributors: Dave and Liberty DeGrandpre Charles Lapp Steve Rosso AN ADDENDUM TO THE FLATHEAD COUNTY GROWTH POLICY AND MASTER PLAN ADOPTED BY THE FLATHEAD COUNTY, MONTANA BOARD OF COMMISSIONERS RESOLUTION NO. 2274A 12/01/2010 Table of Contents Chapter 1 Background, Authorization, and Revision Process............................................................... 1 1.1 Background .................................................................................................................................. 1 1.2 Authorization ................................................................................................................................ 3 1.3 Revision Process .......................................................................................................................... 3 Chapter 2 Lakeside Community Boundaries ......................................................................................... 9 Chapter 3 Lakeside Community Vision .............................................................................................. 10 3.1 Lakeside Community -
Paleoindian Land Use in Glacier National Park
PALEOINDIAN LAND USE IN GLACIER NATIONAL PARK John J. Kinsner, M.A. Final Report 2010 Author’s Acknowledgements This project was made possible by funding provided from the National Park Service’s Rocky Mountain Cooperative Ecosystem Studies Unit (RM-CESU). The author would like to extend special thanks to Christine Whitacre and Pei-Lin Yu of the RM-CESU, Lon Johnson and Deirdre Shaw of Glacier National Park, and Dr. Douglas H. MacDonald of the University of Montana. John J. Kinsner OUTLINE 1. Title Page w/ photo 4 (Mount Carter) 2. Acknowledgements 2. Report Outline 3. Introduction 3. Cultural Chronology 3. Table 1 5. Paleoindian Evidence in Glacier Park 6. Original Interpretations w/ photo 1 (Alberta projectile point) 7. Other Evidence 9. Seasonality 9. Physical Evidence 11. Depositional Environment 12. Three Hypotheses 15. Discussion 16. Conclusion 18. Figure 1 19. Photos 2 – 3 20. Photos 4 - 5 21. Bibliography 2 It has generally been understood that Glacier National Park (GNP) has a 10,000 year culture history as implied by the archeological record of GNP, park brochures, numerous publications (Reeves 2003), and governmental, corporate, and private web sites (nps.gov, Wikipedia.com, fcvb.org). However, this presumption is based upon a very weak record of Paleoindian occupation within park boundaries represented by two isolated, surface discoveries, and three typologically non-diagnostic, non-stratified basalt knives. Of the three represented ‘sites’, only one potentially represents Alpine land use within GNP and may or may not be related to Paleoindian activities. This paper examines this lone Paleoindian alpine site in order to extract a logical explanation of its deposition and to offer up possible evidence of early human occupation in one of the more remote and inaccessible regions of GNP. -
Sl N 06 [Converted]
PROHIBITIONS OPERATOR RESPONSIBILITIES PURPOSE AND CONTENTS OF THIS MAP It is prohibited to possess or operate an over-snow Operating a motor vehicle on National Forest System motor vehicle on the FLATHEAD NATIONAL FOREST ALL TRAVEL INFORMATION ON THIS MAP PERTAINS TO This map shows National Forest System roads, roads, National Forest System trails, and in areas on other than in accordance with these designations (36 OVER SNOW VEHICLE USE ONLY National Forest System trails, and areas on National National Forest System lands carries a greater respon- CFR 261.14), as per the Swan Lake Over Snow Forest System lands in the Swan Lake Ranger District sibility than operating that vehicle in a city or other Vehicle Use Map. and adjacent areas where use by over-snow vehicles developed setting. Not only must the vehicle operators FLATHEAD NATIONAL FOREST is allowed, restricted, or prohibited pursuant to 36 know and follow all applicable traffic laws, but they Violations of 36 CFR 261.14 are subject to a fine of up CFR 212.81. need to show concern for the environment as well as to $5,000 or imprisonment for up to 6 months or both SWAN LAKE other forest users. The misuse of motor vehicles can (18 U.S.C. 3571(e)). This prohibition applies regard- Designation of a road, trail, or area for over-snow lead to the temporary or permanent closure of any less of the presence or absence of signs. RANGER DISTRICT motor vehicle use should not be interpreted as designated road, trail, or area. Operators of motor encouraging or inviting use, or to imply that the road, vehicles are subject to State traffic law, including State This map does not display non-motorized uses and 2011 trail, or area is passable, or safe for travel. -
Guide to Plant Collection and Identification
GUIDE TO PLANT COLLECTION AND IDENTIFICATION by Jane M. Bowles PhD Originally prepared for a workshop in Plant Identification for the Ministry of Natural Resources in 1982. Edited and revised for the UWO Herbarium Workshop in Plant Collection and Identification, 2004 © Jane M. Bowles, 2004 -0- CHAPTER 1 THE NAMES OF PLANTS The history of plant nomenclature: Humans have always had a need to classify objects in the world about them. It is the only means they have of acquiring and passing on knowledge. The need to recognize and describe plants has always been especially important because of their use for food and medicinal purposes. The commonest, showiest or most useful plants were given common names, but usually these names varied from country to country and often from district to district. Scholars and herbalists knew the plants by a long, descriptive, Latin sentence. For example Cladonia rangiferina, the common "Reindeer Moss", was described as Muscus coralloides perforatum (The perforated, coral-like moss). Not only was this system unwieldy, but it too varied from user to user and with the use of the plant. In the late 16th century, Casper Bauhin devised a system of using just two names for each plant, but it was not universally adopted until the Swedish naturalist, Carl Linnaeus (1707-1778) set about methodically classifying and naming the whole of the natural world. The names of plants: In 1753, Linnaeus published his "Species Plantarum". The modern names of nearly all plants date from this work or obey the conventions laid down in it. The scientific name for an organism consists of two words: i) the genus or generic name, ii) the specific epithet.