Quick viewing(Text Mode)

Potential Solutions for Electric Vehicles in Bus and Delivery Traffic

Potential Solutions for Electric Vehicles in Bus and Delivery Traffic

AALTOUNIVERSITYSCHOOLOFSCIENCEANDTECHNOLOGY FacultyofElectronics,CommunicationsandAutomation DepartmentofElectricalEngineering LeoRomana PotentialSolutionsforElectricVehiclesin andDeliveryTraffic Master’sthesissubmittedforapprovalforthedegreeofMasterofScience. ,1November2010 Supervisor Prof.MattiLehtonen Instructor EeroSaarijärvi Preface

ThisMaster’sthesiswasmadeattheDepartmentofElectricalEngineeringoftheAalto UniversitySchoolofScienceandTechnology.Thethesiswascarriedoutincooperation with the research project SIMBe (Smart Infrastructures for Electric Mobility in Built Environments). Thereareafewindividualswhosesupportwasinvaluabletomeduringthewritingof this thesis. Firstly, I want to express my gratitude to my supervisor, Professor Matti Lehtonen.Heprovidedmewithalotofusefulinformation,aswellasaninsightintothe topicofmywork.IalsowanttothankEeroSaarijärviforinstructing,aswellasWilliam MartinandEvaLönnholmforproofreadingmywork.Anadditionalthankyougoesto mycolleagueswhocommentedonmyworkduringthewritingprocess. Finally, I want to acknowledge my family for their consistent support that I have re- ceivedthroughoutmystudies. Espoo,1November2010 LeoRomana

ii AALTOUNIVERSITY ABSTRACTOFTHE SCHOOLOFSCIENCEANDTECHNOLOGY MASTER’STHESIS Author: LeoRomana Title: PotentialSolutionsforElectricVehiclesinBusandDeliveryTraffic Date: 1November2010 Numberofpages: 10+85 Faculty: FacultyofElectronics,CommunicationsandAutomation Department: DepartmentofElectricalEngineering Professorship: PowerSystemsandHighVoltageEngineering(S-18) Supervisor: Prof.MattiLehtonen,D.Sc.(Eng.) Instructor: EeroSaarijärvi,M.Sc.(Eng.) TheFinnishtrafficplanningorganisationaimsformoresustainablevehicularsolutions.Thisthesispre- sentsthemostapplicableelectricvehicletechnologiessuitableforcolderclimates,suchasin.The discussedvehicletechnologiescontributetosustainabledevelopment.Bothpublicandprivatesectorsare takenintoaccount.Thevehicleelectrificationin public passenger transport is mainly addressed in the sectionforthebustraffic,whereastheprivatesectorcomesintoplayinthecontextofthedeliverytraffic. Railtraffic,however,isnotdiscussedinthethesis.Theliteratureforthestudyisgatheredfromvarious Internetsources,scientificarticlesandbooks.Additionally,twointerviewswerecarriedouttogaininfor- mationabouttheattitudestowardsvehicleelectrificationinthemetropolitanarea.Thus,theused materialcoversthepresentknowledgeaboutthediscussedelectricvehicletechnologies,theirprevalence andtypicalusage,aswellasthelevelofinterestshowntowardsthem. Themajortechnologiestobeconsideredinvehicleelectrificationaretrolley,aswellasvehicles based on battery and hydrogenfuelcelltechnologies. A comparison of these basic technologies is in- cludedinthethesis.Thesustainabilityofthedifferentvehicletechnologiesislargelyassessedbythepro- ductionoftheusedelectricityorhydrogen.Formakingelectricvehiclesamoreviablealternativeforbus anddeliverytraffic,thereisaneedforpromotingmorelow-carbonelectricityandhydrogenproduction. Ingeneral,itwasdiscoveredthatthecurrentbatterytechnologiesalonedonotprovideaneconomical alternativeforpoweringbuses.Alongwithfuelcells,batteriesarestillahigh-costsolutiontobefurther developed.Batteries,however,canreasonablybeusedfortheregenerationofvehiclebrakingpower,as anAPUorforextendingtherangeofthevehicle.Currently,themostapplicablesolutionforbusesseems tobethetrolleybuswhichprovidesthelowestacquisitionpriceandbyfarthelongestlifecycle.Trolley buseshavealsobeenusedincolderclimateswithsuccess.Inthedeliveryvehiclesector,electricvehicles runningonpurebatterieswillbepromotedmorestrongly.Inordertofindoutthemostapplicable,practi- calelectricvehicletechnologies,futurestudieswithinthesubjectmattershouldconsiderpossiblecombi- nationsofthediscussedvehicletechnologies. Keywords:battery,battery-electricbus,electricvehicle,energystorage,fuelcell,plug-inhybridelectric vehicle,trolleybus

iii AALTO-YLIOPISTO DIPLOMITYÖNTIIVISTELMÄ TEKNILLINENKORKEAKOULU Tekijä: LeoRomana Työnnimi: Mahdollisetsähköajoneuvoratkaisutbussi-jakuljetusliikenteessä Päivämäärä: 1.11.2010 Sivumäärä: 10+85 Tiedekunta: Elektroniikan,tietoliikenteenjaautomaationtiedekunta Laitos: Sähkötekniikanlaitos Professuuri: Sähköverkotjasuurjännitetekniikka(S-18) Työnvalvoja: ProfessoriMattiLehtonen Työnohjaaja: EeroSaarijärvi Kestävänkehityksenmukaisetajoneuvoratkaisutovatosasuomalaistaliikennesuunnittelua.Tämändiplo- mityön tarkoituksena on käydä läpi sellaisetkylmiinolosuhteisiinsoveltuvatsähköajoneuvoteknologiat, joiden voidaan osaltaan katsoa vastaavan kestävän kehityksen asettamiin haasteisiin. Teknologioiden käyttöäkäsitelläänniinjulkistenkuinyksityistenkinkäyttäjäsegmenttiennäkökulmasta.Ajoneuvokannan sähköistämistäjulkisessaliikenteessätarkastellaanbussiliikenteennäkökulmasta.Yksityistäsektoriakos- kettaalähemmintyössäkäsiteltytavarankuljetusajoneuvojensähköistäminen.Työeikäsitteleraideliiken- nettä. Työ on tehty kirjallisuustutkimuksena, johononkerättymateriaaliauseista Internet-lähteistäsekä tieteellisistäartikkeleistajakirjoista.Tutkimustatukevatmyöskaksihaastattelua,joistailmeneeHelsingin seudulla vallitsevia asenteita ajoneuvojen sähköistämistä kohtaan. Käytetyn lähdemateriaalin avulla on pyrittysaavuttamaanmahdollisimmanlaajatietämyserisähköajoneuvoteknologioidennykytilastajakäy- töstäsekäniitäkohtaanosoitetustamielenkiinnosta. Merkittävimmättyössäkäsiteltävätsähköajoneuvoteknologiatovatjohdinbussisekäakku-japolttokenno- toimisetajoneuvoteknologiat.Näitäteknologioitaonverrattutyössämonipuolisesti.Nykyäänpaljonpu- huttavan kestävän kehityksennäkökulmastasähköajoneuvoteknologioidenmielekkyyteenvaikuttaamer- kittävästisähkön-javedyntuotannonpäästöprofiili.Sähköajoneuvojenhoukuttelevuuttavoidaanparantaa suosimallamatalapäästöisiäenergiantuotantomuotoja.Diplomityössäselviää,etteipelkännykyisenakku- teknologianavullavieläkyetäbussiliikenteentaloudellisestikannattavaansähköistämiseen.Polttokenno- jenlaillaajoneuvojenakutovatvieläerittäinkalliitajateknisestikehittymättömiä.Akkujavoidaankui- tenkinkäyttääjärkevinperusteinajoneuvojenjarruenergiantalteenottoonsekäpidentämäänajoneuvojen toimintasädettä. Tällä hetkellä soveltuvin sähköajoneuvo bussiliikenteeseen näyttäisi olevan johdinauto, jokaonkäsitellyistävaihtoehdoistahalvinjaennenkaikkeapitkäikäisin.Johdinautojaonmyöskäytetty menestyksekkäästi kylmissä olosuhteissa. Tavarankuljetusliikenteen saralla pelkkien akkujen käyttöä ajoneuvojen energianlähteenä tullaan edistämään voimakkaammin. Jatkotutkimuksissa olisi suotavaa tutkiatyössäkäsiteltyjenteknologioidenyhdistelmiäkäyttökelpoisimpiensähköajoneuvojenlöytymiseksi. Avainsanat: akku, energiavarasto, johdinauto, ladattava hybridiajoneuvo, polttokenno, sähköajoneuvo, sähköbussi

iv AALTO-UNIVERSITETET SAMMANDRAGAVDIPLOMARBETE TEKNISKAHÖGSKOLAN Författare: LeoRomana Arbetetsnamn: Potentiellaelfordonförbuss-ochtransporttrafik Datum: 1.11.2010 Sidantal:10+85 Fakultet: Fakultetenförelektronik,kommunikationochautomatik Institution: Institutionenförelektroteknik Professur: Elnätochhögspänningsteknologi(S-18) Övervakare: ProfessorMattiLehtonen Handledare: EeroSaarijärvi Denfinskatrafikplaneringenharformuleratambitiösamålförattstyrainutvecklingenmotmerahållbara fordonstekniker.Dettadiplomarbetepresenterardemestanvändbaraelfordonsteknologierna.Detekniker somdiskuterasärlämpligaförkallareklimatochbidrartillhållbarutveckling.Diplomarbetetbehandlar bådedeoffentligaochprivatatrafiksektorerna.Elektrifieringenavoffentligafordongranskasgenomden offentliga busstrafiken, medan privata fordon analyseras genom varutransporttrafiken. Järnvägstrafiken behandlasinteidettadiplomarbete.LitteraturenförundersökningenbaserarsigpåmångaInternetkällor, vetenskapligaartiklarochböcker.Därtillutfördestvåintervjuerför attfåinformationomattityder till elektrifieringenavfordonidenfinskahuvudstadsregionen.Utgåendefråndetanvändamaterialetpresen- terardettadiplomarbetemångatidigareerfarenheterochuppdateradinformationomelfordonsindustrin– d.v.s.utbredning,vanligaanvändningsändamålochintresseförelfordon. Designifikantateknologiersombörbeaktasvidelektrifieringenavfordonärtrådbussarocholikafordon som använder batteri- eller bränslecellteknologier. En jämförelse mellan de här grundteknologierna är inkluderadidettaarbete.Hurhållbaradeolikateknikernamiljömässigtärberorihöggradpåhurman producerarelochväte.Förattproducerameragenomförbaraalternativavelfordonförbuss-ochtrans- porttrafiken,måstemanförstochfrämstfrämjalågemissionsteknologierinomel-ochväteindustrin.Av dettadiplomarbeteframgårattelmatningenielbussarintekanlyckasmedbarafordonsbatterierutanatt dessamåstekompletterasmedandrateknologier.Bådefordonsbatterierochbränslekällorbörutvecklas förattmöjliggöralägremarknadspriserochbättrekonkurrenskraft.Batterierkantrotsalltutnyttjastillatt återvinnabromsenergisamtsomräckviddsförlängareellerextraenergikälla.Förnärvarandeverkartråd- bussenvaradetmestanvändbaraalternativetförelektrifieringavbusstrafiken.Trådbussarärbilligaoch harenmycketlångteknisklivslängd.Deharävenanväntsikallaklimatpåettframgångsriktsätt.Inom varutransporterkommerrenabatteribilarattbefordraskraftigare.Förattfinnademestanvändbaraoch praktiskaelfordonsteknikerna,rekommenderasdetattkommandeundersökningarskagranskamöjligheter tillkombinationeravolikafordonsteknologier. Nyckelord:batteri,bränslecell,elbuss,elfordon,energireserv,laddhybridbil,trådbuss

v Tableofcontents

Preface...... ii

Abbreviationsandterms...... viii

Units...... x

1 Introduction...... 1

1.1 General...... 1 1.2 Aimandscopeofthestudy...... 1 1.3 Referencesandmethodsofresearch...... 2

2 Trolleybuses...... 4

2.1 Backgroundofthetrolleybus–futureprospects...... 4 2.2 Basiccharacteristicsoftrolleybuses...... 7 2.3 Infrastructureonroadsandtrolleybusdepots...... 10 2.4 Costsoftrolleybusinvestment,maintenanceandinfrastructure...... 12 2.5 Impactsonenvironment...... 13

3 Fuelcellbuses...... 14

3.1 Abriefhistoryanddevelopmentoffuelcells...... 14 3.2 PEMFCtechnologyfortransport...... 15 3.3 Use of fuel cells in modern public transport – a look at the available technology...... 17 3.4 TechnicalcharacteristicsofaMercedes-Benzfuel-cell-Citaro...... 22 3.5 Newtechnology–Mercedes-BenzCitaroFuelCELL...... 25 3.6 Hydrogeninfrastructurebasics...... 26 3.7 Costsrelatedtofuelcellbusesandthehydrogentechnology...... 28 3.8 Environmentalissues...... 30

4 Battery-electricvehicles–buses...... 33

4.1 Historyandstatusofelectricvehicles...... 33 4.2 Themostprominentbatterytechnologiesforelectricvehicles–Li-ion...... 34 4.3 Batterymanufacturers...... 35 4.4 Battery-electricbusimplementations...... 36 4.5 Plug-inhybridelectricvehicles–implementationinbustraffic...... 40 4.6 Commonchallengesforvehiclebatterytechnologies...... 41

vi 4.7 Thebatteriesofanelectricvehicleasenergystorage...... 43

5 Comparingtransitbustechnologies...... 45

5.1 Ingeneral...... 45 5.2 Comparisonofvehicletechnologies...... 45 5.2.1 Energyefficiency...... 47 5.2.2 Runningtimeenergyconsumption...... 50 5.2.3 Othertechnologicalcharacteristics...... 51 5.2.4 Purchasecosts...... 53 5.2.5 Emissionsandconsequentialimpactsonenvironment...... 54 5.2.6 Passengercomfort...... 56

6 DefinitionsofHelsinkiareapolicies...... 58

6.1 HSL...... 58 6.2 CharterbusfleetcharacteristicsintheHelsinkiregion–emissions...... 58 6.3 Assessmentoftransportoperatorsandtheirvehicles–generalremarks...... 60 6.4 Carbondioxideasadecisivemeasure...... 61 6.5 Trolleybusasanalternative...... 62 6.6 Othermodernbustechnologies...... 64 6.7 NearfutureenvironmentalgoalsforHelsinkicitytraffic...... 64

7 Electrificationofdeliverytraffic...... 67

7.1 Thetrendofgrowinggoodstransport...... 67 7.2 Electrificationofdeliverytraffic–demonstrationsandcommercialusage...67 7.3 ItellaCorporation–deliveringpostalmailandparcels...... 70

8 Conclusions...... 72

References...... 74

AppendixA:Europeanemissionstandards...... 85

vii Abbreviationsandterms

AC AlternatingCurrent APU AuxiliaryPowerUnit AUD AustralianDollar BEB Battery-ElectricBus BEV Battery-ElectricVehicle CNG CompressedNaturalGas CO CarbonMonoxide

CO 2 CarbonDioxide CUTE CleanUrbanTransportforEurope DC DirectCurrent DGE DieselGallonEquivalent DMFC DirectMethanolFuelCell ECTOS EcologicalCityTranspOrtSystem EEV EnhancedEnvironmentallyfriendlyVehicle ELCIDIS ELectricvehiclesinCItyDIStribution ESS EnergyStorageSystem EU EuropeanUnion EUR Euro EV ElectricVehicle -FC -FuelCell FCB FuelCellBus FCHV FuelCellHybridVehicle FCV FuelCellVehicle FTA FederalTransitAdministration HC Hydrocarbon HESB HybridElectricSchoolBus HEV HybridElectricVehicle HSL HelsinkiRegionalTransportAuthority HSY HelsinkiRegionEnvironmentalServicesAuthority

H2 Hydrogen ICE InternalCombustionEngine IFEU InstituteforEnergyandEnvironmentalResearch LCO Lithium-CobaltOxide LEJ LithiumEnergyJapan

LFPorLiFePO 4 LithiumIronPhosphate

viii Li-ion Lithium-ion LMO Lithium-manganesespinel LTO LithiumTitanate NCA Lithium-nickel-Cobalt-Aluminium NiCd NickelCadmium Ni-MH Nickel-MetalHydride NMC lithium-Nickel-Manganese-Cobalt

NO X Mono-nitrogenoxides (nitricoxideandnitrogendioxide) OEM OriginalEquipmentManufacturer PAFC PhosphoricAcidFuelCell PEM PolymerElectrolyteMembrane/ProtonExchangeMembrane PHEV Plug-inHybridElectricVehicle PM ParticulateMatter RMFC ReformedMethanolFuelCell SEV SmithElectricVehicles STEP SustainableTransportEnergyProject UITP InternationalAssociationofPublicTransport USD UnitedStatesDollar V2G Vehicle-to-Grid tank-to-wheel The efficiency pathway of acertain fuel or electricity from thetankofavehicletopropulsiveenergy well-to-tank The efficiency pathway of a certain fuel or electricity from theproductiontothetankofavehicle well-to-wheel The efficiency pathway of acertain fuel or electricity from theproductiontopropulsiveenergy

ix Units

A ampere dB(A) A-weighteddesibel g gramme kg kilogramme km kilometre kWh kilowatt-hour kWh eq kilowatt-hourequivalent mm millimetre V volt W watt Wh watt-hour € Euro

x 1Introduction

1.1 General

Concerns about the sustainability and adequacy of energy have started a continuous processofchange.Especially,intheindustrialisedworld,peoplearenowtryingtofind solutions for improved energy efficiency and cleaner living environments. Under the pressureofglobalwarming,governmentsandinternationalorganisationshaveassessed wide-rangingmeasures,methodsandrestrictionsforreducingemissions. Roadtrafficreleasesagreatamountofharmfulemissions.Whiletrafficflowsarecon- stantlygrowing,passengeranddeliverytransportrequireimplementationofnovel,in- novativesolutionsinordertohavecontroloftraffic-basedemissions.Presently,busand deliveryvehiclefleetsmainlyconsistofvehiclesrelyingonconventionalfuels.Despite theimprovingenginetechnologies,theneedforalternativefuelsandelectrificationof vehiclesiswidelyrecognised.Theelectrificationofvehiclescombinedwithresponsible productionofelectricityformapromisingcombinationformakinghealthiercityscapes possible. Electric vehicles (EVs) have been used in Finland before. Decades ago, the cities of Helsinkiandstillrantrolleybusesasapartofpublictransport.However,since then, conventional vehicle types (e.g., diesel vehicles) have provided a more viable, economicalchoiceoftransport.Tryingtoreducetheamountofgeneratedemissionsand exhaustgases,severalFinnishcitiesandcompaniesarenowstrivingforsustainability. Traffic poses oneof themain sustainability challenges and iscertainlytaken intoac- countinthenationalpolicies.

1.2 Aimandscopeofthestudy

Thisthesisdiscussesthepotentialsolutionsforvehicleelectrificationconsideringboth busesandgoodsdelivery,focusingonsustainableimplementationsbestsuitableforthe Finnish traffic conditions. The thesis does not coverrail traffic or any hybrid-electric vehicle (HEV) technologies. Some marginal electric vehicle technologies that do not seemtobecapableofprovidingrespectableenoughtransitsolutionsareeitherleftout

1 ofthestudyordiscussedverybriefly.Thestudyemphasiseselectricvehiclesolutions thatenableaneconomicallyviableuseofextensivevehiclefleets. Theworkcontributestoalargerproject,alsoreferredtoasSIMBe(SmartInfrastruc- turesforElectricMobilityinBuiltEnvironments).ThepurposeofSIMBeistoacceler- atetheintroductionofsustainable,electricmobilityinFinland.Thisstudyaimsforpre- sentingissueschallengingthevehicleelectrificationintheHelsinkimetropolitanarea. Oneofthegoalsofthisworkistoreflecttheattitudesofsomelocaltransportcompa- nies,whichwillhelpunderstandthelevelofopennesstovehicleelectrificationinthe Helsinkiregion. The beginning of the thesis presents information about trolley buses, fuel cell buses (FCBs) and battery-electric buses (BEBs) in Chapters 2, 3 and 4, respectively.These chaptersgiveaviewofthebasictechnicalfeatures,relatedinfrastructure,prices,aswell asthecurrentandprioruseoftheaforementionedvehicletechnologies.Alsoenviron- mentalissues–e.g.,generatedemissionsandexhausts–arecoveredinbrief.Vehicle technology-specificinformationisgivenwhenappropriate.Forinstance,characteristics ofthehydrogenfuelcellandvehiclebatterytechnologiesareaddressedinChapters3 and4,respectively.Thisinformationisgenerallyapplicabletoallvehicles(i.e.,notonly buses) utilising fuel cellsor batteries forpropulsion.Chapter5condensestheknowl- edgeofthethreepriorchaptersaddingsomesupplementary,supportiveinformation.In Chapter 6, the attitudes towards electrification and possible vehicle technologies for regionalbustransportareevaluatedthroughaninterviewwithatransportauthorityop- eratingintheHelsinkimetropolitanarea.Chapter7discussestheroleofthedeliveryof goodsintheintroductionofelectricvehicles.Moreover,thechaptergivesabriefview of the efforts made for vehicle electrification in the Finnish mail delivery through a quickinterviewwithaFinnishpostaltransportcompany.Finally,Chapter8concludes thethesisbypresentingafewessentialpointsaboutthefeasibilityofdifferentelectric vehicletechnologiesintheFinnishbusanddeliverytraffic.

1.3 Referencesandmethodsofresearch

Theelectricvehicletechnologiesdiscussedinthethesiswerechosenbasedoninforma- tiongatheredfromvariousInternetsources,scientificarticlesandbooks.Theemphasis isonthepublicInternetsourcessincethereislittleinformationavailableinscientific literatureabouttheresearchsubject.Additionally,twomajortransportcompaniesinthe Helsinkimetropolitanareawereinterviewed.Theinterviewscontributetothestudyby providinginformationaboutthecurrentuseofdifferentvehicletechnologies,aswellas showing the attitudes towards alternative vehicle technologies in the Helsinki region.

2 Thus, the feasibility of the discussed electric vehicle technologies is partly addressed throughtheseinterviews. The thesis compares several quantitative and qualitativeparameters of the considered electricvehicletechnologieswitheachother.Quantitatively,thetechnologiesaremainly analysedintermsofefficiency,energyconsumptionandemissions,aswellasvehicle range, expected lifetime and occurred costs. Moreover, the need for additional infra- structureandmaintenanceisexamined.Thestudyoccasionallyusestheterms‘tank-to- wheel’,‘well-to-tank’and‘well-to-wheel’tohelpdefinetheefficienciesofthevehicles and the production of electricity orhydrogenfuel(seeAbbreviationsandterms).The qualitativecomparisontakesintoaccountfactorslikepassengercomfortandinfrastruc- ture-relatedaesthetics.Theresultsandconclusionsaremainlypresentedfromatrans- portoperatororpassengerpointofview.

3 2Trolleybuses

2.1 Backgroundofthetrolleybus–futureprospects

Thepastexperienceswithtrolleybuseshavebeenversatile.Thefirstattemptsusinga trolleybus–thatonereferredtoas Elektromote –wereconductedin1882withoutany appreciable success. Later in the beginning of the twentieth century, Lombart-Gerin managedtobuildprobablythefirstworkingtrolleybuslinefortheParisExhibitionof 1900. [1] Trolley buses were first introduced in Finland in the late 1940s. Helsinki startedtrolleybustrafficon5 th February1949[2].Anothertowntobegintrolleybus trafficinFinlandwasTampere.Comparedwithdieselbuses,trolleybusesofferedmore effective driving with better acceleration and higher travel speed. The longevity and economicefficiencyalsofavouredthesevehicles.InHelsinki,thelargesttrolleybusline comprised26operatingtrolleybuses.Figure1presentsatrolleybusofthattimewith theincludedinfrastructureinHelsinki.[3]

Figure1:Atrolleybusonline#14inHelsinki.PhotobySuomenRaitioseura ry. [2]

4 However,inHelsinki,dieselbusesbegantheirrallyinthe1960s,astheystartedtosub- stitutetrolleybuses.Dieselbusesdevelopedquicklyanddisplacedtheinterestinelectric mobility. Diesel now offered better operating characteristics, and as they were seem- inglymoreflexiblethantrolleybuses,theybegantoincreaseinpopularity.Generally, environmentalfactorswerenotdrivingtechnicaldevelopment.Thetrolleybusnetwork didnotexpandinFinland.IncontrasttotheFinnishtrafficplanning,therewereother European countries promoting the use of trolley buses. For instance, in Switzerland, diesel buses were left as poor challengers. Switzerland had plenty of electricity pro- duced by hydroelectric power plants, and while the Swiss typically had appreciated clean,peacefulcitysurroundings,trolleybuseswereanadvantageous,naturaladdition totheirtrafficplanning.Untilnow,alongwithsomeEastEuropeancountries,Switzer- landhaskeptitstrolleybustrafficactive.[3] Althoughthedieselbuswasforcefullygainingmomentum,thecityofHelsinkididnot immediatelydispensewithallthetrolleybuses.Aslateasin1973,Helsinkitriedthree newRussiantrolleybuses.Theresultswerenotadmirable.Oneyearafterthat,itwas decidedtoclosedownthetrolleybustraffic.Tampereproceededthesamewayandquit theoperationtwoyearsafterHelsinkihadcometoitsdecision.Someeffortsweremade togivearebirthtotrolleybustrafficaftertheclosures,buttheseeffortssimplycame short of their objective, and trolley buses were continuously seen asatooexpensive option.InHelsinki,itwasestimatedthatthetrolleybussystem–comparedwithasimi- lartrafficarrangementimplementedwithdieselbuses–wouldincurapproximately15 percenthighercosts[2].In1985,thecitygovernmentconfirmedthedecisionconcern- ingthedismantlingofthetrolleybusline.Yet,thecitygovernmentstatedthattheop- tionoftrolleybuseswouldbereconsideredinthefuture,ifthetechnicaloreconomic situationwouldnotablychange.[3] Since 1970,the interest towards trolley buses has beenincreasing onaninternational level.Therehasbeenmoreemphasisonenvironmentalthinking, which hasfavoured trolleybusesinrespecttotheirlownoiselevelsandminimalpollutiongeneration.One hasfinanciallysupportedpublictransport,andmoreemphasishasbeenputonsocietal thinking.Taxsubsidiesandothereconomicaidhavebeenallocatedfortrolleybussys- tems [2]. This has helped transport operators boost their environmental attitudes and awareness.Positiveattitudestowardsincreasingtheuseoftrolleybuseshavestrength- enedalongwiththepursuitofreducedoildependency.[4] Atpresent,approximately400trolleybussystemsinvariouscitiesaroundtheworldare active.About300ofthesearelocatedinpost-Sovietstates.WesternEuropecomprises around 50 systems. Nordic countries have trolley buses in Bergen, Norway and in Landskrona,Sweden.Figure2illustratesanactivetrolleybusonthelineinLandskrona.

5 TheclosesttrolleybussystemfromaFinnishperspectivecanbefoundinTallinn,Esto- nia.[2]

Figure2:AtrolleybusinserviceinLandskrona,Sweden [5]

Citiesthatalreadyruntrolleybusesarenowrehabilitatingtheirfleets.Duringthelast decade,AthensinGreece,ArnheminHollandandSarajevoinBosniaandHerzegovina amongotherEuropeancitieshaveexpandedtheirexistingtrolleybussystems.Oldvehi- cleshavebeenupgraded.TrolleybuseshavealsobeenusedinsomeAsianandLatin American countries. Besides the renovation of old systems, several countries – e.g., Canada,,England,Belarus,Czechoslovakia,France,,Russia,Spain,Switzer- landandtheUnitedStates–havebeenintroducingnew,advancedtrolleybusmodelsin recentyears.[2][4][6] Now, some 25 years after the Helsinki city government’s decision to close down the trolleybustraffic,theconceptoftrolleybusevokesseriousgovernmentalinterestagain. Introductionsofnewtrolleybussystemsinothercountries,aswellasstrictdomestic andinternationalenvironmentalgoalshavehadastronginfluenceontheFinnishtraffic planning. In 2009, the planning unit of Helsinki city transport published a feasibility studyonpossibletrolleybussystemsinHelsinki.[3]

6 2.2 Basiccharacteristicsoftrolleybuses

Trolley buses have some unique features. The steering system and vehicle body of a trolleybusarepracticallysimilartothoseofnormaldieselbuses.Though,therehave beendifferingvehiclebodyconceptsonthemarketrecently[3].Thenewestmodelsare verysimilartomoderntrams[2].Incontrasttodieselbuses,trolleybusesarecharacter- isedbyelectricpropulsionandattachmenttooverheadwires.Thisfeature–trolleypoles –makesthemsimilartorailtrafficmodes.Therouteofatrolleybusisfixedbecauseof the stationary essence of the overhead wires that give the vehicle its electric power. Trolleybusescreatemorepowerfultractionthandieselbuses.Theyacceleratesmoothly butquickly;excellenttorquepropertiesofelectricmotorshelptrolleybusesclimbup steephills.[4] Atpresent,itisveryfrequentlyseenthattrolleybusescarryparticularauxiliarypower units(APU)whichkeeptheminmotion,whenevertheoverheadwiresarenotavailable. APUs increase the reliability of trolley buses as a traffic mode. With the help of an APU,atrolleybuscanpassobstaclesintraffic,aswellasdrivedifferingroutesdepend- ingonthetrafficdemands.Trolleybusesarethusnotsosensitivetotrafficdisturbances astramsorotherfixedtrafficmodeswithrails.[3] Typically, trolley bus APUs are diesel internal combustion engines (ICEs). The most advancedsolutionsusechemicalbatteriesandcapacitorsasanon-boardenergystorage system(ESS).DieselICEsrangenormallyfroma50-kWboostermotortoa200-kW engine.Withasmallboosteritispossibletomovesmalldistanceswithlowspeed.This makesitpossiblefortrolleybusestoavoidstopscausedbymaintenanceworkorother disturbances. The booster also enables moving on depots, if no overhead network is available.Alargerenginecanbearealoptionforelectricpropulsionsuppliedbythe overheadnetwork.Vehicleswithtwoconcurrentpropulsionsystemswhichcanberunat similarpowerlevelsarecommonlyreferredtoasdual-modevehicles.Theuseofabat- tery and capacitor assisted ESS induces greater expenses than a correspondent diesel ICE.However,inthemostadvancedsystems,supercapacitorsofagreatercapacitycan bechargedatbusstops,makingitpossibleforthevehicletohavenowirecontacten route.Naturally,suchvehicleswouldnotbedescribedastrolleybuses,morelikelythey wouldbeclassifiedassupercapacitorbuses.[3] Trolleybusesaremostlyequippedwithalternatingcurrent(AC)motors.Earliermodels oftenuseddirectcurrent(DC).However,ACmotorsarelighter,assembledoflessex- pensiveparts,andtheirspeedregulationisbetter.Electrictractionmotorscanbeusedas effective,advantageouselectricbrakes.Comparedtoaveragemechanicalbrakes,elec- tricbrakessignificantlyreducethewearofmechanicalbrakingcomponentsandtyres. Theelectricbrakingenergycaneitherbedissipatedinthevehicle’sresistors,whenthe

7 vehicledecelerates,orusedtochargepossiblebatteriesandcapacitorsofthevehicle,or simplyfedbackintotheoverheadnetwork.Conductingthebrakingenergybackintothe systemiscommonlyreferredtoasregenerationorrecuperationofelectricenergy.[6] [7] Trolley buses carry trolley poles that collect the current used forpropulsionfromthe overheadwires.Poles,showninFigure3,areusuallyabout5metresinlength,depend- ingonthevehicletypeandtrafficarrangements.Moderntrolleypolesfeaturelowmass andhighstiffnesspropertieswhichreducethepossibilityofdetachingfromthewireor ‘dewiring’[8].Theyareliftedandloweredpneumatically,whenthevehicleisstopped. Lifting of the poles usually happens manually and lowering either manually or auto- matically.Insomecases,overheadwiresareequippedwithfunnels(Figure4)thatdirect thepoletotherightplace–ontothelowersurfaceoftheoverheadwires–duringthe liftingprocess.Thisnecessitatesthevehicletobeinanexactspotforthelift.Polesdo noteasilyfallawayfromthewiresinasidewaysmovement,whichhelpsthetrolleybus avoidobstaclesintraffic.[3]

Figure3:Headsoftrolleypoles [3]

8 Figure4:Funnelsonoverheadwires [3]

Trolleybusesholdgreatertransportcapacitythannormalbuses,butlagbehindtramsin contrast.Trolleybusesaregenerallyarticulatedwithoneortwoarticulationsandarein somecasesupto24metreslong.Buteventhelargesttrolleybusesholdlesstransport capacitythantramsbecauseofthesizedifference.[3] AllnewEuropeantrolleybuseshavelowfloorsoratleastakneelingfunction,which makesiteasierforpeopletoenterandleavethevehicle.Lowfloorsandeasyaccessto thevehiclecreatescustomersatisfactionandreducescostsgeneratedbytheunnecessary waiting time, when people are boarding or alighting. Noteworthy is that also electric tractionmotorscontributetothebenefitsachievedbylowfloors.Trolleybusesusually haveasingletractionmotorconnectedstraighttothedriveshaftwithoutanygearboxor clutch[7].Innewermodels,motorsareoftenimplementedassocalledwheelhubdrives which are mountednext toeachdrivewheel into the wheel hub. Trolley buses with wheelhubdrivesdonotneedlongdriveshafts,sothewholefloorofthevehiclecanbe made flat without any angles or elevations. This eliminates the idea of utilising old buseswithdriveshaftsintrolleybusconversion.Wheelhubsdrivesenableimplement- inginnovativestructuresintrolleybuses.Seats,forexample,canhangfromstrength- enedwallstofreetheevenfloorspaceforeasycleaning.[6]

9 Moderntrolleybuseshavevarioussimilarities.AcloserlookatŠkoda’swebpagesre- vealsthatnearlyallnewornewishtrolleybusmodelsareequippedwithlow-floorfea- tures.Additionally,theyholdafullairconditioningandanaudio-visualpassengerin- formationsystem.Almostallmoderntrolleybuseshaveakneelingfunctiontoincrease passengercomfort.ThetrolleybusmodelinLandskrona,SwedenhasNiMHbatteries forautonomousrunning.EveryŠkodatrolleybusmodelalsohasrecuperationfunction- alityforbrakingenergy.[9] ThenewesttrolleybusmodelofŠkoda,theŠKODA24TrIRISBUS,hasanasynchro- noustractionmotorof210kW.Itholds28seatsand58placesforstandingpassengers. Thevehiclehasamodulardesign,whichallowsthebuyingcustomertodecidethede- tailsimplementedinthevehicle.Uncharacteristically,theŠKODA24TrIRISBUShas twoAPUs–adieselengineandtractionbatteriesalike.[9]

2.3 Infrastructureonroadsandtrolleybusdepots

Even though trolley buses use overhead wires to function, they cannot use the same wireswithtrams.Anelectrotechnicalreasonlimitstheuseofsharedwires.Tramshave a single electric supply wire. They use rails as a return current path, whereas trolley busesmusthavetwooverheadwires,onefortheelectricitysupplyandanotherforthe returncurrent.[3] Anessentialpartofthetrolleybusnetworkisthepowersupplythroughelectricalsub- stations.Tomonitorthereturncurrentinanappropriateway,andforthesakeofelectri- calsafety,lineoutputsfromsubstationsmustbemadeseparatelyfortrolleybusesand trams.Moreover,theadequacyofthesubstationsmustbeexamined.InHelsinki,new substations are not necessarily needed for new trolley buses, if the overall power re- quirement of the utilised vehicles stays under the supply capacity of the substations. Furthermore, the existing substations are most probably dimensioned considering the energy consumption of trams, which is higher than the consumption of trolley buses. This supports the idea of trolley buses utilising already existing substations. When needed,stationscanbestrengthenedwithsupercapacitorstosupportthevoltagelevel. However, itwould be necessary to buildnewsubstationsinareasoutsidetheelectric supply for trams. Trolley buses typically require one substation for every three line kilometres.[3] Existingsystemsfortrolleybuspowersupplyrangefrom600to1,000VDC.Themost probable option for Helsinki city traffic would be 750 V DC. The Helsinki city has plannedtoreshapethepowersupplysystemfortrams.Theintentionistoswitchfrom 600to750VDC.Usingacommonvoltagelevelwould enable the use of identical

10 powersuppliesforbothtramsandtrolleybuses.Usingahighervoltagelevelalsomakes itpossibletohavelighter,cheaperoverheadwiresbecauseofreducedsupplycurrent. Addedtothis,lighterwiresarevisuallylessdisturbing.[3][8] Acoupleofdifferenttypesofcablesandwiresarerequiredinatrolleybusnetwork.The powersupplyfortheoverheadwirenetworkconsistsofcablesfromtenstoafewhun- dred metres long. Direct current produces an electromagnetic field around the cable. Electromagnetic fields are phenomena that are intensively studied for health reasons. Nevertheless,electromagneticfieldsgeneratedbyoverheadwiresfortrolleybusesare milderthanthefieldsgeneratedbytramlines.Thewiresforsupplycurrentandreturn currentpartlycompensateeachother.Overheadwirestypicallyhang5.5metresabove thestreetsurface.Wiressituatedveryhighupweakenthepossibilityofsidewaysmo- tion.Normally,atrolleybuscanmoveabout4metrestoeachside.Overheadwiresre- quire supporting structures that are typically used for all the wires simultaneously. A two-waytrolleybuslaneconsistsoffourcopperwireswhichcanbesupportedwiththe same supporting structures. Trolley buses using partly common driving lanes need ‘points’or‘switches’intheoverheadlinestructureinordertodirecttrolleypolestothe rightplace.Therearemechanicalandelectricalpoints.Theoperationofelectricalpoints can be controlled. Mechanical points only have a single functionality. Modern points andwell-functioningoverheadwiresenabletrolleybusestooperatewithouthavingto decelerate[8].Anoverheadwirenetworkalsoincludes several wire crossing mecha- nisms, electrical separators, an electrical feeding point infrastructure and supports for thewiring.[3] Trolleybusdepotsgenerallyrequireanoverheadwirenetworkenablingeasymovement ofvehicles.Though,itispossibletoavoidheavywiringsystemsinthedepotsbyde- ployingtrolleybuseswithAPUs. Depots musthave equipment for live working and othermaintenancework.Forliveworking,itisnecessarytohavespecialhoistframes, becauseusuallyalltheelectricalequipmentisontheroofofthevehicle.Inthedepot, trolleybusesshouldbecoveredbyatleastsomekindofroof.Preferably,theyshould stayinaspaceequippedwithbotharoofandwalls.Depotsmusthaveenoughroomfor washingthetrolleybuschassisaswell.InHelsinki,themainconcernoverhavingtrol- leybusesinthedepotsisthelackofspaceorthedifficultyofutilisingthespaceinan effective manner. Special arrangements in maintenance rooms and depot interiors shouldbeconsideredatallexistingdepots,iftrolleybuseswereintroducedinHelsinki city traffic. The use of trolley buses would also affect other traffic – the placement, maintenanceanddrivingschedulesofothervehicles,etc.[3] Trolleybussystemscommonlyrequirestreetlevelrebuilding.Inadditiontothecharac- teristicsupportingstructuresandoverheadlinenetworks,theuseoftrolleybusesmay involve arrangements in lane structures. Occasionally, routes with only one lane are

11 builttoavoidsurpluscosts.Inthatcase,thelaneshouldworkinbothwayswithoutcre- atingexcessivecongestion.Atypicalsysteminvolvestwolanes,oneforeachdirection, enablingsimultaneoustwo-waytraffic.[3]

2.4 Costsoftrolleybusinvestment,maintenanceandin- frastructure

Acquisitioncostsoftrolleybuseshavereducedduringthetwenty-firstcentury.Reasons behindthisoriginatefromincreaseddemand.Trolleybusproductionhasbecomemore efficientandcompetitioninthemarkethasgainedmomentum.Inrecentyears,theaver- agepriceofatrolleybusofferedbymostknowncompetitorshasvariedbetweenEUR 450,000andEUR750,000(2009).Anillustrativepointofcomparisonherewouldbe thepriceofadieselbusthatisaroundEUR250,000–350,000(2009).Certaintechnical characteristicsaffectthepriceinbothcases.Slightlyboomingtrolleybusmarketshave generatedasecondarymarketwherefullyoperationalvehiclescanbeboughtforunder halfprice.[3] An investment in trolley buses necessitates commitment to it. Initial investments and renewalratesofspecifictechnology-relatedequipmentareclearlyhigherthanthoseof averagedieselbuses.Alsotherehabilitationofatrolleybusfleetinducesgreaterexpen- ditures.[3] Onthecontrary,theoperatinglifeofatrolleybusissignificantlyhigher.Itcanreach between16–20years,whereasdieselbusesmustbesubstitutedevery14–15years. The motor of a diesel vehicle creates vibration that fatigues the body of the vehicle. Therefore,dieselbusfleetsmustbesubstitutedmoreoften.[3] Thecostsofatrolleybusinfrastructureconsistofdifferentvariables.Thisisshownin theHelsinkifeasibilitystudyontrolleybussystems.Basically,therearetwomaincost components.Adirectcurrentsubstation,includingitsshed,costsaroundEUR500,000. An overhead wire network for a two-way trolley bus lane incurs expenditures of ap- proximatelyEUR300,000perkilometreincludingthesupportingstructures.Addition- ally, electrical points for choosing the route cost EUR 55,000 each. Overhead wires typically cross each other on thestreets. Mechanisms forthese crossingsusually cost tensofthousandsofEuros.PolesforsupportingthewirescostafewthousandEuros andremote-controlledelectricalseparatorsaroundEUR15,000perpiece.Anelectrical feeding point without a separator is worth EUR 6,500 including its installation. The aforementionedpricesarefrom2009.[3]

12 According to the pronouncement of a Swedish local traffic company, AB Storstock- holms Lokaltrafik, the overall surplus cost of a trolley bus system compared with an averagebussystemwouldbeapproximately6–17percent.Thisestimationtakesinto account expenditures incurred from trolley bus fleet investment, infrastructure, insur- ance, energy used and maintenance. The operating life of the trolley bus fleet is also considered. The estimation is based on UITP (International Association of Public Transport)studies.Insomecases,thesystemimplementedcouldbemuchmoreexpen- sive depending ontheexpensivenessoftheoverheadwires,relatedinfrastructureand thesizeofthesystem.ABStorstockholmsLokaltrafiknamesthesmall-sizetrolleybus systemofLandskrona,Sweden,togiveanexampleofasystemmuchmoreexpensive thananaveragetrolleybussystem.[10]

2.5 Impactsonenvironment

Trolley buses carry passengers rather efficiently. Compared to diesel vehicles, trolley busesprovideafewclearadvantages.Ingeneral,itisseenthateverypowerplantholds betterefficiencyproducingelectricitythantheefficiencyofacombustionengine.The Helsinkifeasibilitystudyontrolleybussystemssuggeststhattrolleybusesconsume2.5 kWhofenergyperkilometre.Thisvalueconsidersthetotalamountofenergyusedbya trolleybuswithonearticulation.Thefeasibilitystudybringsoutanaspectregardingthe location of trolley bus emissions. Nitrogen oxides (NO X) and particulatematter(PM) emissionsofdieselbusesendangerthepeoplenexttothevehicle,whereasthecompara- bleemissionsoftrolleybusesareconcentratedclosetothepowerplant,wheretheelec- tricityisproduced.[3] Environmentalimpactsofarubbertyredtrolleybusremainlow.Atrolleybusdoesnot generateexhaustsatall.Theonlyharmtotheenvironmentoccursfromthedetrimental dustthatcomesoffthetyresofamovingtrolleybus.Consequently,trolleybusesdonot needanyexhaustpipes.Inauxiliarypowerunitapplicationcases,trolleybusesmayalso produce exhausts,butonlywhen workingon theAPU. The noiselessness of electric drivesalsoinvolvesaddedvalueforthecityenvironment.Occasionally,theoverhead wirenetworkscanbevisuallydisturbing,whileespeciallythejunctionsofseveralwires andswitchesaredominatingthestreetview.Inordertomitigatethevisualinconven- ience, trolley bus systems are increasingly equipped with overhead wires of stainless steel[6].[4]

13 3Fuelcellbuses

3.1 Abriefhistoryanddevelopmentoffuelcells

Thetechnologyforafuelcellwasfirstdiscoveredin1839,whenWilliamGroveused reversedwaterelectrolysistogenerateelectricityfromhydrogenandoxygen.Withthe helpoffuelandanoxidant,afuelcellconvertschemicalenergyintoelectricenergyina continuousmanner.Afuelcellresemblesanenginewithitscontinuousfuelconsump- tion,andbatteriesbecauseoftheirelectrochemicalprocesses.[11] ThefirstpracticalapplicationofafuelcellprovidedtheGeminiandApollospacepro- grammesameanstogenerateelectricpoweranddrinkingwater.Waterandheatarethe onlyby-productsgeneratedintheoperationofafuelcell,whenpurehydrogen(H 2)is usedasfuel[12].Thesespaceprogrammesutilisedpolymerelectrolytemembranefuel cellorprotonexchangemembranefuelcell(PEMFC)technology–inventedbyGeneral Electricinthe1960s.However,thePEMFCtechnologywasoverlyexpensivebecause oftheplatinumusedasacatalystontheelectrodesofthefuelcell.TheuseofPEMFCs, whichlaterbecameextremelyimportantforthetransportsector,wasrestrictedtospace applications.[11][13] Intheearly1980s,acompanyreferredtoasBallardPowerSystemsInc.begantorede- veloptheearlierabandonedPEMfuelcellofGeneralElectric.Thecompanypursuedfor cheapermaterialsandmethodstoproducePEMfuelcells.[13]Thelate1980sandearly 1990swereasignificantperiodforfuelcellsintransport.Conventionaldiesel-powered transitbusescouldnotcompetewithhydrogenandotheralternativefuelswhenthein- terest in reducing emissions saw its rise. Proofing the reliability of fuel cell buses (FCBs)undervariouscircumstancesasapartofpublictransportformedthemaintarget fortheindustry.Reliabilityissuesareconfrontedpresentlyaswell.However,aftervari- ous fuel celltransitbusdemonstrations,itisnowtrulyrecognisedthatfuelcelltech- nologiescancompetewithconventionalpropulsiontechnologies.[14]

14 3.2 PEMFCtechnologyfortransport

Thefutureofmodernfuelcellsinthetransportsectorlooksoptimistic.Ingeneral,fuel cellsareextremelyattractivebecauseoftheircapabilitytoemitzeroorverylowlevels ofemissions.FuelcellsarealsomoreefficientthanaverageICEs(e.g.,PEMfuelcells typically provide efficienciesbetween40and60percent)[15].Thehighefficiencyis mainly based on the electrochemical characteristics of the fuel cell power generation process.[11] PEMfuelcellsprovideend-userapplicationsinthreemaincategories.Transportappli- cationsincludebuses,light-dutyandspecificnicheapplications.Thetwoothercatego- riesinvolvestationaryuseofPEMFCsandportablePEMFC-powereddevices.Thepro- portionaluseofPEMFCsbyapplicationareaisshowninFigure5.Thetransportsector holdsaround15percentofthetotalenduse.AlthoughPEMfuelcellsaremainlyused in not vehicle-related applications and buses embrace only a fraction ofthe total end use, PEMFCs are recognised as the most applicable fuelcelltype for the automotive industry,includingbuses[16].[15]

Figure5:ProportionsofgloballyinstalledPEMFC-poweredapplications [15]

AsimpledescriptionisenoughtoshowthebasicfunctionalityofaPEMfuelcell.A thin,permeablepolymericmembraneworksastheelectrolyteinthefuelcell.Onboth sidesof the membrane, platinum-basedelectrodescatalysetheelectricpower-creating reaction.Inthebasicprocess,hydrogenmoleculesareexposedtotheanode,wherethey splitintohydrogenions(protons)andelectrons.Protonsarecapableofpermeatingthe polymericmembrane,whereastheelectrons–theelectriccurrent–areledtoanexternal circuit.Invehicularapplications,thecurrentismainlyfedtopropulsiveelectricmotors. Oxygenfromtheairandelectronsfromtheexternalcircuitcombinewiththehydrogen

15 ionsatthecathodetoformheatandwater.Anillustrationofthebasicfuelcellprocess canbefoundinFigure6.[15][17]

Figure6:Theconceptofafuelcell [18]

Fromvariousfuelcelltypes,thePEMFChasproventobethefavouritechoiceofmod- ern transport. PEMFCs have the advantage of being both lightweight and compact. Theirpower-to-weight-ratiosareoftenhigh,whichiscountedasanadvantageinauto- motiveusage[18].ThetypicalelectricpowerattainedbyaPEMfuelcellisupto250 kW.TheoperatingtemperaturesofPEMFCsarelow,typicallyapproximating60–80 °C [19]. This makes aquickstart-upofthefuelcellvehiclepossible.Additionally,a solid electrolyte membrane enables the useof aless expensive sealing forgases pro- ducedintheanodeandcathode.Comparedwithsomeotherelectrolytematerials,the polymericmembranealsoavoidscorrosionbetter,whichextendsthelifeexpectancyof thefuelcell.[15] A few technical difficulties with PEM fuel cellsoccur from the characteristics ofthe fuelcelltype.ThemostcommonlyusedmembranetypeforPEMFCsisNafionbyDu- Pont.Thismembranetypemustbesaturatedwithwatertoachieveappropriateoperating conditions.Localdryingofthemembraneexposesittodegradation.Anotherissuecon- cernstheoperatingtemperature.Thetrade-offwiththetypicallylowoperatingtempera- tureofPEMFCisthelackofexcessheatfromthefuelcell.Theamountofheatpro-

16 ducedisofteninadequateforcogeneration.Thus,onemustfindoutothermethodsto arrangetheheatingoftheinteriorinPEMFC-poweredvehicles.Theheatingissuepar- ticularlyconcernscountrieswithcold,harshclimates,suchasFinland.[15][20] AsanalternativetoPEMFCsthatusepurehydrogenasfuel,variousautomotivemanu- facturershaveconsideredfuelcellsthatutilisemethanol.Forinstance,reformedmetha- nolfuelcells(RMFCs)anddirectmethanolfuelcells(DMFCs)usemethanolasacar- rierforhydrogen.AnRMFChasanauxiliaryreformerforconvertingmethanoltohy- drogen and othersubstances. Methanol isrelatively easy to transportandcould solve severalproblemsrelatedtothehydrogenstorage,transportanddistribution.However, thesefuelcelltypesgeneratecarbondioxide(CO 2)emissions,whereasPEMFCspro- videoperationtotallyfreeofCO 2.[21][22]

3.3 Useoffuelcellsinmodernpublictransport–alookat theavailabletechnology

Hydrogen hasbeen utilised in various public transport projectssincetheearly1990s. Hydrogenfuelcell-poweredvehiclesandhydrogen-fuelledICEs,aswellasotherfuel- ling and related technologies have been promoted widely worldwide. Demonstration projectsintheUnitedStates,Europe,China,JapanandAustraliahaveintroducedadi- verse rangeof new technologiesinto the markets.Only duringthe past decade,more than20citieshaveutilisedhydrogen-poweredbusesintheirbusrepertoire.[23] Assessingthedurabilityofhydrogenfuelcellbuseshasinterestedseveralparties,and therefore, various demonstrations have been used to control the impacts of long duty cyclesonthevehicles.[23]Inordertoincreasecompetitivenessinthetransportsector, thefuelcellindustryhashadvariouspracticalobjectives:reducingthesize,aswellas increasingthepowerdensityoffuelcellstacks;reducingtheoverallweightoffuelcell systems including electric propulsion; developing a hydrogen infrastructure to effi- cientlyservicevehicularuse;optimisingelectricmotorsandcontrolsystems;proofing electricpropulsionsystemssafefortransitvehicles,andcapableofoperatingdependa- blyunderextremeweatherconditions.Diversefuelcellbusdemonstrationprojectsim- plementedaroundtheworldarepresentedinTable1.[14]

17 Table1:Anoverviewofthefuelcellbusdemonstrationsworldwide [14] [24] [25]

Project Status Project Location Description Dates Three 30-ft FCBs operating on Federal Transit Ad- 1994- methanolusing100kWphospho- Complete ministration Various 1995 ric acid fuel cell (PAFC) stacks (FTA)/Georgetown fromFuji 40-ftFCBoperatingonmethanol 1998 Complete FTA/Georgetown Various using 100 kW PAFC from UTC Power Testprogramwithsix40-ftFCBs Chigago, IL, 1998- using 205 kW proton exchange Complete BallardPhaseIII and Vancou- 2000 membrane fuel cell stacks from ver,Canada Ballard 2000- Thousand Testbususing200kWPEMfuel Complete BallardPhaseIV 2001 Palms,CA cellstackfromBallard One UTC Power 60 kW power- 2000- InService CityCell Turin,Italy plant, hybrid bus, showcased in 2006WinterOlympics 2000- One UTC Power 60 kW power- Complete CityCell Madrid,Spain 2003 plant,hybridbus 40-ftFCBoperatingonmethanol 2001 Development FTA/Georgetown Various using 100 kW PEM fuel cell stackfromBallard Thousand ThunderPower 30-ft FCB using 2002- ISE/UTC Power Thun- Complete Palms and 60kWPEMfuelcellstackfrom 2002 derPower Oakland,CA UTCPower,ISEhybridsystem Europe, Ice- 2003- 33 40-ft FCBs using Ballard Complete CUTE,ECTOS,STEP land, and Aus- 2006 PEMfuelcellstacks tralia 2003- Hino/Toyota FCB - Eight 40-ft hybrid FCBs with InService Japan 2006 JHFC ToyotaPEMfuelcellstacks 2004- Three 40-ft FCBs using Ballard InService VTA SanJose,CA 2007 fuelcellstacks 2004- Three 40-ft FCBs using Ballard InService UNDP-GEFChina Beijing,China 2006 PEMfuelcellstacks Thousand One40-ftFCBusingUTCPower 2004- InService SunLine Palms,CA fuelcellstack,ISEhybridsystem One battery dominant plug-in hybrid FCB with Hydrogenics 2004- InService HickamAFB Honolulu,HI PEM fuelcellandEnovahybrid system Three 40-ft FCBs using UTC 2005- InService ACTransit Oakland,Ca Powerfuelcellstacks,ISEhybrid 2007 system

18 One-year extension of the dem- Europe, Ice- onstration of the Citaro/ Ballard 2006- InService HyFLEETCUTE land, China, FCBs and new demonstration of 2009 andAustralia 14hydrogen-fueledinternalcom- bustionenginebuses(MAN) Winnipeg, One 40-ft hybrid FCBusingHy- 2006 Complete NRCan/Hydrogenics Canada drogenicsPEMfuelcells One 43-ft hybrid using UTC Delijn, Bel- Power 120 kW fuel cell, to be 2006- InService VanHool gium leased later to other European transitagencies Sao Paulo, FivehybridFCBsusingaBallard 2007- InService UNDP-GEFBrazil Brazil fuelcell One40-fthybridFCBusingUTC 2007- InService CTTransit Hartford,CT Power 120 kW fuel cell stacks, ISEhybridsystem One22-ft,batterydominantplug- Newark, 2007- InService UniversityofDelaware in hybrid FCB using a Ballard Delaware fuelcellandEbushybridsystem U.S. demonstration of FCBs to Various loca- advancetechnologycommerciali- 2007- Planning FTANFCBP tions in the zation;competitivesolicitationto UnitedStates award$49millionover4yearsto selectedprojects Developmentanddemoofa30-ft Washington, bus with a 60-kW automotive- 2007- Development GeorgetownUniversity DC sized PEM fuel cell powered by anon-boardmethanolreformer Development of a battery domi- nant, 35-ft, plug-in hybrid FCB 2007- Development CARB,CityofBurbank Burbank,CA with Hydrogenics fuel cell in a MobileEnergySolutionsbus Whistler, Van- Operation of 20 hybrid FCBs in 2007- BCTransit,NewFlyer, Development couver, BC British Columbia for the 2010 2014 ISE,Ballard Canada Olympics In the European Union (EU), the project CUTE (Clean Urban Transport for Europe) promotedtheuseoffuelcellbusesinpublictransportin2003–2006.CUTEwasthe first programme to incorporate a significant number of simultaneously operating fuel cellbuses,astheearlierprogrammestypicallyinvolvedonlyafewbuses.Altogether,27 fuel cell buses were run on the streets of Amsterdam, Barcelona, , London, Luxembourg, Madrid, Porto, Stockholm and Stuttgart. Buses were deployed either in regulartrafficoronextraroutesspecificallydesignedforfuelcellbuseswithinthepro- ject.Agreatamountofinformationonusabilitywasobtainedbecauseoftheextensive deploymentofbuses,aswellasthevariouscityenvironmentsandfuellinginfrastruc- tures.CUTEsubstantiallyimprovedpublicattitudestowardshydrogenandledthede- velopment of a more secure supply of energy in the EU. However, the CUTE pro-

19 grammealsoshowedthatfuelcellandrelatedtechnologieswerenotperfectlyfinalised andtheoperationoffuelcellsshouldbeimprovedthroughre-engineering.[24][26] AnIcelandicprojectECTOS(EcologicalCityTranspOrtSystem)aimedfordemonstrat- ingthestatusquoofthemodernhydrogentechnologyinIceland.ECTOSconcentrated on studying socio-economic influences within changing the energy base of an urban society.[27]TheprojectECTOSdeployedthreefuelcellbuses,startingin2003.The projectwasbasedonagrantofEUR3.8millionfromtheEuropeanCommission.The originalECTOSprojectwascloseddownin2005butrununderanotherprogrammefor a year afterwards. In total, ECTOS buses travelled nearly 90,000 kilometres using slightlyover17.3tonnesofhydrogen.[23] TheSTEP(SustainableTransportEnergyProject)projectexploredtheuseofalternative energiesintransportinPerth,Australia.STEPwassupportedbytheAustraliangovern- ment. [28] The flagship project for the STEP project, the EcoBus fuel cell bus trial, lastedfortwoyearsfrom2004to2006.EcoBuswasasuccessandcontributedtothe STEPprojectbyachievinggreatenvironmentalsavings.300tonnesofexhaustcarbon emissionswereavoided,andover320,000passengerswerecarriedduringthetrial.Al- together,thethreebusesusedinthetrialtravelled258,000kilometresandconsumed46 tonnesofhydrogenasfuel.[29] All three projects were continued under the global HyFLEET:CUTE programme that wasestablishedbytheEuropeanCommissioninJanuary2006tofollowtheproductive workoftheformerCUTEprogramme.TheprojectsoriginallyreferredtoasECTOSand EcoBuswererunanextrayearbetween2006and2007.TheHyFLEET:CUTEproject lastedtilltheautumnof2009andemployed33fuelcellbusesinninecitiesaroundthe world.TheCUTE,ECTOSandSTEPprojectsconsumed229tonnesofhydrogen,while the HyFLEET:CUTE project had a consumptionof326tonnes.On-siteproductionof hydrogeninHyFLEET:CUTEreached158hydrogentonnes.Amajorityofthishydro- genwasproducedwithrenewableenergy.[23][25] Earlierfuelcellbusprojectshaveencouragedtransitagenciesandotherplayersinthe fieldtoproceedwiththedevelopment.Oneillustrativeexampleofthedeploymentof fuelcellbusescomesfromtheUnitedStates.TransitoperatorsACTransit,SantaClara VTAandSunLineTransitAgencyintheUnitedStatescollectedvaluabledata–toas- sesscosts,fuelconsumption,reliability,performanceandcustomeracceptance–from fuelcellbusesfrom2005through2007.Theoperatorsnowrunfuelcellbusespartlyon regularserviceroutes.Someofthebusesoperate16hoursperdaythroughoutthewhole week. Currently, more transit agencies are about to join the programme initially fi- nancedbyafederaltransitauthority.[30][31]

20 SomeofthebusesutilisedinthelatterprogrammewerepoweredbyUTCPower,aunit ofUnitedTechnologiesCorporation[24].InJanuary 2010, UTC Powerreported that oneofitslatestgenerationPureMotion®Model120fuelcellpowerplantsforhybrid- electrictransitbuseshadsurpassed5,000hoursofoperationincommontransitservice. Noteworthyisthatthebuseshadonlyusedtheoriginalfuelcellstackswithnocellre- placements.PureMotion®Model120isbasedonPEMFCtechnology[32].UTCPower Vice President (Transport) Ken Stewart highly appreciated the achievement and saw fuelcellstackdurabilityasthekeyfactorincommercialisingfuelcellvehicles(FCVs) worldwide.TheHydrogenBusAlliancehassetatargetconcerningcommercialfuelcell stacksinbuses.Thepurposeistoattain20,000operationalhoursby2015[33].[31] One of the newest PEMFCs for automotive usage is the hydrogen-poweredFCveloc- ity™-HD6fuelcelloftheCanadianBallardPowerSystemsInc.Thefuelcell,shownin Figure7,isintendedforbusesandheavydutyvehicles.Thetwosizes–75kWand150 kW–cansupplyvoltagelevelsof275–400VDCand550–800VDC,respectively. FCvelocity™-HD6providesaratedcurrentof300A,andhasavolumeof0.55m 3.Its operationtemperatureisaround63°C.Theprotectionagainstdustandmoisturefulfils therequirementsofenclosureclassIP54.ThebiggerFCvelocity™-HD6moduleweighs lessthan400kgwhendry.Thesmalleroneweighsapproximately50kgless.Thelife- timetargetforthisparticularPEMFCisupto6,000hours.[19][34]

Figure7:TheFCvelocity™-HD6fuelcell [34]

Ballardintroducedafleetof20fuelcellbusesoperatingonFCvelocity™-HD6technol- ogy for the Olympic and Paralympic Winter Games in Canada (2010). The fleetwas integratedintotheregularserviceofBCTransit–alocaltransportagencyinWhistler, BritishColumbia.TheBCTransitdemonstrationprogrammelastsuntil2014andevalu- ates costs, performance and service availability of thelow-floor, 12-metre New Flyer buseswithhybridpropulsionfromISE/andvalencelithiumphosphatebatteries

21 forenergystorage.Thefuelcellsystempowersthebuseswith150kW.Oneofthein- tentionscreatingthebuswasthatitwouldresembleanaveragebusregardingthedriv- ingbehaviourandappearance,andstillprovideacleanenergyfuturethroughanenvi- ronmentallyadvantageouschoiceoftransport.[35][36][37]

3.4 Technical characteristics of a Mercedes-Benz fuel- cell-Citaro

Anaturalapproachforassessingtheopportunitiestoutilisefuelcellsindomesticvehi- clefleetsistoreviewtechnologicalapplicationspromotedelsewhere.Toassessthesuit- abilityoffuelcellbusesforFinnishtransport,itisusefultoconsiderbusfleetsdeployed incountrieswithsimilarweatherconditions.ThebusesusedintheprojectECTOSin Icelandareexaminedtogetaviewofthetechnologyinvolved.Theyhavehadtooperate underharshcircumstancesandthuscreateextravaluefortheexamination. Figure8representstheactual,winteryweatherconditionsencounteredinIcelandduring theproject.ThissectionscrutinisesvariousdevicesofthefuelcellsystemintheMer- cedes-Benzfuel-cell-Citaro(2003)deployedintheECTOSproject.Thisbuswasalso thechoiceoftheprojectsCUTEandSTEPandhasevenbeenusedinBeijing,China [38].

Figure8:AfuelcellbusonitsrouteinReykjavik,Iceland [39]

Lately,fuelcellbuseshaveexperiencedclearimprovementsinefficiencyandtechnol- ogy,suchastheutilisationofbatteriesandadditionalpoweraggregates.Thesevehicles

22 aregenerallyreferredtoasfuelcellhybridvehicles(FCHV)anduseadditionalpower sourcesinordertoreducefuelconsumptionandimprovetheoverallsystemefficiency. However,thebasicfuelcellsystem-relatedcomponentsinfuelcellbusescanbestbe introducedbyreviewingthefuel-cell-CitarodeployedinECTOS.[40] TheconventionalMercedes-BenzCitarodieselbusesservedasthephysicalbasisforthe fuel-cell-Citarobusesdesignedin1999–2000.TheintentionoftheEuropeanfuelcell bus programmes was to demonstrate that hydrogen-powered fuel cell buses could be utilisedasapartoftheurbantransportinEurope.Thus,themaingoalwasnottoopti- misethefueleconomybuttoattainhighreliabilityanddurabilitytypicallyrequiredby thetransportagencies.Thiswasmainlyachievedthroughutilisingstandardisedseries- productioncomponentsavailableforconventionaldieselbuses [38]. It waspresumed thatappealingtothepublicasadependabletransitsolutionwouldboostthefuturede- velopmentoffuelcellbuses.[24] Thedrivetrainofafuelcellbusconsistsofseveralmodules,eachofwhichhasitsown function.ThemaindevicesforMercedes-Benzfuel-cell-Citarobusareexplainedinthe nextparagraphs. Thefuelcellsystemofa12metreslong,low-floorMercedes-Benzfuel-cell-Citaroused intheECTOSprojectgeneratespropulsionthroughadrivetrainequippedwithaBal- lard’sHY-205P5-1fuelcellengine.TheHY-205drivetrainisdesignedtoreplacethe typicaldieseldrivetrainwithaminimumamountoftechnicaladjustment.Thefuelcell engineuseshydrogenasfuelandfeedsacompactliquid-cooledelectricpropulsionmo- tor.[24][41] The Mercedes-Benz fuel-cell-Citaro is equipped with an engine containing fuel cell stacksindiscretecellrows.Anelectronicmeasurementsystemmonitorscellvoltages constantly. For maintaining appropriate operation conditions, the module contains air andhydrogenhumidifiers,aswellastheirassociativehardware.Specifichardwarecon- trols and handles the recirculation of hydrogen. Fuel cell stacks incorporate a special minimumcurrentlimitation,sothefuelcellsystemhasaresistorfordumpingexcess electricity. Basically,inthe resistor,theexcesselectricitytransformstoheatwhichis thenutilisedintheheatingorcoolingunitsofthevehicle.Fuelcellstacksaretypically mountedonthetopoftherooforintotheengineroom.Iftheinstallationislocatedon theroof,asinMercedes-Benzfuel-cell-Citaro,thebusishigherthananormaldiesel- drivenbus.[24][41] AsingleelectricmotorrunsvariousmainfunctionsinthefuelcellsystemoftheMer- cedes-Benzfuel-cell-Citaroeitherdirectlyorindirectly.Aninverterconvertsthedirect currentsuppliedfromthefuelcellstacksto3-phasealternatingcurrentsuitableforthe

23 electricmotor.Theelectricmotorgivespowertotheautomaticcentralgearboxandair conditioning compressor. The electric motor also provides power to the transmission andtransmissionretarderwhichcreatesadditionalbrakingpowerforthevehicle.Stan- dardauxiliaries,suchasabrakecompressor,powersteeringpumpandahydraulicfuel cellradiatorfanpumparedrivenbythegearboxthroughdrivebelts.Additionally,a24- volt electric system in the fuel-cell-Citaro provides power to various auxiliaries. [24] [41] Furthermore, the gearbox runs a supercharger that produces pressurised air which is directedtothefuelcellstacks.Thepressurisedairpassesthestacksandisfunnelledtoa turbochargerasexhaustgas.Theturbochargerconservesenergyfromtheexhaustpro- vidingmorecompression.Aninter-coolercoolsdowntheairtoenablehighercompres- sionefficiency,ascoolerairfitstoamorecompactspace.Theinter-coolerfiltersout contaminantsoftheairaswell.Thenoiselevelofthefuelcellairsystemisdiminished bymufflersontheairintakeandexhaustsystems.[41] Theoperationoffuelcellsproducesexcessheatthatmustbedisposedoftomaintain suitableoperatingconditions.TheMercedes-Benzfuel-cell-Citaroincorporatesspecific coolingcircuitswithliquidcoolant.Forthefuelcellstackcoolingcircuit,thecoolant flowandinlettemperaturearemeasuredcontinuouslywhileextraheatfromthecoolant istransferredintotheatmosphere.Thecoolingeffectisachievedthroughhydraulicfuel cell radiator fans and a specific heat exchanger.Cooling circuits involve the heatex- changers of the drive train, the cabin loop and thetransmission retarder.The electric motorcoolingoilandelectricinverterarealsocooleddownthroughthesecircuits.For thecabin,coolingcircuitsprovideheating.Tohaveproperheatingfortheinteriors,the Mercedes-Benzfuel-cell-Citaroalsoprovidesaseparateheatinginterfaceof40kW.The systemiscapableofproducingheatonlywhenthefuelcellengineisactive.[41] Quick-startingthefuelcellengineintheMercedes-Benzfuel-cell-Citaroisonlypossi- blewhenthetemperatureoftheengineisabove+5°C.Whentheoutsidetemperature falls below that given value, an electrical block heater equipped with a thermostat warmsupthefuelcellstacks.Fuelcellstackinsulationprolongsthecoolingtimeand thusimprovestheoverallefficiencyofmaintainingapropertemperatureintheengine. [41] PEMfuelcellsaresensitivetoseveralsubstances.Fuelcellmaybecomecontaminated byfuelimpurities,airpollutantsandcationicionsresultingfromcorrosionofthefuel cellsystemcomponents.Particularly,low-temperaturefuelcellsencounterthisproblem. Incaseofcontamination,theperformancelevelofafuelcellsystemcandrasticallyde- crease.Asinglefuelcellcanloseafewpercentofitsaveragevoltagelevelbecauseof

NO Ximpuritieswhenoperatinginadirtycityenvironment.Underextremeconditions,

24 someimpuritiescouldevencausepowerfailures.Duetocontaminationandtheaccu- mulatedcondensatewaterwhichoccurredduringtheoperation,thefuelcellhydrogen system is typically cleaned with specific equipment. In the Mercedes-Benz fuel-cell- Citaro, contaminated hydrogen gas along with water vapour is discharged through a diffuser into the atmosphere. The discharging occurs on start-ups and shutdowns, as wellascyclicallyduringdriving.Toprovidesafeoperation,thecontaminatedhydrogen ismixedwithanextensiveamountofairbeforeventilation.[41][42] Hydrogen has the widest range of flammable concentrations in air among all typical gaseousfuels.Thus,hydrogencaneasilyigniteifusedagainstsafetyregulations.Tobe moreprecise,theautoignitiontemperatureofhydrogenislow,anditcanignitefroma sparkorheating.Hydrogenisanodourless,colourlessandtastelessgasthatnecessitates leakdetectorsinbusesforsafeoperation.Aleakinthehydrogensystemcouldposea threattothosearoundinanopenairfuellingstation,aswellasinenclosedspaces.Hy- drogenalsocausesmetalembrittlementinpipes,gasketsandweldswhencontinuously exposedtothegas.[43] The fuel-cell-Citaro has nine high-pressure cylinders for storage of hydrogen. These cylindershold40kgofhydrogenfuelat350barsatatemperatureof15°C.Thelight- weightcompositestoragecylindersarelocatedontheroofofthevehicle.Thecylinder manufacturer guarantees the functionality of its product under the harshest environ- mental circumstances confronted in automotive usage. The fuel-cell-Citaro hydrogen storagesystemenablesfastfilling.[41] 30 Mercedes-Benz fuel-cell-Citaros were delivered by EvoBus GmbH in 2003 [44]. ThreeofthesebecameapartoftheprojectECTOSasdescribedearlier.Becausethese busesutilisefuelcellsinpropulsion,theyholdsomedistinctvehiclecharacteristics.The seriesEvoBusdesignfeaturesastandingplatformfortheengineandtransmissioninthe leftreararea.Asthebusweighsthreetonsmorethanadieselbus,thebodyworkisre- inforcedparticularlyfromtheroofareawherecertainpartsofthefuelcelldrivetrain andcoolingsystemfansaresituated.Thus,themostvisiblechangeincomparisontoa correspondingdieselvehicleistheincreaseofheightofthebus.Theoverallheightof thefuel-cell-Citaroisapproximately3,700mm.Thesuspensionofthefuel-cell-Citarois adjustedtoefficientlycarrytheextraweight.[41]

3.5 Newtechnology–Mercedes-BenzCitaroFuelCELL

The up-to-date Mercedes-Benz Citaro FuelCELL-hybrid buses (2010) deploy novel technologiestoimprovetheefficiencyandcompetitivenessofthefuelcellsystem.In additiontothefuelcells,thebusalsodeploysa330-kgbatterypack.Thewater-cooled

25 lithium-ionbatterypackoperatesasanintermediatestoragefortheenergygeneratedby thefuelcellstacks.Thebatterypackoperatesmaintenance-freeandoffers250kWof power,aswellasthepossibilityofrecuperatingbrakingenergy.Forsmooth,efficient operation, the bus model utilises energy stored in batteries while accelerating and chargesthebatterieswhiledecelerating.Whendrivingataconstant,higherspeed,the Citaro FuelCELL-hybrid only utilises fuel cell stacks for energy generation; batteries sustaintheirchargelevel.[40][45] TheCitaroFuelCELL-hybridincorporatesafuelcellsystemcapableofsupplying120 kWofcontinuouspower,whileconsuming10–14litresofhydrogenper100km.A hydrogenstoragecapacityof35kgallowsthebustotravelaround250kminthefuel cell mode without refuelling. The buscontrol systemincorporatesaunitforancillary functionsthatissuppliedthroughthebatterypack.Anintermediateelectriccircuitfeeds twowheelhubdrivesonthedriveshaftwithavoltageof650VDC.Thesewheelhub tractionmotors,similartothoseoftrolleybuses,createapowerof160kWintotal.The peakpowerreachesupto120kWpermotorfor15–20seconds.Theapproximateser- vicelifeforthefuelcellsystemaccordingtoMercedes-Benzissixyearsor12,000ser- vicehours.[40][45] ThenewMercedes-BenzCitaroFuelCELL-hybridprovidesthelow-floorfeaturewitha floorheightof370mm.Theboardingheightforthreedifferentdoorsisalittlelessthan theactualfloorheight.Thebusmodelhascapacityfor76passengers,26ofwhichcan travelusingaseat.Theheightofthebusis3,400mm.Thisisabout300mmlowerthan the height of the earlier fuel-cell-Citaro (2003). The length of the bus has remained about12metres.[45]

3.6 Hydrogeninfrastructurebasics

Thefuelcelltechnologyinautomotiveusageinvolvesaninfrastructureforproducing, storing,aswellastransportinganddispendinghydrogen.Thefirststep,toproducehy- drogen, incorporates several possible methods: and biomass gasification, natural gas reformation, water splitting by high-temperature, as well as water and photo- electrolysisandbiologicalprocesses[18].Afterproduction,hydrogenmustbestoredin aspecificmannerbeforetransportingittoaplacefordistributionorenduse.Adispens- ingsystemservicestheend-useratahydrogenfuellingstationwhichfunctionsbasically thesamewayascommongasolineordieselfuellingstations. Storinghydrogencanbeimplementedinseveralways.Liquidstateandhighpressure storages,aswellasastorageutilisingmetalhydridesarethepossiblemethods.Storing hydrogeninliquidstaterequiresanextremelyexpensivecryogenicstoragewhichneces-

26 sitatesastoragetemperaturethatisbelowhydrogen’sboilingpoint–i.e.,approximately –253°C[46].Theliquidstatehydrogenstoragemakesitpossibletostorehydrogenina smallerspacethananyothermethodofstorage.[43] The second storage method isbased on bondinghydrogen molecules with metal hy- drides.Toextracthydrogenfromthecompoundrequiresheat.Thecompoundcanonly bestoredinsmallquantitiesandholdsslowintakeandouttakekineticproperties,which isaclearprobleminautomotiveusage.[43] Itisalsopossibletostorehydrogeninhighpressuretanks.Thismethodhasbeenwidely usedinfuelcellbusprojectsdescribedearlier.Thetypicalpressureusedvariesaround 340–690bars.Highpressuretankshaveacoupleofsuperiorcharacteristicswhichdis- tinguishthemfromotherstoragemethods.Ahighpressuresystemcanbechargedand dischargedquickly;thechargetimedependssolelyonthecompressor.Thisparticular methodofstoringhydrogenisalsolessexpensivetoimplementinsmall-scalerefuelling sitesthanthepreviousones.[43] Therearetwomaincategoriesinhydrogentransport.Hydrogeninagaseousformhas beentransportedviapipelinesformorethan50years.SomecountriesinEuropeanda fewstatesintheUnitedStateshavepipelinesforindustrialusage.Thedifferencebe- tweenhydrogenpipelineandanaturalgaspipelineexistsinthematerialchoice.Pipe- lines for hydrogen transport are made of non-porous materials (e.g., stainless steel), whereasnaturalgaspipelinesofteninvolveplasticmaterialsthatareporousforhydro- gen.Replacingoldpipelinesorconstructinganewpipelinenetworkwithtransportand distributionbrancheswouldincursignificantcosts.Buildingapipelineforhydrogenis estimatedtoincurroughlysixtimeshigherexpensesthananaturalgaspipeline,mainly becauseofthelowerenergydensityofhydrogen.[18] Hydrogencanalsobetransportedbytruckorshipinaliquidform.However,theexpen- sivenessofthehydrogenliquefactionprocessrestrainsthetransportofliquidhydrogen. Nevertheless,ithasbeenestimatedthattheliquefactioncostswillreducesignificantly by2030.[18] Dispendinghydrogentotransitorsingle-occupancyvehiclesispossibleatahydrogen refuellingstationwithspecificequipmentsimilartogasolineordieseldispendingsys- tems. Stations typically offer gaseous or liquid hydrogen. The hydrogen is produced eitheron-siteorreceivedfromcentralisedplants.[18] It is important to ensure the safety of the refuelling station and control the hydrogen flow.Thedispendingsystemincludesaleakdetectionsystemandaflowmeter.Because ofthewideflammabilityrangeofhydrogen,itisnecessarythattheleakdetectordetects

27 hydrogenconcentrationlevelsinairdowntoonepercent.Safetyregulationsconcerning therefuellingstationsrelatetothegeneraldesignandequipmentofthestation,aswell asbarrierwalls,weatherprotectionandon-sitehydrogenproduction.[43]

3.7 Costsrelatedtofuelcellbusesandthehydrogentech- nology

Fuelcellbusescanbeseenasarathernewlyinnovatedapplication,sothepricesbe- tweenmarketareasandsuppliersvaryalot.Thelackofproperseriesproductionhas keptvehiclecostshigheventhoughtherehasbeenatrendofreducingprices.Compar- ingtoadieselbus,thevehiclebodyofanFCVrequiresonlyafewsignificantchanges (i.e.,theincreaseinheightandreinforcementofthebusstructure),andthus,doesnot contributetohighercosts.Notableexpensesarisefromthefuelcellsystem,aswellas hydrogenproduction,distributionandstorage. Fuelcellbuseswillmostprobablybethetrend-setterforfuelcellusageintheautomo- tiveindustry.Ingeneral,busesofferagreatplatformforprovingwhethertechnicalsolu- tionsarefunctionalsincetheyareoftenoperatedlongdistancesinafrequentmanner.It isestimatedthatthecostofafuel-cell-CitaroprototypebusintheCUTEprogramme wasaroundEUR1.3million.Thedieselversionofthebuscostapproximatelyonemil- lionEurosless.FortheSTEPprojectinPerth,Australiadeployedfuelcellbusespriced aroundAUD2.0millionin2006,thatequals–consideringtheexchangeratesofMarch 2006–approximatelyEUR1.2million[47].Dieselbuses inPerthcostaroundAUD 360,000( ≈EUR218,000)[47],whichalongwiththepriceinformationfromtheCUTE projectimpliesthatthepriceofafuelcellbushastypicallybeenfivefoldthelevelofthe dieselalternative.[48][49] Regardlessofthesubstantiallyhigherpriceoffuelcellbuses,theoverallpricesforfuel cell buses have decreased in recent years.In2007, ConnecticutTransit in theUnited Statesacquiredafuelcellbus(manufacturedbyVanHool)thatwas25percentlessex- pensivethanacomparablebusdeliveredtoACTransitnotmorethantwoyearsbefore. PricesforbuseshavetypicallybeenhigherinNorthAmericathaninEurope.Anesti- matedpriceforafuelcellbusin2005rangedfromUSD1to3million( ≈EUR805– 2,410)[47][50].Fuelcellbuspricesalteredalotsincetheywerehand-builtprototypes utilisingpre-commercial,obviouslyexpensivetechnology.[33][51] Fuel cell buses in various demonstrations have been prototypes. This reflects in the maintenancefacilitiesandfuellingstationsspecificallyengineeredforfuelcellbusus- age.Californiantransitagencies(i.e.,ACTransit,VTAandSunLine)hadtheirmainte- nancefacilitiesbuiltbetween2000and2006.Facilitieswerebuilttoservicethevarying

28 needs of the fuel cell buses involved. SunLine maintenance facility for two fuel cell busesisaventilatedtentbuiltrightbehindtheoriginalmaintenancebuildingin2000. Sensorsandasoundalarmforhydrogenleakswereusedforsafetypurposes.Thislight constructionincurredexpensesofUSD50,000.On-sitegeneratedhydrogenbyanatural gasreformerattheSunLinefuellingstationisprovidedatapproximately340bars.The storageonthesitecanhold180kgofhydrogen.Thereformerpurchaseandinstallation cost initially USD 750,000. A six-year maintenance agreement was made for USD 300,000in2006.[14] VTA maintenance built a larger facility with a fuelling station and a bus wash. The overallcostsrosetoUSD4.4million.Thefacilityisafree-standingbuildingwithtwo maintenancebays,storageandworkingspace.Thebuildinghasequipmentforhydrogen andflamedetection,aswellasasufficientventilationsystemandantistaticcoatingon doors.TheseparateinitialcostforthefuellingstationatVTAwasaroundUSD480,000 afterwhichtheagencyhaspaidthestationownercontractuallyUSD4,400permonth forthemaintenanceofthefuellingstationequipment.Thestationfeaturesa34,000-litre cryogenic liquid hydrogen tank and a possibility of dispending gaseous hydrogen at around410bars.[14] ACTransit’sapproachwasslightlydifferentfromtheimplementationsofSunLineand VTA.Themaintenancefacilityforfuelcellbusesatthetransitoperator’spremiseswas implementedinsideanexistingmaintenancebuilding,separatedwithafirewall.Other safety equipment incorporated easily opening doors; ignition-free heating; grounded, antistaticfloors;andhydrogendetection,aswellasothersensors.Asasafetyrule,fuel cellbusesenteringthemaintenancefacilityarenotallowedtocarrygaseoushydrogenat morethan40bars.Modificationcoststotheoriginalmaintenancefacilitytotalledabout USD1.5million.ThefuellingstationatACTransitincludesstoragefor366kgofgase- oushydrogenwithtwodispensers.[14] ThemainoptionforstoringhydrogeninFCVsistousehighpressuretanks.Thetech- nologyforstoringgaseoushydrogenisinamaturestate.Theproductionofcarbonfi- breshasexistedforalongtimeanditspriceisnotlikelytobeloweredsignificantly. Series productionof FCVscould reducethecostof hydrogen high pressure tanks to

USD 500 – 600/kg H 2. Considering the fuel storage capacity of the Van Hool A330 FCB(i.e.,50kgofhydrogenfuel),thetotalcostsformanufacturingandassemblingthe storagewouldthenapproximateUSD25,000–30,000.[18][14] Hydrogenproductioncostsdependontheproductionmethodandthescaleofproduc- tion.Twointerestingalternativestoproducehydrogenareelectrolysisandnaturalgas reformation.In2007,thecostofproducinghydrogenbyelectrolysiswastypicallyabove USD 3.6/kg, while the production cost of large-scale natural gas reformation varied

29 aroundUSD1.2–1.8/kg.Atsmallerreformationplants,thepricewasmoresimilarto thatofhydrogenproductionbyelectrolysis.Decentralisedsmall-scaleproductioncould haveexceededUSD6/kg.[52] Distributionofhydrogenincurslesssignificantcoststhantheproduction.Gaseoushy- drogen distributed through pipelines incorporated expenses of around USD 0.12 – 0.24/kg back in 2007. Transporting liquid hydrogen long distances by ship involved greater costs than transporting liquidnaturalgas because of the cryogenic technology andlossesrelatedtoit.Refuellingstationstogetherwiththetransportanddistributionof hydrogen increased the overall infrastructure costs of hydrogen by some USD 0.6 – 1.44/kg.[52]

3.8 Environmentalissues

Fuelcellbusesgenerateexhaustsverylimitedly.Sincewaterandheataretheonlyby- productsgeneratedduringtheoperationofafuelcell,therubbertyredustalongwitha slightamountofNO Xemissionsfrompossibleon-boardnaturalgasreformationarethe onlydetrimentalstreet-levelemissionsgeneratedbyafuelcellbus.Theproductionof hydrogengeneratesnon-localemissions,andthus,extensivelyassessesthegrosslevel ofoverallorwell-to-wheelemissionsoccurredfromtheuseofhydrogenfuelcelltech- nology.Fuelcellbusescanpromotethedevelopmentofahealthyenvironmentbyim- provedfueleconomy,reducedexhausts,aswellasadvancedpedestrianandpassenger comfortlevels(i.e.,cleanercitysurroundings,reducednoiseandvibration).[48][53] Fuelcellbusesoftenfeaturehigherfueleconomiesthandieselbuses.Thus,FCBspro- videgreatervehiclemileageandsaveenergy.However,thefuelcellbusesinthedem- onstrationprojects–e.g.,ECTOSandCUTE–weigheduptothreetonsmoreandcon- sumedmoreequivalentfuelincomparisontonormaldieselbuses.Theextraweighton thebusesmainlyoccurredfromthefuelcelldrivetrainandairconditioningsystem[38]. Despitethelowerfueleconomy,theaveragepowertrainefficiencyofthefuelcellbuses varied around 34 – 37 percent which beats the efficiency of fuel input to power the gearboxofanormalICE.TheobjectivefortheECTOSandCUTEprojects,however, wasnottostriveforoptimalfueleconomy.[24] Somedemonstrationprojectshaveshownthatthefueleconomyoffuelcellbusescanbe significantlybetterthanthatofdieselbuses.Figure9representsthefueleconomiesat- tainedintheaforementioneddemonstrationsintheUnitedStates.Thebestfuelecon- omy was attained at SunLine where the baseline buseswerepowered bycompressed natural gas (CNG). VTA fuel cell buses, on the contrary, presented fuel economies about12percentlowerthandieselbusesonthesite.Thedeterioratedfueleconomyof

30 thefuelcellbusesatVTAresultedpartlyfromtheabsenceofbothhybridtechnology and braking power recuperation.These technical advancements could easily haveim- provedthefueleconomy.[14]

Figure9:Fueleconomiesforfuelcellandbaselinebusesinthedemonstration programmeintheUnitedStates(dieselgallonequivalent,DGE) [14]

Whilehydrogenfuelcellbusescanpositivelycontributetothefueleconomyofpublic transport, and therefore, promote sustainability, hydrogen production alone sets envi- ronmental challenges. Hydrogen production generates emissions in notable amounts. Table2presentscarbondioxideemissionsgeneratedbyalternativehydrogenproduction methods.Thezeroemissioncaseonlybecomespossiblewhentheelectricityneededin theelectrolysisprocessisproducedwithrenewableenergysources,whichwouldelimi- natecarbondioxideemissions.[43] Table2:Carbondioxideemissionsforvarioushydrogenproductionmethods [43]

ProductionMethod kgCO 2/kgH 2 CoalGasification 19 NaturalGasReformation 17.6 Electrolysis–Non-RenewablePowerSource 12 Electrolysis–RenewablePowerSource 0

31 A kilogramme of hydrogen contains approximately 120 MJ of energy, while a kilo- grammeofUSconventionaldieselholdscirca43MJ[54].Whiledieselweighsroughly

0.85 kg per litre and causes CO 2 emissionsofcirca8.2kgperaUSgallon[43],the amount of CO 2 emitted per a kilogramme of diesel equals 2.5 kg. These figures are basedoncompletecombustionofoctane-richdieselfuel.Accommodatingtheinforma- tioninTable2andthelatterassumptionaboutdiesel-relatedemissions,theproduction ofhydrogenseemstogeneratesignificantlymoreCO2emissionsthanadieselICEin active state,butit isnot to forget that the energycontentofhydrogenisnearlythree timeshigherthanthatofdieselfuel.Inotherwords,120MJofdieselburntinanICE wouldgenerateroughly7.0kgofCO 2.TheamountofemissionsforadieselICEthusis belowtheemissionsfromnearlyanykindofhydrogenproduction.However,hydrogen productionsitescansignificantlyreduceemissionsbyutilisingcarboncapturemethods. NomeansofcarboncapturearerecognisedinthecalculationsofTable2.[43]

32 4Battery-electricvehicles–buses

4.1 Historyandstatusofelectricvehicles

The first electric vehicle (EV) was introduced in 1834. In 1890s, various producers manufacturedEVsinAmerica,BritainandFrance.Duetolimitationsandrestrictionsof batteries,theearlierEVshavedisappearedfromtheautomotivemarketssince1930.In thebeginningofthe20 th century,theactiveandgrowingdeploymentofICEsstrongly diminished the use of EVs. However, there has been progress with electric vehicles sincethe1970sastheenergycrisissetthedevelopmentinmotion.Thedevelopmentof EVs was given an additional impetus some 20 years later by various energy policies particularlydriveninCalifornia,theUnitedStatestoreduceatmosphericpollution[55]. Lateron,mandatesforzeroemissionvehicleshaveincreasedthepopularityofEVs.In London,therewerearound900newEVsinusein2007.Currentlybattery-electricsys- temsare,however,mainlyusedforsmallvehiclesandshortdistances.[56] Atpresent,batteriesareoftenutilisedtoofferadditionalcapacityinbuses,asinHEVs whichutilisebatteriesasasecondaryequipmentformoreefficient,lessfuelconsuming propulsion.However, more extensive use of batteries isinsight.Forinstance,trolley busescouldutilisebatteriesonperipheralpartsoftheirrouting.Thiswouldsaveagreat amount of costs typically incurred by the construction of an overhead wire network. SuchsolutionshavebeeninuseinSanFrancisco,VancouverandBeijing.Simultaneous utilisation of overhead wires and batteries can provide a beneficial solution to transit agencies,especially,whenvehiclesutilisingthosetechnologiessharethesamedriving corridors.Drivingthroughthesameexactplaceswouldenablecentralisedrechargingof vehiclebatteriesthroughtrolleypoles.[57] Itisnoteworthythatthereliabilityofatransportsystemisincreasedwhenutilisingsev- eralparallelpowersourcesorpropulsionsystems.However,alsopurebattery-electric vehicles (BEVs)maypossiblybecomeanefficient,economicalternativefortransport fleetsinthefuture.Withapropercharginginfrastructureoradvancedbattery-swapping stations, it could be possible to create transport systems solely dependent on batter- ies.[57]

33 4.2 The most prominent battery technologies for electric vehicles–Li-ion

Nearlyallofthebatteriesusedinelectriccarsonthemarketarebasedonsomesortof lithium-ion (Li-ion) technology. Lithium, compared with any otherchemical element, holdstheloweststandardredoxpotential,andthus,isthestrongestreductant.Therefore, lithiumoffersthepotentialtobethebestmaterialforbatteriesregardingtheenergyden- sity (Wh/kg). Li-ion batteries are rechargeable,efficient, aswell as reliable. Theyare suitableforbothhigh-energyandlow-energyapplications.Concerningelectricvehicles’ propulsion power management, the automotive industry will naturally focus on high- energysolutions.[16][58] The family of Li-ion batteries comprises battery characteristics that employ various chemicalcombinationsofanodeandcathodematerials.Eachcombinationhasitsadvan- tagesintermsofenergydensityandpowerdensity(W/kg),batterylifetime,safety,costs etc.Theenergyandpowercharacteristicsexcludeeachothertosomeextentsincein- creasingtheenergydensitytypicallydecreasesthepowerdensityofabatterypack.In other words, the larger the reactive area inside the battery the thinner thewirings for powertransfer.[16][59] AlltheLi-iontechnologiesrequirepropermonitoring,balancingandcoolingsystemsin order to manage thechemical energyrelease, thermalstabilityandthelifetimeofthe batterycells.Thecurrentlymostprevalenttechnologyusedinconsumerapplicationsis lithium-cobalt oxide (LCO) which, however, incorporates some fundamental safety problems.Onthecontrary,variouspromisingtechnologies–i.e.,lithium-nickel-cobalt- aluminium(NCA),lithium-nickel-manganese-cobalt(NMC),lithium-manganesespinel

(LMO), lithium titanate (LTO) and lithium iron phosphate (LiFePO 4 or LFP) – are showingtheirpotentialtotheautomotiveindustry.[59] Novelelectricvehiclesneedareliablepowersourcewithhighenergydensityandlong workinglife.Oneofthemostpromisingtechnologiesforfutureautomotiveapplications is lithium iron phosphate technology. LFP technology enables manufacturing of rela- tivelylightweightbatteriesthatwithstandhighambienttemperaturesupto60°C.LFP cellchemistryoffershighreliabilityandsafetylevels–i.e.,anLFPbatterywillnotex- plode or catch fire. Various vehiclebatterymanufacturersarefavouringLFPtechnol- ogy,andthus,itisreasonabletodiscusstheadvantagesanddisadvantagesofthetech- nologymoreindetail.[60][61] LFP batteries are among the most highly developed battery technologies at present. Theyavoidthevariousshortcomingsofothertechnologies.Batteriesdonotsufferfrom anymemoryeffectandtheycanberechargedatanytime.Thepossibilityofrapidre-

34 chargingofLFPbatteriessupportstheiruseinvehicles.LFPbatteriesattainahighdis- chargeratewithnovoltagesag(i.e.,flatdischargerate).Additionally,theself-discharge levelofonecelltypicallystaysunderonepercentpermonth.LFPbatteriescanbeleft standinginstorageevenpartiallydischarged.[61] LFPbatteriesaremaintenance-freeforthelifetimeofthebatterypack,whichenables easyelectricvehiclemaintenance.Inaddition,thesolidconstructionofLFPbatterycells preventsdamageoccurringfromthevibrationofthevehicle.Containingnotoxicheavy metals,corrosiveacidsoralkaline,theLFPbatterychemistryisthemostenvironmen- tallyfriendlyoptionavailable.[61] LFPbatteriescanrealisticallyprovideanenergydensityof140Wh/kg,thecyclicallife- timeofbatteriesbeingaround2,000–3,000chargesat80percentdepthofdischarge [61][62].AfterthelifespanoftheLFPbattery,theactivematerialsinsidethebattery canberemovedandrecycledinasafe,environmentallyfriendlymanner.Lithiumiron phosphatecanbetreatedwithlowtemperaturemethodstorecoverthepotentialforbat- teryusage.ThetreatedLFPactssimilarlytotheprimarymaterial.Consequently,LFPis adurablematerialwhichcanberecycledandreused.[63] Nonetheless,LFPtechnologyisnottheonlysuitableLi-iontechnologyforautomotive usage.Forinstance,vehiclemanufacturersmighteasilyendupfavouringlithiumtitan- atetechnologyinthefuture.Usingtitaniuminsteadofgraphiteonthecathodesideof thebatterycell–contrarytotheLFPtechnology–lengthensthecyclicallifetimeand improvesthepowerdensityofthecell.Despitethedecreaseinenergydensity,titanium offersgreatbatterycelldurability.Properlydeveloped,LTObatteriescouldpossiblygo through 25,000 recharge cycles without significant degradation of battery cells. [16] [64]

4.3 Batterymanufacturers

Variouscompaniesworldwidemanufacturehigh-capacity,high-powerLi-ionbatteries. Thenextparagraphswillbrieflyintroducesomeofthosemanufacturerstogiveaview oftheLi-ionbatterymarketbase.Oneoftheinternationalbatterymanufacturersisthe ChineseThunderSky.Thecompanyhas,initsownwords,createdsomemomentum amongelectricbusproductioninChinaandTaiwan.ThunderSky,doingcooperation withaChineseFirstAutomobileWorks,hasashort-termgoalofmanufacturing25,000 electricbusesannually.BuseswouldbeusedinChinesemetropolises.[65] On 14 th April 2010, the Mitsubishi Motors Corporation released news about Lithium EnergyJapan(LEJ)constructinganewplanttoRitto,Japantobeginfullmassproduc-

35 tionofLi-ionbatteriesin2012.LEJhasannouncedthatitaimsforannualbatterypro- ductionenoughtocover100,000smallEVs.[66] ANorthAmerican-basedcompany,AltairNanotechnologiesInc.manufacturesbatteries basedonaproprietary,nano-structuredlithiumtitanate.Currently,theyguaranteeover 12,000chargecycles(i.e.,alifetimeofaround15years)tobereachedwiththeirprod- ucts.Withintheautomotiveindustry,thecompanychannelsitsinterestintoHEVs.[67] A123Systemsisanothercompanymanufacturinghigh-powerLi-ionbatteriesfortrans- port. The company, founded in the United States (2001), has patented a Nanophos- phate TM technologythatutilisesnanoscalematerials.A123Systemshasdevelopeda20 AhPrismaticbatterycellthatshouldofferverylowcostwatt-hoursforbattery-electric transportapplications.[68] InFrance,ajointventureJohnsonControls-SaftAdvancedPowerSolutionslaunchedin 2006isconcentratingonhigh-technickel-metalhydride(Ni-MH)andLi-ionbatteries forhybridelectricandelectricvehicles.InJanuary2008,anewmanufacturingfacility wasopenedforLi-ionbatteriesinNersac,France.Thejointventurehasalreadyentered intoacontractwithafewinternationalcarmanufacturers.[69] Bosch and Samsung established an equally owned joint company, SB LiMotive, in 2008.Thecompanyhasanambitioustargetfordeveloping,manufacturingandselling Li-ionbatteriesforautomotiveapplications.Batterycellproductionwillstartin2011. TheamountofinvestmentcostsincurredwillriseuptoUSD500millionoverthefirst five-yearperiod.[70] In Finland, European Batteries Ltd. is starting LFP battery manufacturing in a newly constructed facility. Starting in the first half of2010,theoperationshouldexpandto enable production of 300MWh of battery capacity by 2012. European Batteries will manufacturebothbatterycellsandbatterycontrolsystemsinthesamefacility,which enables convenient circumstances for pre-testing and therefore reliable battery opera- tion.[60]

4.4 Battery-electricbusimplementations

Thedevelopmentofbattery-electricbuses(BEBs)hasbeenratherslowdespitetheex- tensiveresearchanddevelopmenteffortsthathavebeendevotedtoimprovingvarious batterytechnologies.Todate,BEBshavemainlybeenusedforslowspeedsandshort distances – e.g., a shuttle service. Duringthe 1990s, commercial batterytechnologies werenotyetabletomakeabreakthroughtobeanaturalchoiceforbusmanufacturers. Theylackedsomepowerandofferedapoorrangeofoperation.Now,followingthelat-

36 estprogresseswithLi-ionbatterytechnologies,batteriesprovideapossiblybeneficial, reasonablealternativetootherpowersources.[50] Battery-electricbusesobtainthepowerfortheirmovementfromsimilarelectrictraction motors to fuel cellbuses and trolley buses. Lessnoisy,moreefficientelectricmotors providetheirmaximumtorquealreadyatlowerspeeds,whichresultsinextremelyap- plicableaccelerationratesforgenerallydiscontinuousbustraffic.Regenerationofbrak- ingenergyandacomplexelectricdrivecontrolsystemaretypicallyincludedinBEBsas well.[50] BEBsaretypicallyeitherrechargedortheirbatteriesareswappedtootheronesatabat- tery-swappingstation.Thetimeofrechargingvariesdependingonthebatterycapacity and the output of the charger. Chargingcan be implementedat various power levels, dependingontheinfrastructure,vehicletype,chargingtime,etc.Forconvenientopera- tion,bustransitagenciescouldutiliseafast-chargingstationorabattery-swappingsta- tionattheendoforinthecrossingsofbuslines.[50] Earlier,duetotheexcessweightandlimitedrangecausedbythebatteries,themajority of BEBs in service were small-sized. For instance, until 2005, nearly all the North AmericanBEBprojectsutilisedunder7-meterelectric.Utilisedbatterytech- nologies generally involved no Li-ion battery technology. The largest fleets could be foundinSantaBarbara,CaliforniaandChattanooga,Tennessee.[50] Oneof the fewmain suppliersofelectricbusestoNorthAmericanprojectshasbeen Ebus.Thefast-chargingcapablebattery-electricbusofEbuscostUSD298,000( ≈EUR 204,000)in2008,thechargerpricebeingUSD58,000( ≈EUR39,600)[47].Thissmall- size bus offers room for 22 sitting passengers and 10 standing passengers, and thus, cannotcompeteinspacewithanaveragebus.Thebasicbatterysystemofthebuscon- sistsoflowmaintenancenickelcadmium(NiCd)batteriesthatprovideroughly70km ofoperationbetweencharges.ThelifetimeexpectancyoftheEbusBEBbatteriesissaid tobeupto2,000cyclesonthecompanywebsite.[71] InAugust2010,LinkTransit,thepublictransportproviderservingtwoseparatecoun- tiesincentralWashingtonState,letknowaboutitsacquisitionoffiveEbuselectrictrol- leybusesequippedwithlithiumtitanatebatteries.Alsotwofast-chargingstationswould be involved in the acquisition. Batteries would serve a range of a little less than 20 kilometreswithatleastafive-yearcyclelife.Chargingthebatteriesto80–90percent ofthefullcapacitywouldonlytakefromfivetosevenminutes.[72] A cooperative demonstration programme for a Zinc-Air battery bus was initiated in 1998inLas Vegas, Nevadafrom the initiativeofvariouspartners,oneofwhichwas

37 FTA. The patented Zinc-Air battery technology was implemented on a full-size bus frame.Thebusrepresentedoneoftheveryfirstfull-size,full-electricbusesdrivenon publicroads worldwide. In the Zinc-Air battery system, powerwasproducedthrough oxidationofzinc.Intheprogramme,theZinc-Airbatterypacksupplied99kWofpower and312kWhofenergy.Formorepowerfultraction,thebushadonesmallerNiCdbat- terypackthatoffered125kWofpower.TheZinc-Airbatterysystemtypicallyrequired mechanicalremovalandreplacementofspentbatterypacks.[73] IntheEuropeanmarkets,electricbuseshaveexistedalreadyformorethan20years.In Italy,forexample,smallBEBshavebeenusedsince1989.Tecnobus,anItalian manufacturer,isseeminglythemainproviderofsmallelectricbusesinEurope.Italy’s transport fleets alone account for over370 electric minibuses delivered by Tecnobus. ThebasicmodeloftheminibusisshowninFigure10.OtherEuropeancountriesim- plementing electric buses from the same company include France, Norway, Portugal, Spain and the United Kingdom. In Rome, Italy, electric minibuses total around 1,500,000 vehicle-kilometres per year carrying 27 passengers at maximum. The re- chargeablebatteriesoftheTecnobusbusesarebasedonlead-acidtechnologyenablinga rangeof45km.[74][75]

Figure10:ElectricGulliver(Tecnobus)-basicmodel [75]

Regardless of the slow development within the electric bus industry, BEBs have re- centlyattractedmoreattention,andespecially,morefull-lengthelectricandhybridelec- tricbuseshaveenteredthemarket.Forinstance,thecityofXinxianginHenanprovince, Chinawelcomedan11.6-meterelectricbuslaunchedbyYutonginFebruary2010[76]. InFebruary2008,Proterra,aninnovatorandmanufacturerofcommercialtransitsolu- tions,commencedacleanbustourinCalifornia.Proterraintroducedafast-chargebat- tery-electricbusEcoRideBE35thatwouldcreatesavingsofUSD310,000perbusin

38 totallifetimefuelexpenses.WhileofferingacleanridetoCalifornians,Proterra’sbus involvesabatterypackthatcanbefullyrechargedinlessthan10minutes.TheEcoRide BE35 results in up to fourfold fuel economy levels compared with an average urban dieselbus.Thebuscanberuninpurebattery-electricmodearound45kmorwithany smallAPUthroughaconvenientvehiclecontrolsystem.Aregenerativebrakingsystem andanup-to-datebatterymanagementsystemoptimisetheenergyefficiencyandsystem lifeinProterra’sBEB.[77][78] One of the latest introductions of Li-ion technology combined withanAPU isNew YorkCityTransit’sadditiontoitsbusfleet;threehybridelectricbusesdeployingDes- ignLine’sspinningturbinethatrechargesthebatteries.Thevehiclesarenotcountedas pure battery-electric buses but are still capable of running on pure battery energy for extended periods of time. The contract with Designline, a Charlotte, North Carolina- basedmanufacturer,includesa12-yearwarrantyforboththebatterypackandturbine. Thebusmeasuresaround10.7metresinlength,carryingupto37sittingand30stand- ingpassengers.ThecostperbusinDecember2009wasUSD559,000( ≈EUR383,000) [47].Thepilotprojectofthreebusesmayleadtoakick-offofabroaderuseofDes- ignLine’s buses. The city has planned to order 87 additional buses, if the bus type provestobesuccessful.DesignLineoperatesbusesinCharlotteandBaltimoreaswell. SanDiegoandLosAngelesjoinedthegroupin2010.BesidesoperatingintheUnited States,thecompanyrunsbusesinAustralia,Japan,NewZealandandtheUnitedKing- dom.[79][80] Adelaide,Australiahasadvancedinbussystemsthroughasolarpowerrechargingsta- tionandasolar-poweredelectricbus.Thispureelectricbuscarriesupto40passengers andreliessolelyonsolarpowerproduction.ItstoresenergyinSwiss-madeZebrabatter- iesutilisingsodium-nickelchloridetechnology.Thebusoffers200kilometresoftravel distancebetweenrechargesinacommoncityenvironment.[81] Variousexistingpropulsionsystemsutilisedinbusescommonlydeploysomekindofan APU.Thus,afull-size,purebattery-electricbusisnotacommonsightinpassengertraf- fic,thoughnotanexcludedoption.Forinstance,AstonbusInc.providesBEBsdepend- ingsolelyonbatteries.AccordingtotheAstonbuswebpage,their12-meter,19.5-tonne electricbusE-City12.0incorporatesanLFPbatterypackof360kWh.Thebatterypack witharatedpowerof100kWtakes6–8hourstorecharge.Thebusprovidesacapacity fortaking61passengersonboard.[82]

39 4.5 Plug-in hybrid electric vehicles – implementation in bustraffic

Plug-inhybridelectricvehicles(PHEV)alongwithHEVsformamiddlestageforpure BEBsintheautomotiveindustry.Batteriesprovidethesevehiclesmoreefficiencybut not all the energy needed for propulsion. PHEVs are a grid-connectable version of HEVs.Thepowergridisutilisedforrechargingthevehiclebatteries.PHEVscommonly carrymorebatterycapacitythanbasicHEVsbutnotnearlyasmuchastypicalBEVs operatingsolelyonbatteries.Theplug-infunctionalityofPHEVsenablesadvancedfuel economycomparedtoHEVs.[83] PHEVsusuallycarryanICEandanelectricmotor.Thesetwooperateeitherinparallel or in series. A parallel PHEV entails a direct connectionbetween theengineandthe wheels,aswellasbetweentheelectricmotorandthewheels,whereasaseriesPHEV onlyusesthetractionpowerprovidedbythebattery-poweredelectricmotor.Aseries PHEVsystemrunstheICEonlytorechargethebatteries.InaPHEV,batteriesarere- chargedfromtheelectricgrid,byregenerativebrakingorbytheICE.Figure11illus- trates the operation of series and parallel PHEVs. Compared with other electric-drive vehicles,onemajor advantage ofPHEVs isfuelflexibility.Theconsumptionratioof electric energy and liquid fuel can be addressed according to the needs of the user. PHEVscanberuninpureelectricmode,onlyonliquidfuel,orsimultaneouslyonboth. [84]

40 Figure11:Seriesvs.parallelPHEVdesign [84]

TheUnitedStatesDepartmentofEnergypartiallyfundedaHybridElectricSchoolBus (HESB)programmeafewyearsago.TheprogrammepromotedtheuseofPHEVbuses in school traffic. A feasibility study (Pritchard et al., 2005) of the HESB programme showedthatPHEVsareprofitableoverthelifetimeofthevehicleincomparisontocon- ventionaldieselbuses.ThemajorpracticalchallengesforPHEVsturnedouttobethe optimisationofbatterylifetimeandhighinitialvehiclecosts.[85]

4.6 Commonchallengesforvehiclebatterytechnologies

Afewessentialproblemsrestricttheuseandprevalenceofbattery-electricvehicles.The commercialviabilityofBEVswillbegreatlyinfluencedbythecostofvehiclebatteries. Atthemoment,costsaresohighthatevenifbatterymanufacturerscouldsolvethebasic technicalchallengesbatteriesconfront,thepricesofbatteriescouldstillexceedreason- ablelevels.[59] ThepricelevelofanautomotiveLi-ionbatterypackisestimatedtobearoundUSD1.0 – 1.2 per watt-hour (Boston Consulting Group, 2010) as sold to original equipment manufacturers (OEMs). Another source (Biomeri Oy) claims thatthe price ofawatt- hourofenergyproducedbyanLFPbatteryrangedfromEUR0.25to1.3in2009,de- pending on thequality and battery characteristics. Take a price ofEUR 1.0perwatt-

41 hour. The total cost of a typical 25-kWh battery pack deployed in small electric cars would equal EUR 25,000. Such a price level is extremely high and uncompetitive. However,pricereductionsareanticipatedinfuture.[16][59] Anothersubstantialquestiontoovercomeconcernsthebattery infrastructure:whether thebatterypackofavehiclewouldbereplacedwithanewlychargedbatterypackona battery-swappingstation,oron-boardrechargeablebatterieswouldbefixedtothevehi- cle.Thelatterwouldentaildetachingandreplacingthebatterypackafteritslifespan. Currentissueswithbatterychargingforbothpassengercarsandheavy-dutytransitvehi- clesmustbeaddressedtoattaincommercialprofitability. Vehiclebatteriesarestillafflictedbylongchargingtimes.Ittakesfrom10to12hours tochargeanaverage30-kWhcarbatteryusinganaverageone-phasedistributionnet- work power outlet (230 V). To charge the samebattery pack in lessthan30minutes wouldtakeaspecificchargerofover50kW.Ultra-fast-charginghasbeenplannedas well.A250-kWchargercouldrechargea30-kWhbatterypackinonly6minutes.[86] Despitethefactthatitwouldtakesuchalongtimetochargethebatterieswithatypical slow-chargingsolution,usingfixedbatterieswouldpossiblybeeasierandmoreconven- ientforprivatevehicleowners,asbattery-swappingwouldincorporateadditionalstan- dardisationrequirementsandlogisticalcomplexity.[59] Theproblemswithbatterycostsandchargingtimesaccumulateinheavy-dutyvehicles whose battery capacity is notably greater. Larger vehicles, such as transit buses, may requireanapproximatelytenfoldbatterycapacitycomparedtosmallerpassengercars. Thiswouldsignifybatterypricesandrechargingtimesofaroundtentimesgreaterthan whatispresentedabove.Chargingathome,workplace,carparks,curbside,aswellas shoppingcentresmayworkforsmallelectricvehicles,butfortransitbusfleetsandlar- ger vehicles, the charging infrastructure must be centralised and specifically planned taking into account decisive matters, such as vehicle routing. Buses typically operate longhourswithshortbreaksbetweenshifts.RechargingorswappingbatteriesofBEBs should happen quickly, without diminishing the vehicle’s availability. A well-placed battery-swapping station could provide large vehicles a reliable, practical alternative. Examplesofautomated,centralisedbattery-swappinginfrastructuresexist.PuroNovo,a Finnishcompanyspecialisedinindustrialautomation,isalreadymarketingitsbattery- swappingsystem[87].[86] Notonlyhavethecostissuesandcharging-relatedmattershinderedbattery-electricve- hicles’capabilitytostronglyentertheautomotivemarket.Itisextremelychallengingto engineerbatteriestofunctionproperlyinawiderangeoftemperatureswithoutaffecting thebatteryperformance.ThisisespeciallythecaseinFinland,wheretheweatherranges fromhotsummertofreezingwinter.OEMscouldpreferanapproachwherecountries

42 withcoldweatherconditionswouldbeprovidedwithbattery-electricvehiclesequipped with proper insulation and heating, whereas countrieswith hot climateswould be of- feredvehiclesrelyingonbatterytechnologybasedonelectrolytesandmaterialsallowing high temperature storage. Nonetheless, such an arrangement would prevent battery- electric vehicles to be moved across regions. Thus, OEMs arelikelyto favour a per- formancedisadvantageorhighersystemcoststoavoidmobilityrestrictions.[59]Con- trarytothethoughtsabouthighmobility,severalcountriesdeployelectricmobilityin vehiclefleetsdesignedtoserveacertainareainsideacityoraregion.Fortrafficar- rangements,where vehicles stay insideaparticular area,implementedvehiclemodels couldeasilybelocation-specificdesignsthatservebestintheprevailing,localcondi- tions.

4.7 Thebatteriesofanelectricvehicleasenergystorage

Whileusingelectricenergy,apurebattery-electricvehicles’emissionprofileissimilar totrolleybuses.Theenergyproducedatagenerationplantisconsumedbytheelectric motorsofthevehiclepracticallygeneratingnoexhausts.However,vehiclebatteriescan beconstructedtofeedenergyintothepowergrid.Thus,grid-connectableBEVsalong withPHEVscancontributetoelectricutilitiesandpowergridsbyprovidingadditional energystorage.Foranelectricutilityorpowergrid,deployingvehiclepowerwouldcon- tributeassystembenefits,suchasreliabilityandlowercosts.Vehiclebatterystorages couldalsofacilitatemorestraightforwardintegrationofintermittent,renewableenergy production–e.g.,windenergyandsolarenergy.Generally,batterystoragescanbeutil- isedinsmoothingvariablepowergeneration.[88].[89] Thedescribedwayofprovidingenergyisoftenreferredtoasvehicle-to-grid(V2G)ser- vice. During the peak demand of the day, typically around 6pm when highlevelsof power consumption are expected, batteries connected to the electricity networkcould serveaspeakreserves.V2Ginpeakpowermightbeeconomicbutstilldifficulttoar- rangeinpracticeduetoon-boardstoragelimitations.Secondly,vehiclebatteriescould offerpowertothegridasaspinningreserveincaseofunexpectedoutages.Aspinning reserveisthefastest,andthus,themostvaluablewayofprovidingadditionalpowerto the grid. V2G could offer ahighly competitivespinningreserve base sincethe direct costsincurredfromidlingbatteriesareinsignificant.Thirdly,thestoragecouldbeused tofine-tunethesuppliedfrequencyandvoltageinreal-timebymatchinggenerationto loaddemand–i.e.,regulation.Atnight-time,thevehiclebatteriescouldbechargedus- ingfreepowergenerationcapacity.[62][90] TheV2Gservicecouldreducepowergridinfrastructurecosts.Theuseofvehiclebat- terycapacitycouldpostponeacquisitionsoftransmissionlines,transformersandother

43 powersystemcomponents,aswellastheirupgrade.Additionally,usingbatteriesforthe purposesofpowerdistributionandelectricutilitiescouldresultinprotectionofend-user devicesthroughincreasedpowerquality.[62][88] Incontrasttoastable,fine-tunedcharginginfrastructure,uncontrolledchargingofelec- tricvehiclesintheFinnishpowergridcouldeasilynecessitateinfrastructurereinforce- ments. Especially, the low voltage distribution network would require new arrange- ments.Moreover,thetransmissionofelectricitycouldbecomemoreexpensive.Butif the electric vehicles’ charging infrastructure is adequately developed, transmission pricesofelectricitycouldevenbereduced.Inthecaseofintelligentcharginginfrastruc- tures,thepowerconsumptionofrechargeableelectricvehicleswouldnotcreatesignifi- cantneedforadditionalpowergeneration.Anintelligentchargingsystemcouldactually enablemoreenvironmentallyfriendlypowergenerationbydecreasingtheneedforother short-termpowerproductionfacilities–e.g.,agasturbineasaspinningreserve.[16] Althoughbatteriescanbefacilitatedinseveralwaystoservetheelectricgrid,theim- plementationofahighlydeveloped,controlledsystembetweenvehiclebatteriesandthe powergridisfarfromsimple.Fromarealisticpointofview,alargeamountofbatteries poseaclearissuetobeexaminedmorethoroughly.Chargingvariousvehiclebatteries wouldrequireasubstantialamountofpowerinputandadequatecapacity,especially,in electricitydistributionnetworks.Intelligentchargingsystemsmaybetheanswersome- whatlater,butthepresentsituationoffersmoreorlessundevelopedsolutionsforcharg- ing.Particularly,problemsareexpectedinthecontextofblocksofflatsoroffices.For instance,fusesandcablesmayhavetobereplacedinseveralbuildingswhereelectric vehiclesaregoingtobecharged.ThoughinFinland,severalhouseshaveheatingout- puts,whichmighthelpthecreationofelectricvehiclechargingpoints.Electrotechnical factorsshouldbediscussedandresearchedmoreindetailtoformasolidbaseforlarge- scaleelectricmobilityimplementationinFinland.

44 5Comparingtransitbustechnologies

5.1 Ingeneral

This study concentrates on vehicles capable of utilising electric energy as propulsion power. Various transit bus technologies have been discussed in Chapters 2, 3 and 4. Thissectionaimsatscrutinisingandsummarisingthemostrelevantdifferencesbetween thesetechnologies.Thepurposeistorevisetheidentifiablecharacteristicsofeachvehi- cle technology offering extra details and more compact information than in previous sections.Tounderstandtheprevailingdifferencesbetweenthetechnologies,thebasic figuresofanaveragedieselbusaretakenintocomparisonwhereneeded.Chapter5is partlyadaptabletoallsortsofvehicles,notonlybuses.

5.2 Comparisonofvehicletechnologies

Table3describesthetechnologicalcharacteristicsofhydrogenandbattery-electricvehi- cles,aswellastrolleybuses.Convenienceandusability,aswellastherestrictionsofthe technologiesareobservedthroughasimpleevaluation. Table3:Acomparisonbetweenelectricvehicletechnologies(vs.dieselvehi- cles) [3] [91]

Vehicletechnology Trolley bus (over- Fuel cell vehicle (hy- Battery-electric headlines) drogen) vehicle Energy conversion + -- + efficiency (no temporary stor- age; transformers and lines create losses) Volumetricstorage ++ + -- density

45 Technological o - - availability (several manufac- turers) Additional infra- -(?) -(?) -(?) structure (overhead lines; (storage;dispending) (recharging; bat- supportive struc- tery-swapping) tures) Range + o -- (depends on the infrastructure) Lifecycle + - -- (c stands for the • 16–20years • PureMotion® • realisticfor charge-discharge Model120:5,000 LFPs:2,000– cycleofaBEV) h 3,000 c • FCvelocity™- • Ebus:2,000 c HD6target:6,000 • Altair h Nanotech. • MBCitaroFuel- (HEVs): CELL:12,000h(~ 12,000 c(~15 6years) years) • HydrogenBus • targetforLTO Alliancetarget(by batteries: 2015):20,000h 25,000 c Costs - -- -- Workingasenergy Notpossible Notconsidered + storage (capable of sup- portingthegrid) Noiselevel +(+) +(+) ++ Exhausts ++ ++ ++ Carbonfootprint + -/(+) +

* (depends on the * *, (depends ontheH 2 * productionofelec- productionmethods) tricityandAPUs) Passengercomfort + + + --,Majordisadvantage;-,Disadvantage;o,Neutral;+,Advantage;++,Majoradvantage (+)adebatableplus;(?)unclear

46 5.2.1 Energyefficiency

The energy conversion efficiency of an electric vehicle, basically, describes the ratio betweentheenergyprovidedbythevehicle–usedforthevehiclepropulsionandauxil- iaryequipment–andtheenergyconsumed(i.e.,intheformoffuelorelectricity).Over- headlinesfortrolleybusesprovideoneofthemostefficientmeansofutilisingelectric energyaspropulsionpower.Trolleybusesdonotinvolveanytemporarystorageforthe usedenergy.TrolleybusefficienciesweremeasuredwithinaCanadianstudyin2007. ThestudyreviewedaNewFlyer-VosslohKiepetrolleybus,amodelproducedin2006 and utilised in a bus fleet at Edmonton Transit in Edmonton,Canada. The measured efficiencieswereevaluatedbasedonpowerconsumptionandcalculatedtractionpower. Tractionpowerwasproducedwithanaverageefficiencyof81percent.Consideringthe voltagelossesintransformersandlinestothetrolleybus,theaverageelectricalsupply efficiencyreached69percent.[92] Incontrasttotrolleybuses,fuelcellbusesandbattery-electricbusesfirstneedtostore theelectricenergyintoaspecificmediumbeforeutilisingitinvehiclepropulsion.The overall efficiency of a battery-electric vehicle – considering the losses of the electric drivetrainandvehiclebatteries–canreachuptoapproximately80percent[93]. In a study conducted by the IFEU (The Institute for Energy and Environmental Re- search)in2009,theround-tripefficiencies–thecharge-dischargecycle–ofLi-ionve- hicle batteries turned out to be around 82 – 85 percent [91]. Another study suggests round-tripefficienciesofapproximately70–90percentforanLMOLi-ionbatterypack depending on the age and duty cycle of the battery [94]. In the measurements of the EuropeanBatteriesLtd.,LFPbatterieshavepresentedhighefficienciesofupto96per- centwhenchargingwithhalfnominalcurrent[93]. Thewell-to-wheelefficienciesofdifferentvehiclepropulsiontypesdependonvarious factors.Theproductionanddistributionofvehiclefuelorelectricity,aswellastheve- hicleandrelatedequipmentassesstheefficiencycharacteristicsoftheenergypathway. AUnitedStates-basedcompany,EavesDevices,haspublishedareport(2003)discuss- ingtheefficienciesofFCVsandBEVs.Inthestudy,vehiclebatterieswerecompared withfuelcellsinordertofindthemosteconomicalvehicletechnology. Figure12 and Figure13 illustratethewell-to-wheelenergypathwaysofBEVsandFCVs,respectively. Itisnoteworthythatthestudyassumedthehydrogenproductiontobebasedonelec- trolysis. Moreover, theproduction of primary electricity isconsideredtobeproduced fromrenewableenergysources.Thewell-to-wheelefficiencyofaBEVutilisingLi-ion batteriescamecloseto77percent,whereasthewell-to-wheelefficiencyofanFCVap- proximated30percent.[95]

47 FortheBEV,EavesDevicesassumedachargerefficiencyof89percent,aLi-ionbattery round-tripefficiencyof94percentandanelectricdrivetrainefficiencyof89percent. Thefuelcellsystem–includingthestorage–wasassumedtohaveanefficiencyof54 percent.ThecommonPEMFCefficiencytypicallystaysunder60percent,asstatedin Chapter3.However,theefficienciespresentedin Figure12 andFigure13 canbeseen assuggestiveapproximations.[95]

Figure12:Well-to-wheelenergypathwayforBEV [95]

Figure13:Well-to-wheelenergypathwayforFCV [95]

Consideringthebrakingenergyrecuperation,batteriesprovidehigherefficienciesthan fuelcells.AccordingtotheIFEUstudy,theprocessofstoringregenerativebrakingen- ergybacktothevehiclebatteries,andthenreleasingitforpropulsionagain,canattain

48 an overall efficiency of approximately 70 percent. In comparison to the recuperation efficienciesofBEBs,hydrogengenerationandtransformationfromrecuperatedbraking energytoelectrictractionpoweronlyreachesanoverallefficiencyof20to25percentin FCVs.Inreality,however,fuelcellvehiclesofteninvolvesomesortofbatteriesforen- ergystorage,thusenablingbetterregenerationefficiencies.Introlleybuses,thebraking energy recuperation is typically either implemented with batteries or the recuperated energyisfedbackintothepowergrid.[91] Whilehydrogentechnologiesdonotreachashighefficienciesaswhatisofferedbybat- tery-electric vehicles and trolley buses, fuel cell buses still offer competitive tank-to- wheelefficienciescomparedtodieselbuses. Figure14 illustratesmeasureddifferences inefficienciesbetweenfuelcellbusesanddieselbuses.

Figure14:AcomparisonofPEMfuelcell(Ger.,PEM-BZ)anddieselICEeffi- ciencies (Ger., Wirkungsgrad) in 160-kW city buses (columns from the left handside:innercity,mixedtraffic,citysurroundings) [91]

IntheIFEUresearch,thetank-to-wheelefficiencyofafuelcellbusreacheduptoover 40percent,whereastypicaldieselbusefficienciesmainlystayedbelow30percent.The examinationalsoshowedthattheefficienciesdidnotalterdrasticallywhetherdriving insideoroutsidethecityarea.[91]

49 5.2.2 Runningtimeenergyconsumption

Aconventionaldieselbusruns100kmon45–50litresofdiesel.Onelitreofdiesel containsaround36.4MJofenergywhichequalsapproximately10kWh.Thus,adiesel busconsumesaround4.5–5.0kWhofenergyperkilometre.AccordingtotheHelsinki feasibilitystudyontrolleybuses,asuitable,comparablefigurefortrolleybuseswould approximate2.5kWh/km.However,trolleybusesinLandskrona,Sweden,recordedan evenlowerenergyconsumptionlevelof1.8kWh/kmwith16percentrecuperationof brakingpowerduringtheirfirstserviceyearin2004[5].[3][96] FuelcellbusesintheSTEPandECTOSprogrammesconsumedapproximately5.9and 6.4 kWh/km, respectively. The figures are calculated regarding the vehicle mileage (258,000/90,000kilometres)andtotalhydrogenfuelconsumption(46.0/17.3tonnes).In theUnitedStates,threefuelbusdemonstrationsites–i.e.,VTA,SunLineandACTran- sit–averaged6.15milesperDGE,whichimpliesanapproximateenergyconsumption of3.9kWh/km.SunLineandACTransitranbuseswhichdeployedahybridpropulsion systemwithbatteriesenablingenergyrecuperationduringbraking.VTAbusesattained lessencouragingfueleconomiesunderthelevelofdieselaveragebusesonthesite.[14] [54] Theenergydemandofanelectrictractionmotorofabattery-electricbusamountsto1.1 –1.2kWh/km.Therecuperationofbrakingenergycouldreducetheconsumptionto1.0 kWh/km.Thesefigures,however,onlyincludetheoperationoftheelectricmotor;other power electronics involved raise the vehicle energydemand.Table4summarisesthe energyconsumptionofthediscussedvehicletechnologies.[97] Table4:Tank-to-wheelenergyconsumptionof12-metrebuses

Bustechnology Tank-to-wheel * per person on Sources of infor- energy consump- average (Helsinki), mation tion*,kWh/km kWh/km/person Diesel 4.5–5.0 0.38–0.42 [3][96] Trolley 1.8 (energy recu- 0.15;0.21 [5][3] peration);2.5 Fuel cell (Sites in 3.9 (energy recu- 0.33;0.53 [23][14][29] the US; EC- peration);6.4 TOS/STEP) Battery-electric 1.1–1.2(pureelec- 0.09–0.10 [97] tricmotordemand)

50 Table4alsosuggeststheapproximatetank-to-wheelenergyconsumptionsperpassen- ger-kilometre.Theapproximationsarebasedontheaveragepassengercountof12per- sonsfor12-metrebusesintheHelsinkicitypublictransportcalculatedlaterinSection 6.2.Eventhoughtheapproximatedfiguresaresuggestive,theygiveaclearviewofthe energyconsumptionlevels.NoteworthyisthattheHelsinkifeasibilitystudyontrolley busessuggestsanenergyconsumptionlevelof0.2kWh/kmperpassenger,whichnearly equalstheapproximationpresentedinTable4(i.e.,0.21kWh/km).[3] Finally,theamountofenergydemandedbyabusdependsonthevehicleweight,trac- tiontype,roadprofileandotherrelatedissues.Suggestivefigureshelptounderstandthe majorenergyconsumptiontrendsbetweenseparatevehicletechnologies.

5.2.3 Othertechnologicalcharacteristics

Inadditiontothe efficiencies and consumptionlevels, there are several other factors definingtheadequacyorfeasibilityofavehiclepropulsiontype.Forinstance,allvehi- cletypesdifferfromeachotherfromtheperspectiveofenergystoring.Trolleybusesare theonlyoptionthatdoesnotinvolveanyparticularfuelstorage.Hydrogentechnology makesitpossibletoproducesmall-size,high-capacityfuelstorages.Hydrogenenables from2to5timessmaller,lighterenergystoragescomparedtoanymanufacturedvehicle batterytechnologies[91]. Unlike conventional diesel buses, several of the new alternatives haveproblems with range.Fuelcellbusescompetereasonablywellwithdieselbusessincetheypossessthe opportunitytostorealargequantityofhydrogenfuelintotheirtanks.Bycontrast,bat- tery-electricbusesstillconfrontmajorchallengeswiththerange.Trolleybuses,forone, arerestrictedtoroutesequippedwithoverheadlines.AccordingtoHSL(HelsinkiRe- gional Transport Authority), the minimum range for a transit bus required in the re- gionaltransportintheHelsinkimetropolitanexceeds300kilometres[96].Thisiscon- cludedfromtheexperienceswithCNGbusesthatofferedanapproximaterangeof300 kilometresandrequiredrefuellingduringtheserviceday.Foradequateoperation,transit busesshouldonlyrequirerefuellingonceaday(i.e.,notduringservice).Fornowa300- kilometrerangeisnotapossibletargetforBEBs.However,trolleybusesandFCBsare morelikelytoprovidesuchdistances. Aninvestmenttoacertainvehicletypesetsaquestionabouttheexpectedservicelifeof thatvehicle.Thewinnerinthiscategoryisclearlythetrolleybuswhichoffersalonger lifecyclethanwhatisexpectedfromdiesel-poweredbuses(i.e.,around15years).Trol- leybusesofferfrom16to20yearsofhealthyservicelife.Incontrasttotrolleybuses, thepropulsionposesadifficultyinFCBsandBEBs.Areasonableapproximationforan FCBlifecycleiscurrently5,000servicehourswithoutanyrepairsdonetothefuelcell.

51 Considering BEBs, LFP battery technologies realisticallyprovide2,000–3,000deep charge-dischargecycles.Table3presentsthelifecyclesprovidedbythedifferentvehi- clepropulsiontypesinformofpresentfactsandfutureestimations.Themaximumve- hiclemileagemadepossiblebyeachpropulsiontechnologydependsonvariousfactors andwouldcertainlyneedmorein-depthexaminationforareliablecomparison. Thesuitabilityofavehicletypetolocaltransportisalsoinfluencedbythedemanded infrastructure.Trolleybusesrequireoverheadlinesonroadsanddepots.BEVsnecessi- tateabattery-swappingstationoraplaceforrechargingthebatteries.Trolleybusesand batterysystemswouldbenefitfromtheexistingpowergrid.Still,theuseofelectricity for vehicles’ needs could easily create a need for electricity network reinforcing. For instance,possiblefast-chargingstationsforheavy-dutyvehiclescouldoverloadtheelec- tricitynetworkwhenbadlysituated.However,fast-chargingstationswouldprobablybe bestimplementedwhensituatedonanuppervoltagelevel,closertotheprimarysubsta- tion.Positiveisthatbattery-electricsystemscouldsupportthenationalelectricitygrid, andthus,partiallydecreasetheneedforgridreinforcements.Batterystorageforheavy- dutyvehiclescouldcompriseagreateramountofbatteriesthanwhatisneededforvehi- clesprovidingcontinuoussupporttothepowergrid. The use of hydrogen would set challenges for the transport system as well. Fuel cell busesinvolvehydrogendeliveryanddispendingsystems,comparabletoarrangements in diesel and gasoline delivery and distribution. Additionally, fuelcelltechnology re- quiresspecialindoorsafetysystemsforleakdetection.Small-scale,distributedproduc- tion and delivery of hydrogen are currently developed in order to provide more effi- ciencythanwhatisnowseenwithcommonpetroleumproducts.Theoveralleconomical andtechnologicalprofitabilityofacertainvehicle-specificinfrastructuredependsonthe characteristicsofthetrafficsystem,aswellasthedominatingcommercialconditions– i.e.,theavailabilityandpriceofthetechnology.Theviabilityandcost-effectivenessof different vehicle type-related infrastructures cannotbecomparedtodieselorgasoline deliverychainsoffhand.Onthecontrary,therationalityofeverysystemshouldbecon- sideredinitself. Onthevehicle-level,trolleybuses–beingcontinuouslyusedforlongerperiodsoftime now–areofferedthroughmorestraightforwardmanufacturingprocesses,whereasthe productionofBEVsandFCVsisstillcharacterisedbyinconsistencyanddiscrepancy. TheavailabilityofFCVsisratherlow[91],whichisthecaseforBEVpropulsionsys- tems as well. Currently, the immature, inadequate state of development of BEV and FCVtechnologiesrestrainscostreductionsfromoccurring.Therefore,thepresentpur- chaseandmaintenancecostsforthesevehicletypesremainhigh.

52 5.2.4 Purchasecosts

The initial purchase costs of different bus technologies vary greatly. Table 5 gives a viewofthepricedifferences.Pricesinthetablerepresentthepricelevelatthetimethe vehiclewentonsale.ItmustbenotedthatthepricesforBEBsarenotcomparableto otherfull-sizebusmodesbecauseofthelackofproperinformationaboutvehicleprices. Moreover,Table5 onlyoutlines the overall pricelevelsandgivesanideaofthebus market.Excludingdieselbusesandtrolleybuses,pricesaregatheredfromvariousdem- onstration projects. Typically, with new technologies, the varying vehicle production methodsandmarketobjectives,aswellasthelackofwide-scaleproductionwidensthe pricespread. Table5:Purchasecostsofdifferentbustechnologies

Bustechnology Price(1,000€) Dateofpricing Sourceofinforma- tion,respectively Dieselbus 250–350;218 2009;2006 [3];[49] Trolleybus 450–750 2009 [3] Fuelcellbus 1,400;1,200;805– 2007; 2006; ~2005; [98]; [49]; [50]; 2,410;1,250 ~2003 [48] Battery-electricbus/ 204(small-sizebat- 2008;2009 [71];[80] hybrid-electricbus tery-electric bus); 383(hybridelectric) Duringthepastyears,thedemandfortrolleybuseshasrisenandvehiclepricesinCen- tralEuropehavereducedover10percent.Despitethefavourabledevelopmentofvehi- clesprices,trolleybusesstillinvolveapproximately30percentexcesspurchasecoststo competing diesel buses. The longer lifetime of a trolley bus slightly compensates the initiallyhighercost.InTable5,thepricespreadoftrolleybusesisratherwide;theprice dependsonthepassengercapacityandtheamountofvehiclearticulations.[2][3] Accordingtovariousinformationsources,thelackofseriesproductionandthenatureof thefuelcelltechnologyusedinseparatedemonstrationprojectshavekeptfuelcellbus priceshigh.Thepricesoffuelcellbuseshavetypicallybeenseveraltimeshigherthan foraverage dieselbuses,independent of the geographical locationwherethebuswas used.Thelatest,largefuelcellbusimplementationinthe2010WinterOlympicGames inWhistler,Canada,incurredinitialexpensesofaroundCAD2.1million( ≈EUR1.4 million)pervehicle[47].AnaverageCanadiandieselbuscostaroundfourtimesless. [49][48][50][98]

53 Forfull-sizebattery-electricbuses,purchasecostsarepracticallyunavailable.Itisvery difficulttoobtainanyaccuratepriceinformationsincetherehashardlybeenanypro- ductionoffull-sizeBEBstodate.Theinitialcostofabattery-electricbusdependson thevehicleandbatterysize,batterytechnology,vehiclerange,possibleAPUsused,etc. Thetotalinvestmentindifferentelectricvehicletechnologiesinalongerperiodoftime depends on the average service life of each vehicle technology. As presented earlier, battery-electricandfuelcellvehiclesstillproviderathershortlifecyclescomparedto trolleybuses.Thevehicletechnology-relatedlifecyclesshouldbeexaminedmoreaccu- ratelytoseehowtheyinfluencethecumulativecosts.

5.2.5 Emissionsandconsequentialimpactsonenvironment

Buseswhosepropulsionatsomepointutiliseselectricity–i.e.,trolleybuses,fuelcell buses and battery-electric buses – caneitherdecrease oreven increase theamount of traffic-related greenhouse gases depending on the nature of the electricity production method.Reducingcarbondioxideemissionsisconsideredimportantinthetrafficsector today.PresentCO 2emissionlevelsgeneratedinFinnishelectricityproductionarepre- sentedin Figure15 .

Figure 15: CO 2 emissions (g/kWh) from Finnish electricity production (Jan 2008–May2010),12-monthfloatingaverage [99]

TheVTTTechnicalResearchCentreofFinlandhasmeasuredemissionsgeneratedby various propulsion technologies and vehicle fuels utilised in buses. In 2009, a diesel EEV(EnhancedEnvironmentallyfriendlyVehicle)–currentlythemostadvanceddiesel

54 technologyonthevehiclemarket–accountedforthefollowingemissionsintheBraun- schweigcitydrivingcycle:NO X,5.9g/km;PM,0.06g/km;CO 2,1120g/km[100].Ta- ble6presentsEuroVIemissionstandardandemissionsgeneratedbyacoupleofother vehicletechnologiesinrelationtodieselEEV.ThemeasuredPMandNO Xemissions representexhaustsemittedintraffic. Table6:Acomparisonofvehicleemissionsgeneratedbyvariousvehicletech- nologies[100]

Percentage DieselEEV EuroVI(heavy- Hybrid- Trolleybus (%) duty vehicles electric diesel Emission [101] ) bus(US)

NO X 100 20 70 0 PM 100 50 10 0

CO 2 100 100 70 35;66[99]

ToassesstheCO 2generationofavehiclethatprimarilyconsumeselectricity,thechar- acteristicsoftheelectricityproductionmatterthemost.ThefiguresinTable6arebased onanelectricitymixwhichcontains59percentofrenewableelectricitysourcesalong with 22 percent of nuclear power and 19 percent of electricity from fossil fuels. The specificemissionsfortheusedelectricitymixtotalCO 2emissionsof103g/kWhwhich equalstheemissionsgeneratedbytheproductionoftheelectricitysoldbyNordPool, thesinglefinancialenergymarketforDenmark,Finland,NorwayandSweden.Carbon dioxideemissionsofatrolleybusreachbarelyoveronethirdofthatofdieselEEV– approximately390g/km.[100] If the carbon dioxide emissions from Finnish electricity production ( Figure 15) were usedforcalculatingtheimpactoftrolleybusesinTable6,andassumingthesamevehi- cle energy demand, the amount of trolley bus emissions would rise to nearly double. Trolleybuseswouldgenerateapproximately66percentoftheamountofemissionsgen- eratedbydieselEEV,whichimpliesafigureofover730g/km. Table6alsoshowsthattrolleybusesdonotbringinanyexhaust-pipeemissions.Bat- tery-electricbusesaretolargeextentsimilartotrolleybuseswhenconsideringgener- atedemissionsandexhausts.Forthesevehicletypes,electricityproductiondefinesthe overallemissionlevels.Presently,oneofthemajoraimsstatedbypolicymakersand industryrepresentativesistoreduceexhaustlevelsalongwithcarbondioxideemissions. Allthediscussedalternativevehicletechnologiescontributetotheseaims.

55 Sincefuelcellbusestypicallyutilisehydrogenfortheproductionofelectricitytoelec- tricpropulsionmotors,theygenerateonlywatervapourandheatasoutput.Therefore, analysinghydrogenproductionwouldmakeasensiblecontributiontogettingaviewof hydrogenfuelcell-relatedcarbondioxideemissions.Earlier,inChapter3,theCO 2pro- ducedinhydrogenproductionwasdefinedforvariousproductionmethods.Theemis- sionsfrombasic,non-sustainableproductionmethodstotalledfrom12to19kgCO 2/kg

H2. The discussed fuel cell busdemonstration sites in the United States presented an averagefueleconomyof6.15milesperDGE.Thus,theaverageconsumptionofhydro- genperkilometreforthesevehiclesapproximates116grammes[54].Consideringthe

CO 2emissionlevelsfromhydrogenproduction,theseparticularfuelcellbuseswould totalhydrogenproduction-basedemissionsofaround1,400–2,200gCO 2/kmwhichis clearlymorethanthemeasureddieselEEVemissions.Again,theseemissionlevelsdo notinvolveanycarboncapturemethodsinhydrogenproduction. Hydrogenproductioncanbemuchmoreenvironmentally friendly when utilising sus- tainablehydrogenproductionmethods.AnIEAstudyfrom1999revealsthehugediffer- enceincarbondioxideemissionsdependingonthenatureofhydrogenproduction.In

1999,dieselwassaidtogeneratewell-to-wheelCO 2emissionsfrom52to74percentof the amount of emissionsfromgasoline.Inthesamecomparison,totalCO 2emissions fromhydrogeninfrastructurerangedfrom5to362percent(i.e.,comparedtogasoline), the amount of emissions depending largely on the hydrogen production method and primary energy used for production. Thus, sustainable hydrogen production methods wouldclearlybebeneficialforhydrogen’sstatusamongothervehiclefuelsintermsof generatedgreenhousegases.[102] The efficiency of the most prevalent hydrogen production technology – hydrocarbon steamreforming–rangesfrom65to75percent,oneofthehighestefficiencyratescon- sideringcurrentcommerciallyavailablemethodsofproduction[103].Closeto95per- cent of the existing hydrogen refineries are based on hydrocarbon steam reforming. However,onetonneofrefinedhydrogenwillcreatearound9–12tonnesofcarbondi- oxide emissions as aby-product.Therefore,possiblemethodsofcarbonsequestration (i.e.,carboncapture,transportanddisposal)areintensivelyexamined.Thesemethods arestillcostly,aswellasrarelyimplemented.Sequestrationcostsareestimatedtoap- proximateUSD20-100pertonneofsequesteredcarbon[104].Forsmall-scaleproduc- tion,carboncaptureisnotlikelytobeafeasiblesolution[18].[105]

5.2.6 Passengercomfort

Comparingdifferentvehicletypesbytechnicalfeatures,relatedinfrastructureandcosts, aswellasenvironmentalimpactscoversawiderangeofthenecessarystudy.However, oneofthemostimportantfactorsismissing,andthatisthepassengerusingthevehicle.

56 Conventional diesel vehicles produce a great amount of exhausts that deteriorate the healthycityscape.Diesel-poweredvehiclesaretypicallygeneratinghighnoiselevelsas well. Trolley buses, fuel cell buses and battery-electric buses are favouring the passenger sincetheygeneratelessorzerodetrimentalexhausts.Theyarealsoequippedwithelec- tricmotorswhichclearlybringdownthevehiclenoiselevels.TrolleybusesandFCBs mayutiliseAPUsforadditionalpropulsionpower,whichmayinvolveincreasednoise levels. However, compared to diesel buses, all these vehicle types provide smoother, lessbumpyridesandahealthier,lessstressingtravellingenvironment.

57 6DefinitionsofHelsinkiareapolicies

6.1 HSL

Helsinki Regional Transport Authority (HSL), established on 1 st January 2010, is re- sponsiblefortheplanningandorganisationofpublictransportwithintheHelsinkimet- ropolitanarea.Thejointlocalauthoritycurrentlycomprisessixmembermunicipalities: Helsinki,Espoo,Vantaa,Kauniainen,KeravaandKirkkonummi.Theorganisationthat isyettobejoinedbyseveralothermunicipalitiesintheHelsinkiregioncarriesonwith theworkdonebytwodifferentorganisationsbefore.HSLisresponsibleforimproving operating conditions for public transport, service procurements for bus, tram, metro, ferryandcommutertraintraffic,aswellasthedraftingoftheHelsinkiRegionTransport SystemPlan.OneofthedutiesofHSLisacquiringorcharteringbusesfortheHelsinki region traffic. Moreover, the organisation is responsible for public transport-related marketing,aswellaspassengerinformationandticketinspection.[106]

6.2 CharterbusfleetcharacteristicsintheHelsinkiregion –emissions

ThemorningtrafficinHelsinkicitycomprisedaltogether491busesatthebeginningof 2009.Thebuseswhichweremostlyofthelow-floortypewereonweightedaverage6.3 years old. In calculations concerning the average age of equipment, peak time buses carryfivetimeslessweightthanotherbuses.Thisevensouttheassociatedstatistical distortion, the imbalance between less frequently used peak time buses and vehicles withhighermileage.Abusshouldbereplacednotlaterthanattheageof16years.Cur- rently,theannualneedfornewbusesiscloseto200vehicles.HSL’sbusfleetshold roughly1,450busesintotal.[107][96] Thedegreeofuseofpublictransportassessesthelevelsofemissionsproducedperpas- senger-kilometre and actual, drivenkilometres.In 2009,the total mileageofHelsinki citycharterbusesreached32.64millionkilometres.391.3millionpassenger-kilometres wererecordedonthesamestretchoftime,whichimpliesanaveragepassengercountof around12.[107]

58 Theactualamountofemissionsgeneratedbythebustrafficdependshighlyonthevehi- cletechnology.Acommonwaytodividetechnologiesintogroupsistoclassifythem regardingtheemissionlevelstheygenerate.TheEuropeanUnionhasadoptedtheEuro- peanemissionstandardsforheavy-dutydieselvehicleengines(seeAppendixA:Euro- peanemissionstandards).Table7dividestheHelsinkicitycharterbustrafficbyemis- sionstandards,hencecastinglightontherateofuseofvariousbustechnologies. Table7:Charteredbustrafficbyemissionrates(Helsinki) [107]

Emissionstandard Bus mileage (million Share of total mileage km/year) (%) EuroI 0.17 1 EuroII 10.75 33 EuroIII 10.26 31 EuroIV 3.34 10 EuroV 0.79 2 EEV 5.20 16 EX-gas-CNG 2.12 6

The acquisitionofnewbusesisrestrictedtovehiclesfulfillingtherequirementsofat leasttheEuroVemissionstandard.Avoluntary,additionalemissionclassEEVpresents evenloweremissionrates.EventhoughEEVbusestotal16percentofthetotalmileage intheHelsinkibustraffic,onethirdofmileagestillconsistsofjourneysdrivenbyEuro IIbuseswithmuchhigheremissionlevels.Anyhow,thetrendistominimisetheexhaust gasesproducedbypublictransport.Forinstance,amodernsystemforfollowingthefuel consumptionofacertainvehicleordriverhasbeenpromotedandshouldcomeintoplay during2010.Inaround2012–2013,allbusesbelowtherequirementsoftheEuroIII standardinHelsinkishouldbewithdrawnfromcirculationbecauseofthenormalaging ofthevehicles[108].[107] Table8presentstheaverageemissionlevelsoccurredfromtheHelsinkicitybustraffic. TheVTTTechnicalResearchCentreofFinlandhasmeasuredtheemissionratesofdif- ferentmotortypesbyutilisingtheBraunschweigcycle.Figuresarecalculatedbasedon drivenkilometres.

59 Table8:Averagecitybusemissions(Helsinki,2009) [107]

Emissions Tonnes g/passenger- g/drivenkilometre kilometre CO 42.06 0.107 1.283 HC 8.66 0.022 0.264

NO X 318.01 0.813 9.747 PM 5.03 0.013 0.156

CO 2 39,428 100.76 1,207.95

6.3 Assessmentoftransportoperatorsandtheirvehicles– generalremarks

TransportoperatorsforcharterbustrafficintheHelsinkicityregionarecommonlycho- senthroughanopenbiddingcompetition.Tendersarereviewedcarefullybyestimating their overall cost-effectiveness. The overall priceandequipmentqualitycomprisethe mostrelevantfactorsinthecomparisonofnewbuses.Thepriceofavehicleisweighted inrelationtothecheapesttenderaddressedtothetransportauthority.Thevehicleisthen grantedacertainamountofpointsthateventuallydeterminethemostsuitabletransport operatorandvehicleforacertainbusroute.[109] Equipmentqualityinvolvesvarioustechnicalfeaturesandphysicalmeasures.Fullylow- floorbusesarevaluedhigherthantheoneswithpartlylowfloors.Itisobligatoryfor newvehiclestohavesomekindofalow-floorsolution[110].NO XandPMemissions areratedthroughtheEurostandards.Thesmallertheamountofemissions,thehigher thepointsforthevehicleexamined.Maximumpointsaregivenforthemotorsfulfilling theEEVstandards.Thevehicleisrewardedwithextrapointsifthenoisegeneratedby themotorandtyresstaysat75dB(A)orless.[109] In addition, vehicle seating is considered as a partoftheequipmentquality.Togain extrapointsfromtheinteriors,newbusesshouldhaveseatswithaclearanceof710mm or more. Collapsiblechairswiththesame minimum clearance are also favoured. To reach the maximumpointsfromthe seating, seatsshouldoffer750mmofclearance. [109] Properelectricalancillaryequipmentimprovesthequalityofavehicle.Thetransitau- thority appreciates ancillary equipment, such as automatic air-conditioning, automatic fireextinguishingandanextraheaterforthevehicleidlingtime.Passengeraircondi-

60 tioningshouldincludefiltersforfreshairintakeandcabinair.Theairconditioningsys- temshouldcreateacoolingpowerof20kW,andastheFinnishwinterisrathercold, thesystemshouldpossesstheoptionofproviding25kWofheatingpower.[109] Besidesthecheappriceandequipmentquality,itispreferredthatbusoperatorsorien- tateandtrainbusdriversfortheirjob.Busdriversshouldgothroughanannualtraining dayorhalf-day.Thetransitauthority(HSL)ispreparedtoarrangeandfacilitateacertain amount of training. Otherwise, the transport operator organises the training sessions. [109] Inordertomaintaineasy,safeconditionsforpassengers,allacquiredvehiclesmusthold several other characteristics. Effortless boarding and alighting, accessibility for the handicappedandenoughspacefortwoperambulatorsareminimumrequirements.Pas- senger comfort should be improved through firm handrails and handles that provide enough support forthepassengers.Busdoorsshouldbeequippedwithsafetymecha- nismsandthevehicleshouldhavesafetybrakesthatpreventthebusfrommovingwhile the doors are opened. Clear identification, decent indoor lighting and lighting at bus stops,aswellasinformationmaterialtobeprovidedtopassengerscontributetoconven- ienttravelling.[110]

6.4 Carbondioxideasadecisivemeasure

Priortothenewtrendformeasuringandassessingemissionreductions,carbondioxide emissionswerenotdirectlyregardedasapollutivesubstance.Theywerenotconsidered in specifying the cleanliness of vehicles for public transport. Now, however, HSL is beginning to emphasise the relevancy of CO 2 emission reductions after a number of studiesandgeneralopinionsabouttheeffectofgreenhousegasesonglobalwarming. [96] Inthefuture,uptoonethirdofthepointsgrantedfortheequipmentqualityinthecom- parisonprocessofnewvehiclescouldbebasedonthegeneratedCO 2levels.Emphasis- ingtheroleofCO 2 lessensthesignificanceofotheremissionsandbuscharacteristics.

Forinstance,themeaningfulnessofproperseatingandlowlevelsofNO X andPMemis- sionswilldeclinetosomedegree.[96] HSLisreadytomakeinvestmentsincleaner,environmentallyfriendlytransportsolu- tions. The transport authority is willing to increase the contract timeof new vehicles fromthepresentfiveyearstosevenyearsinthefuture[96].Thiskindofdevelopment could realistically lead to more intelligent, innovative vehicle solutions servicing the needsofHSL.

61

6.5 Trolleybusasanalternative

Itisclearlyevidentthatthedemandformoreenvironmentallyfriendlypublictransport isincreasing.Oneoftherealisticalternativesforaveragedieselbusesistheimplemen- tation of a trolley bus system as a part of the Helsinki region transport. Calculations haveshownthatafleetofaround60–120vehicleswouldprovideaneconomicallysen- siblescaleofimplementation.[111] HSLhasalreadyplannedapossibletrolleybussystemwitharatherlargeoperatingarea intheHelsinkiregion.Thesystemwouldfirstinclude30vehicles,whichwouldputthe systemtothetest.Afterasuccessfulbeginning,moretrolleybuseswouldbeacquired. The first phase would entail three bus lines, expandingto9buslinesandaround80 kilometresoftrolleybusroutesinthefinalsystem.Theobjectiveforoperatingsucha systemwouldneedthecontributionofaround70vehicles.Figure16illustratesthepos- sibletrolleybussysteminHelsinki.

62 Figure16:HSLobjectiveforatrolleybussystem [111]

Experiencesgainedfromothercountrieshaveshownthattrolleybusescanbeconven- iently used in parallel with other bus and rail systems. All trafficmodesneed depots where the vehicles can stay overnight and for maintenance. In Helsinki, the depot of Koskela(redcircleinFigure16)wouldserveasthemaindepotfortrolleybuses.This particulardepotholdsenoughspaceandasuitablelocationneededfortheimplementa- tionofatrolleybussystem.[96][111] AccordingtoHSL,the most suitable alternative for trolleybustrafficintheHelsinki regionwouldinvolvevehicleswithoneortwoarticulations.HSLemphasisestheimpor- tanceofAPUs–thedeployedtrolleybuseswouldmostprobablycarrya50-kWdiesel engineandsupercapacitors.[96] Oneofthemajorproblemswithtrolleybusesisthedisturbancetothecityscape.Aspe- cial commission involving three Finnish cities – Helsinki, Tampere and Turku – has

63 beenconcentratingondefiningtransportsystemsandsolutionsthatdonotdisturbthe cityscapetoomuch.Whenimplemented,atrolleybussystemshouldincorporatealight overheadlinesystemandotherinfrastructureinthestreetsanddepots.Dieselgenerators couldbeusedasthemainpropulsionproviderwhendrivinginthedepot.[96]

6.6 Othermodernbustechnologies

Inthelongrun,HSLenvisagesanincreaseintheuseofelectricitywithinthevehicle industry.Fuelcellbusesaretechnologicallyavailableandpossiblesolutionsforenvi- ronmentallyfriendlypublictransportbutstillinvolvesomemajordifficultieswiththe priceissuesandnon-conformity.Battery-electricbusesandrelatedinfrastructurerequire moredevelopment,andthus,arenotyetconsideredas an alternative. HSL isnotyet readytoaddsuchvehiclestoitsfleets. HSLhassizedupfuelcellbusesasanoptionforpublictransport.However,theexpen- siveness of the hydrogen fuel makes fuel cell buses an unattractive alternative. Also withthehighvehiclepurchaseprice,itwouldnotbebeneficialtodeployfuelcellbuses inHSL’sfleets.Thecheapest,andonly,tenderaddressedtoHSLforhydrogenfuelhas stayed at 9 €/kg (Woikoski Ab). Considering the hydrogen fuel consumption of the FCBsintheECTOSandCUTEprojects(i.e.,approximately0.2kg/km),thepriceof eachdrivenkilometrewouldriseuptoanunacceptablyhighlevelof1.8€/km.More- over, HSL estimates that theactual hydrogen fuelconsumptioncouldevenriseupto 0.26kg/km.[96] Forbattery-electricbuses,therestrictionsmainlyconsistofpooravailability,aswellas highlypriced batteries and non-standardisedinfrastructure.Innovelvehiclesolutions, batteriesaretypicallyusedforadditionalpropulsionpower.Theimmaturityofthetech- nologyandthelackofstandardsholdbackBEBs,andtherefore,theyarenotashort- termoptionforpublictransportorganisedbyHSL.[96]

6.7 NearfutureenvironmentalgoalsforHelsinkicitytraf- fic

AworkingpartyoftheHelsinkicityforclimateprotectionhasproposedcriteriaforlow- emissionvehicles.Objectivesoftheworkingpartyincludefindingsolutionsforcreating incentives to increasethe useof low emissionvehicles, as well asestablishingalow emissionzonetothecitycentre.[112]

64 Thereareseveralwaysforincreasingtheuseoflowemissionvehicles.Improvingthe disseminationofinformation,followingexperiencesgainedinothercitiesandcountries, acquiringonlylowemissionvehiclesforcommunaluseandpromotingadditionalbene- fitsforlowemissionvehiclescouldcontributetothedevelopment.Inrespecttoelectric vehicles, the city should also define its opportunities to support the expansion of an electricitydistributionnetwork.Moreover,HelsinkicouldmakeanappealtotheFinnish stateforcreatingtaxincentivesforlowemissionvehicles.[112] Forimprovingthequalityofairinthecitycentre,aspeciallowemissionzoneisrec- ommended.Thespecialzonewouldbringrestrictionspertainingtothebustrafficand communalwastetransport.Thus,itcouldleadtoenhancingthetechnologyusedinre- latedvehicles.Emissionlimitsshouldbecreatedbythetransportauthoritiesforcom- munal bus traffic and waste transport – i.e., HSL and the Helsinki Region Environ- mentalServicesAuthority(HSY).Figure17illustratestheproposedlowemissionzone (green),aswellastheareacurrentlyrestrictedfromvehiclesover12metreslong(or- ange).Therestrictionareadoesnotapplytobuses.[112]

65 Figure17:ApossiblelowemissionzoneforthecitycentreofHelsinki [112]

Inadditiontorestrictingthetechnologyusedinpublictransportandwastemanagement, thelowemissionzonewouldbepresentedandrecommendedtolocalcompaniesand communities.[112]

66 7Electrificationofdeliverytraffic

7.1 Thetrendofgrowinggoodstransport

Urbanenvironmentsarefulloffreightflowsheadingtovariousdestinations.Notonly passengers,butthings–e.g.,consumergoods,buildingmaterials,communalwaste,and post–needtobedeliveredcontinuously.Thenatureofthetypicallyunforeseeablede- liverytrafficdiffersgreatlyfromthepre-plannedpassengertransport.Theinternalstruc- tureofaveragecitiesdoesnotcontributetothedeliveryofgoods.Freightisoftendeliv- eredbyusinginflexible,uneconomicaldeliverymethodsandroutes.Althoughtheover- all delivery ofgoods lacks sufficiency and efficiency, deliveries must be done in one wayoranother.[113] Therefore,effortsmadetoimprovethevehicletechnologiesusedindeliverytransport will be highly valuable for the environment. Studies have showed, that freight flows constituteaboutonefourthofthestreettrafficofatypicalcity[113].Thesignificant amountofgoodstransportoncityroadsopensuppossibilitiesfornovel,moreenviron- mentallyfriendlypropulsionandvehicletechnologies.TheEuropeanUnionhassetan ambitiousgoalofdecreasingcarbondioxideemissionsby20percentfromthelevelof 1990by2020[114].Itisafactthatroadtransportcauses25percentofallhuman-based carbondioxideemissions[115],thuspursuingthegoaloftheEUnecessitatesactions notleastinthesectorofdeliverytraffic.

7.2 Electrificationofdeliverytraffic–demonstrationsand commercialusage

In order to improvethe sustainability oflocal communities,actionsforimplementing electrificationofdeliveryvehiclefleetshavebeentakeninvariouscountriesworldwide. Noteverydemonstrationprojectofelectrificationhasbeensuccessful,butalldevelop- mentandtestingofnewtechnologiesmightbeinformative benefitting future efforts. Thereasonablepossibilitiesfordeliveryvehicleelectrificationaremainlyprovidedby batteryandfuelcelltechnologies.

67 Battery technologies for electric vehicles have faced several difficulties. One of the demonstrationsofelectricvehiclesendingupinadisappointmentwasarrangedinRot- terdam,theNetherlands.In2001,Rotterdamdeployedsevenelectricdeliveryvehicles for commercial transport. After several electrical problems with battery management, the operation of vehicles was quit during 2004. The vehicles could not operate effi- cientlyinthedailydistributionbecauseofbatterysystem-relatedbreakdowns.TheRot- terdamdemonstrationwascarriedoutintheframeworkoftheprojectELCIDIS(ELec- tricvehiclesinCItyDIStribution),co-financedbytheEU.[116] However,thecontinuousdevelopmentofbattery-electricvehicleshasmadethemareal competitortomoreconventionalvehicletechnologies.Oneofthenewestcollaborations in electric vehicledistributionwill happenbetweentheScandinavianTHINKandthe FrenchMobiviaGroupe,acompanythatrecentlyhasestablishedadivisionforsustain- ablemobility,alsoreferredtoastheO2City.ThepartnershipwiththeMobiviaGroupe providesTHINKagreatopportunityforlarge-scaleelectricvehicledistribution.[117] TheTHINKCityelectricvehiclecontainsaplug-inelectricpowertrainandprovidesa rangeof160km.Reachingan80-percentstateofchargetakesapproximately9.5hours withslow-chargingthevehicleindistributionnetwork(230VAC,14A).Reachinga fullchargetakesaround13hours.ThebatteriesusedinTHINKCityinvolvetwodiffer- ent functionalities. Zebra’s sodium batteries (MES DEA) operate in temperatures of between260°Cand360°C,whileLi-ionbatteriesfromEnerDelprovideoperationin ambient temperatures. EnerDel batteries make it possible for the vehicle to be un- pluggedwhilenotinuse.ThebatteriesfromZebraprovidehighenergydensitymaxi- misingthevehiclerange.Intotal,thebatteriesoffer45kWhofenergy.Arathermoder- atemaximumpowerofthevehiclepowertrainpeaksat30kW.Thecurrentpriceforthe THINKCityelectricvehicleinFinlandisalittleunderEUR50,000[118].[117] THINKandEnerDelhavealsocollaboratedbefore.In2008,theJapanesepostalservice wentontostartaprocessofconvertingitsgasoline-fuelledpostaltruckfleetstobattery- electric. The two companies specialised in electric vehicle technologies provided the electric drive system to a Japanese automotivecompanyworkingunderJapanPostal. ConversionsweremadeusingthesamebatterysystemofEnerDelasinTHINKCity. Thedealwassignificantsinceitcoveredaround5,500trucksundertheoperationofthe postalservice.[119] The electrification of delivery traffic does not always need to involve smallvehicles. Alsoheavy-dutysolutionshavebeenpresentedforshorterdistanceswithinthelimitsof batteryrange.Anexampleofheavy-dutyelectrificationcomesfromLosAngeles(LA), theUnitedStates.TheportofLAinvestedinacooperativeprojectwiththeSouthCoast AirQualityManagementDistrictin2007todemonstrateanelectrifiedheavy-dutytruck.

68 Theshort-rangevehiclewasdesignedbyBalqon,aSanta-Ana,California-baseddevel- operandmanufacturerofheavy-dutyelectrictrucksandtractors.Thevehicleiscapable ofhaulinga40-footcargocontainerinfullload.Themaximumrangeforthevehicle carryingafullloadwasstatedtobearound48kilometres.Theelectricheavy-dutytruck isrechargedthroughanexistingpowersystemoperatingat440V.Reachingafullstate ofchargetakesaround3–4hours.Onehourofchargingisenoughtoprovideastateof chargeof60percent.TheLAportreportedaclearenergyconsumptionreductionfrom theearlier5kWh eq /kmofdieseltrucksto1.25kWh/kmconsumedbythebatteryelec- trictrucks.In2007,thepriceoftheBalqonheavy-dutyvehiclecostcircaUSD200,000. [120] During2010,Balqonhasnowestablishedsixinternationaldealeragreementsafteran orderforelectricdrivesystemsworthUSD490,000fromtheChina-basedDynaProTech inAugust.TheChinesecompanyhasplannedtointegrateBalqon’selectricdrivetrain with electric buses, heavy-duty trucks, light commercial vehicles and passenger cars. DynaProTech will provide Chinese vehicle markets servicing and parts for Balqon’s products.[121] Thus,thereiscertainlyinteresttowardselectrificationofvariouskindsofdeliveryvehi- cles.Someelectricvehiclemanufacturershavereachedaneconomicallyprofitable,solid market base. The industry leader and the world’s largest manufacturer ofcommercial electricvehiclesistheUnitedKingdom-basedSmithElectricVehicles(SEV),acom- panythatproducesbattery-electricvansandtrucks.SEVdeliversvehiclesrangingfrom approximately 5.2 to 8.8 metres in length primarily to North America, Europe and South-EastAsia.IntheUnitedKingdomalone,SEVhasaserviceandsupportnetwork thatmaintainsover5,000vehiclesformajorfleetoperators.[122][123] Anothermeansforvehicleelectrificationisofferedbyfuelcells.Withinthebusindus- try,fuelcellsseemedtoincurgreatcosts.Thepricesofsmallerfuelcellvehiclesare high as well. However, the technology provides well-functioning solutions already in use.OneexistingexampleofutilisingfuelcellssuccessfullycomesfromToyota’shy- bridhydrogenfuelcellvehicledevelopmentprogramme.TheFCHVdesignsbyToyota are based on the Toyota Highlander production sport utility vehicle. The FCHV-adv, from2008,carriesapermanentmagnetelectricmotorandaToyotaPEMfuelcellstack both providing a 90-kW maximum output. Additionally, the FCHV-adv is equipped withnickel-metalhydridebatteriesproviding21kW.Thecompetitiverangeofthevehi- clecomescloseto700kilometreswiththehelpoftwohigh-pressure,700-barhydrogen tankscarryingintotal6.31kilogrammesofhydrogen.[124]

69 7.3 ItellaCorporation–deliveringpostalmailandparcels

OneofthemainplayerstopursueforvehicleelectrificationinFinlandistheItellaCor- porationwhichdeliversthedailymailthroughoutthecountry.Nearly17,000mailcarri- ersandsortersworktoensurethedeliveryofvariouskindsofpostalitemstoFinnish households.AroundFinland,thereareapproximately8,000letterboxesforsmallermail. Parcelsareusuallysentfromoneofthe1,100Itellapostoffices.[125] Itelladeploysin total over 5,000 vehicles in maildeliveryandlogisticsservices.The combined mileage of these vehicles totals approximately 170 million kilometres per year.Formaildelivery,Itelladeploysaround3,200motorvehicles.3,000oftheseare vansorcars,whereastheremaining200vehiclesaresmallermopeds.Excludingmo- peds,Itellaneedsannuallyfrom400to700newmotorvehiclesforitsfleets.Itellatypi- callyleasesitsdeliverycarsandvansinsix-yearperiods.Currently,theshortestmail delivery route for cars and vans approximates 70 kilometres. The longest routes are around350–400kilometreslong,mostlyinNorthernFinland.Insomecases,thedeliv- eryvehicleservingaspecificroutemayhavetopickuponeorseveraladditionalloads of mail froma centralisedmailstorage point. This increases the daily mileage.[125] [126] Thus,theoperationofthepostalservicehighlydependsonmotorvehicles.Themost efficientwayofimprovingsustainabilityforItellaistoreduceemissionsrelatedtothe operationofdeliveryandlogisticsvehicles.Besidesreducingfuelconsumptionandcar- bondioxideemissionsbyefficientrouteplanning,combineddeliveriesandenvironmen- tallyfriendlywayofdriving,Itellahasoptedtopromotegreenelectricity,vehicleelec- trificationandusageofalternativefuels.[125] Itellahascommittedtoreduce10percentofitscarbondioxideemissionsby2012and 30percentby2030.AccordingtotheestimationsofItella,thefirstgoalcanbeachieved byutilisingelectricmopeds,butthelateraimnecessitatesothersolutions,suchasde- ployingbattery-electricvansandcars.TheFinnishmaildeliveryalreadyhasexperience ofelectriccars.Inthepast,theformerFinnishmaildeliverycompany,Posti,usedover 70Elcatelectricvehiclestodelivermail.Duetothepoorbatterytechnologiesandin- competentrangeofferedbytheEVs,thesevehicleswerenotusedforlong.In2008,a three-year tryout of Itella, utilising an electric Citroen Berlingo, ended after the lead- basedbatteriesreachedtheendoftheirlifecycle.Newbatterieswouldhavecostaround EUR10,000–15,000.Aftersumminguptheprosandcons,thevehicleswerenotutil- isedanymore.Currently,ItellahasplanstoconvertacoupleofVolkswagenvanstobat- tery-electric.ApartnerinthisprojectwillbetheFinnishbatterymanufacturerEuropean BatteriesLtd.[126]

70 Itellawillalsouseelectriccarts,scootersandmopeds.Figure18illustratesaSwedish electricmopedlargelyusedbyItellainSweden.Thismopedtypehasalsobeeninre- stricteduseinFinland.Itella’splansforthefutureelectricmopedfleetsincludedeploy- ingsmallwindpowerplantsforrechargingthemopeds.Thewindpowerplantswould probablybelocatednexttotheheadofficeinHelsinki.[126]

Figure18:AnelectricmopedproducedbyNorsjöMopedAB [127]

Battery-electriccarsonthemarkettodayofferadrivingdistanceofapproximately150 kilometres.Regardingtheenergyconsuming,cyclicaldrivingprofileofthemaildeliv- ery(i.e.,frequentstoppingandaccelerating),therangecarmanufacturerspromise,will decreasesignificantly.Thismeansthattheelectriccarsandvansinmaildeliveryshould berecharged,possibly,severaltimesadaytocoverthewholedeliveryroute.Suchar- rangementnecessitatescentralisedfast-chargingsolutions.

71 8Conclusions

This Master’s thesis presented the potential electric vehicle technologies for bus and deliverytraffic,particularlytobeimplementedintheFinnishtrafficsector.Thestudy concentrated on vehicle technologies already demonstrated or consistently utilised in regionalorlocaltrafficfleetsaroundtheworld.Togetanextensiveviewoftheused technologies, the study described various separate vehicle demonstrations. Two inter- viewswereusedtoreflecttheattitudestowardsvehicleelectrificationintheHelsinki region. Fromaneconomicalpointofview,anapparentlyreasonableshort-termalternativefor theHelsinkiregionbustrafficisthetrolleybus.ThecityofHelsinkialreadyhassome earlierexperienceoftrolleybusesfromthepastdecades.Consideringthedemonstration projects implemented elsewhere, modern trolley buses function well enough in cold climates.Theinvestmentpriceofonevehicleisthecheapestamongthediscussedbus alternatives.Thelifetimeofthevehiclealsopresentsamajoradvantage.Oneofthedif- ficultissueswithtrolleybusesistheneededinfrastructure.Acostly,visibleoverhead networkmightinvokedispleasure. Fuel cell vehicles and battery-electric vehicles are to be developed further for proper implementation in thefuture. At themoment, these vehicletechnologiesaretypically eitherveryexpensiveorprovideashortlifecycle.Thefuelcellandbatterytechnologies are being strongly developed, alsosubsidisedbygovernments.InFinland,theknowl- edge of the battery technologies and fuel cells increases all the time. Several state- supportedprojectsaimforthedevelopmentofthesetechnologies. Vehicularsolutionspurelydependingonbatteriesarenotseenasalucrativesolutionfor the bustraffic in the near future.However, demonstrations utilising battery-switching stationsorfast-chargingpointscouldbeusedforpromotingthefuturedevelopmentof vehiclebatterytechnologies,aswellasimprovingtheattitudesshowntowardsbattery- electric vehicles. Despite the technological restrictions, batteries might be utilised in buses to provide auxiliary or regenerative power for extending the vehicle range and reducingtheamountofgeneratedexhaustgases.Incontrasttobuses,therearealready electriccarsontheFinnishautomotivemarket.Thus,itislikelythatwewillseesome kindofelectricdeliveryvehiclesormoreEVsforcarrentalsoon.TheItellaCorpora- tion,forinstance,hasinformedaboutitsinteresttowardsvehicleelectrification.

72 Theviabilityofthedifferentvehicletechnologiesinpublictransportordeliverytraffic dependshighlyontheproductionandcostsofconsumedfuelorelectricity.Hydrogen productionanddistributioninFinlandareclearlynotwidelyenoughestablishedtopro- videasufficienthydrogeninfrastructureforalarge-scalevehicularuse.Theproduction ofhydrogenposestwofundamentalproblems:highemissionlevels(i.e.,carbondiox- ide) and expensive carbon sequestration. These issues hinder the use of hydrogen by makingitaveryexpensivefuel.TheFinnishelectricityproductionaimsforincreased utilisationofrenewableenergyinordertoreduceemissionsandhittheemissiontargets assessedbytheEU.Thetrendofgrowingrenewableelectricityproductionwilldirectly improvethesustainabilityofbattery-electricvehiclesandtrolleybuses. Thisthesisdiscussedelectricvehiclescapableofutilisingexternalorstoredelectricity orhydrogenforpropulsion.Severalelectricvehicletechnologieswereexaminedoneby onetofindoutthemostsuitableoptionsforbusanddeliverytraffic.Formorepractical results, it is recommended that different combinations of these vehicle technologies (e.g.,dual-modevehicles)andtheuseofAPUswouldbeexaminedmorethoroughlyto findoutthemostfeasibleelectricvehiclesolutionsforbusanddeliverytraffic.

73 References

[1]VUCHIC,VukanR. UrbanTransitSystemsandTechnology. Hoboken,NewJersey &Canada:JohnWiley&Sons,Inc.,March2007.ISBN:978-0-471-75823-5.

[2]LEHMUSKOSKI,Villeetal. YmpäristöystävällisenKaupunkiliikenteenKehittämi- nenHelsingissä. [D:9/2007]Helsinki,Finland:HELSINKICITYTRANSPORTPlan- ningUnit.27November2007.

[3]EKLUND,Pipsae.a. JohdinautoliikenteenToteutettavuusselvitys. [HKL:njul- kaisusarjaD:2/2009]Helsinki,Finland:HELSINKICITYTRANSPORTPlanning Unit.16April2009.

[4]UK. :CharacteristicsandApplications. [accessed3March 2010]Availablefrom:.

[5]ANDERSSON,P.G. TrolleybusLandskrona-theWorld'sSmallestTrolleybus"Sys- tem". TrivectorTrafficAB,20June2006.[accessed20July2010]Availablefrom: .

[6]BJÖRKLUND,Stefan,etal. NewConceptsforTrolleyBusesinSweden.NyaKon- ceptFörTrådbussariSverige. KFB-SwedishTransportandCommunicationsRe- searchBoard.December2000.ISSN:1104-2621,ISBN:91-89511-25-5.

[7]BELL,Irvine. Engineering. TrolleybusUK.[accessed10March2010]Available from:.

[8]BELL,Irvine. WhytheTrolleybus? TrolleybusUK.[accessed6March2010]Avail- ablefrom:.

[9]ŠkodaHolding. Trolleybuses. ŠKODAHOLDING.[accessed6March2010]Avail- ablefrom:.

[10]ZIEGLER,Ingemar. YttrandeÖverMotion2008:39OmTrådbussariStockholms Innerstad .VONSCHANTZ,Johan.Pronouncement.3June2009.

[11]HOOGERS,Gregor. FuelCellTechnologyHandbook .BocaRaton,Florida:CRC Press,2003.ISBN:0849308771.

[12]WhatisaFuelCell? FuelCells2000.[accessed16March2010]Availablefrom: .

[13]COOK,B.IntroductiontoFuelCellsandHydrogenTechnology .EngineeringSci- enceandEducationJournal ,2002,vol.11,no.6.pp.205-216.ISSN0963-7346.

74 [14]EUDY,L.etal. FuelCellBusesinU.S.TransitFleets:SummaryofExperiences andCurrentStatus. [NREL/TP-560-41967]1617ColeBoulevard,Golden,Colorado: NRELNationalRenewableEnergyLaboratory.September2007.[accessed27March 2010]Availablefrom:.

[15]CRAWLEY,Gemma. ProtonExchangeMembrane(PEM)FuelCells. FuelCell Today.March2006.[accessed17March2010]Availablefrom: . [16]BiomeriOy. SähköajoneuvotSuomessa-Selvitys. BiomeriOy.6August2009. [accessed23February2010]Availablefrom: . [17]HowFuelCellsWork. BallardPowerSystemsInc.[accessed17March2010] Availablefrom: .

[18]GIELEN,DolfandSIMBOLOTTI,Giorgio. EnergyTechnologyAnalysis-Pros- pectsforHydrogenandFuelCells. ©OECD/IEA.,2005.ISBN:92-64-109-5792005. [accessed1April2010]Availablefrom: .

[19]FCvelocity(TM)-HD6. BallardPowerSystemsInc.,December2010.[accessed17 March2010]Availablefrom .

[20]KAURANEN,PerttiandIHONEN,Jari. SynthesisandDurabilityofCarbonNano- tubeBasedMembraneElectrodeAssembliesforPEMFuelCells. VTT,17September 2007.[accessed13April2010]Availablefrom: .

[21]EGGERT,A.R.,etal. CharacteristicsofanIndirect-MethanolFuelCellSystem. EnergyConversionEngineeringConferenceandExhibit,2000.(IECEC)35thInterso- ciety ,vol.2,pp.1326-1332.

[22]FuelCell. Answers.com.[accessed13April2010]Availablefrom: .

[23]CURTIN,SandraE.etal. AReportonWorldwideHydrogenBusDemonstrations, 2002-2007. [FTA-GA-04-7001-2009.01]U.S.DepartmentofTransportation-Federal TransitAdministration.2009.[accessed16March2010]Availablefrom: .

[24]SAXE,M.etal.EnergySystemAnalysisoftheFuelCellBusesOperatedinthe Project:CleanUrbanTransportforEurope .Energy ,5,2008,vol.33,no.5.pp.689-711. ISSN0360-5442.

[25]STOLZENBURG,KlausandSCHNELL,Patrick. HydrogenInfrastructure:What haveweLearnedfromHyFLEET:CUTE. Hamburg:HyFLEET:CUTE.[accessed22 March2010]Availablefrom:

75 .

[26]CUTE. HyFLEET:CUTE.[accessed12March2010]Availablefrom: .

[27]ECTOS. HyFLEET:CUTE.[accessed12March2010]Availablefrom: .

[28]STEP. HyFLEET:CUTE.[accessed12March2010]Availablefrom: .

[29]EcoBus-PerthFuelCellBusTrial. GovernmentofWesternAustralia-Depart- mentofTransport.[accessed13March2010]Availablefrom: .

[30]TransitBuses. ©CaliforniaFuelCellPartnership.Availablefrom: .

[31]UTCPowerAttains5,000-HourDurabilityMilestonewithTransitBusFuelCell System. SouthWindsor,Connecticut,USA:UTCPower,13January2010.[accessed25 March2010]Availablefrom: .

[32]VANDOKKUM,JanandDASINGER,Andrew.MeetingtheChallengesinthe TransportSector.JournalofPowerSources181(2008)378-381. [accessed25March 2010]Availablefrom: .

[33]JERRAM,LisaC. 2008BusSurvey. FuelCellToday.December2008.[accessed 31March2010]Availablefrom: .

[34]PEMFuelCellProductPortfolio. BallardPowerSystemsInc.,April2009.[ac- cessed18March2010]Availablefrom: .

[35]FuelCellsinMassTransit:ACost-BenefitPerspective. BallardPowerSystems Inc.,May2009.[accessed17March2010]Availablefrom: .

[36]BallardtoPowerSunLineTransitAgencyBuses. BallardPowerSystemsInc.2 march2010.[accessed18March2010]Availablefrom:.

[37]EUDY,L.etal. FuelCellBusesinU.S.TransitFleets:CurrentStatus2009. [NREL/TP-560-46490]NRELNationalRenewableEnergyLaboratory.October2009.

76 [accessed31March2010]Availablefrom: .

[38]MAACK,MariaH.andSCHUCAN,ThomasH. ECOLOGICALCITYTRANS- PORTSYSTEM. IcelandicNewEnergyLtd.,IEAHydrogenImplementingAgreement. January2006.[accessed24March2010]Availablefrom: .

[39]SKÚLASON,JónB. Deliverable19:FinalPublicReport. [EVK-CT-2000-00033] IcelandicNewEnergyLtd.,TheECTOSproject,Iceland.2006.[accessed26March 2010]Availablefrom: .

[40]DerCitaroFuelCELL-Hybrid.GENERATIONZERO-EMISSION. Mercedez-Benz. [accessed22March2010]Availablefrom:.

[41]SKÚLASON,JónB. Delivery11:ReportonSpecificationandFeaturesoftheFuel CellBusses. [Contractno:EVK4-CT-2000-00033,ProposalnoEVK2000-00698]Ice- landicNewEnergyLtd.,TheECTOSproject,Iceland.2004.[accessed19March2010] Availablefrom: .

[42]CHENG,Xuanetal.AReviewofPEMHydrogenFuelCellContamination:Im- pacts,Mechanisms,andMitigation .JournalofPowerSources165(2007)739-756 ,8 January2007.[accessed19March2010]Availablefrom: .

[43]BAILEY,J.R.,PhD;andHAIRR,MarkE. EastTennesseeHydrogenInitiative, Chattanooga. Chattanooga,Tennessee,UnitedStates:CenterforEnergy,Transportation andtheEnvironment,UniversityofTennesseeatChattanooga(Sponsoredby:U.S.De- partmentofTransportation-FederalTransitAdministration).30September2009.[ac- cessed29March2010]Availablefrom: .

[44]EvoBusHistory,Highlights1995-2008. ©2001-2010EvoBusGmbH.[accessed 29March2010]Availablefrom:.

[45]TheCitaroFuelCELLHybrid-GenerationZeroEmission. Mannheim,Germany: EvoBusGmbH,Mercedes-BenzBusandunit.[accessed30March2010]Avail- ablefrom:.

77 [46]ElementHydrogen-H. Copyright1995-2010KennethL.Barbalace(J.K.Barbal- ace,inc).2007.[accessed3June2010]Availablefrom: .

[47]HistoricalExchangeRates-FXHistory(R):QualityRatesfrom1990. OANDA Corporation.2009.[accessed7April2010]Availablefrom: .

[48]KARLSTRÖM,Magnus.LocalEnvironmentalBenefitsofFuelCellBuses-aCase Study .JournalofCleanerProduction13(2005)679-685 ,2005.[accessed7April2010] Availablefrom: . [49]OWEN,AnthonyD.andCOCKROFT,Colin. ACost-BenefitAnalysisofPerth's HydrogenFuelCellBuses. MurdochUniversity.March2006.[accessed7April2010] Availablefrom:< http://www.dpi.wa.gov.au/mediafiles/alt_cba.pdf >. [50]CALLAGHAN,Lisa;andLYNCH,Sheila. AnalysisofElectricDriveTechnologies forTransitApplications:Battery-Electric,Hybrid-ElectricandFuelCells. [FTA-MA- 26-7100-05.1]FederalTransitAdministration,U.S.DepartmentofTransportation.Au- gust2005.[accessed12April2010]Availablefrom: .

[51]FULTON,Lew. SUSTAINABLETRANSPORT:NewInsightsfromtheIEA's WorldwideTransitStudy. IEA.2001.[accessed7April2010]Availablefrom: .

[52]IEAEnergyTechnologyEssentials-HydrogenProduction&Distribution. © OECD/IEA,April2007.[accessed7April2010].Availablefrom: . [53]HARALDSSON,K.etal.FuelCellBusesintheStockholmCUTEproject—First ExperiencesfromaClimatePerspective .JournalofPowerSources ,8/18,2005,vol. 145,no.2.pp.620-631.ISSN0378-7753.Availablefrom: . [54]LowerandHigherHeatingValuesofFuels. HydrogenAnalysisResourceCenter (USDepartmentofEnergy).March2006.[accessed31March2010]Availablefrom: .

[55]VINCENT,C.A. BatterySystemsforElectricVehicles. 2000.Electric,Hybridand FuelCellVehicles(Ref.No.2000/050),IEESeminar.

[56]CHAN,C.C.TheStateoftheArtofElectric,Hybrid,andFuelCellVehicles .Pro- ceedingsoftheIEEE ,2007,vol.95,no.4.pp.704-718.ISSN0018-9219.

78 [57]FULTON,Lew,etal. Transport,EnergyandCO2:MovingTowardSustainability. IEAPUBLICATIONS,9,ruedelaFédération,75739PARISCEDEX15:© IEA/OECD,2009.ISBN:978-92-64-07316-6.

[58]ELIAS,M.F.M.,etal. Lithium-IonBatteryChargerforHighEnergyApplication. 2003.PowerEngineeringConference,2003.PECon2003.Proceedings,pp.283-288.

[59]DINGER,Andreas,etal. BatteriesforElectricCars-Challenges,Opportunities, andtheOutlookto2020. TheBostonConsultingGroup,Inc.January2010.[accessed 19April2010]Availablefrom:.

[60]EuropeanBatteries. EuropeanBatteriesOy.2010.[accessed20April2010]Avail- ablefrom:.

[61]ZUPA,T.andLISKA,O.ChargingModuleforNewestTypesofRechargeable BatteriesLiFePO4.IEEE8thInternationalSymposiumonAppliedMachineIntelligence andInformatics(SAMI) ,2010.Proceedings,pp.241-242.

[62]JOSEPH,A.andSHAHIDEHPOUR,M.BatteryStorageSystemsinElectric PowerSystems. 2006.PowerEngineeringSocietyGeneralMeeting ,2006.IEEE.

[63]KOTAICH,K.andSLOOP,S.E.Cobalt-FreeBatteries,aNewFrontierforAd- vancedBatteryRecycling. 2009. IEEEInternationalSymposiumonSustainableSystems andTechnology ,2009.ISSST'09.Proceedings,p.1.

[64]HOUSE,V.E.andROSS,Fayth. HowtoBuildaBatterythatLastsLongerthana Car. AltairnanoInc.2007.[accessed20April2010]Availablefrom: .

[65]ThunderSky. ThunderSkyEnergyGroupLimited.2010.[accessed19April2010] Availablefrom:.

[66]LithiumEnergyJapanCommitstoConstructionofNewPlant -NewRittoPlant(Japan)toBeginFullMassProductionofLithium-IonBatteriesfor 50,000ElectricVehiclesPerYearin2012-. MitsubishiMotorsCorporation.[accessed 19April2010]Availablefrom:.

[67]AltairNanotechnologiesInc.[accessed20April2010]Availablefrom: .

[68]A123Systems.2010.[accessed20April2010]Availablefrom: .

[69]Saft.[accessed20April2010]Availablefrom: .

[70]SBLiMotive-AJointCompanyofSamsungandBosch. SBLiMotive.[accessed20 April2010]Availablefrom:.

[71]Ebus-Clean.Reliable.Fuel-Efficient. Ebus.2008.[accessed29April2010] Availablefrom:.

79 [72]TheNation'sFirstUltraQuickChargeTransitTrolleysareComingtoWenatchee, Wash. MassTransit.10August2010.[accessed23August2010]Availablefrom: .

[73]Zinc–AirBattery-allElectricBusDemonstrationProject. [FTAProjectNo.NV- 26-7001-02]FederalTransitAdministration,U.S.DepartmentofTransportation.March 2004[accessed29April2010]Availablefrom:.

[74]CleanPublicTransportFleetinRome:ElectricBuses. ©Copyright2009CIVI- TASVANGUARD.2007.[accessed29April2010]Availablefrom: .

[75]TecnobusS.p.a.[accessed4May2010]Availablefrom: .

[76]DemonstrationRunofYutongElectricBusinXinxiang. Yutong.2010.[accessed 29April2010]Availablefrom: .

[77]ProterraBringsFutureofGreenCommercialTransittoCaliforniaCitieswith ZeroEmissionCleanBusTour. ©2010ProterraInc.2010.[accessed3May2010] Availablefrom:.

[78]HydrogenHybridBusFerriedPeopleatWinterOlympics. USATODAY.,2010. [accessed3May2010]Availablefrom: .

[79]DesignLine.2010.[accessed3May2010]Availablefrom: .

[80]GRYNBAUM,MichaelM. NewBusesBringSilencetotheStreets . TheNewYorkTimes.6December2009.[accessed3May2010]Availablefrom: .

[81]TindoSolarBus-theWorld'sFirstSolarElectricBus. AdelaideCityCouncil.[ac- cessed4May2010]Availablefrom: .

[82]AstonbusInc.[accessed4May2010]Availablefrom: .

[83]Plug-inHybridElectricSchoolBus. ©AdvancedEnergy.[accessed28May2010] Availablefrom: . [84]AXSEN,Jonnetal. BatteriesforPlug-inHybridElectricVehicles(PHEVs):Goals andtheStateofTechnologyCirca2008. [UCD-ITS-RR-08-14]Davis,CA:Instituteof TransportationStudies-UniversityofCalifornia.May2008.[accessed31May2010] Availablefrom:.

80 [85]PRITCHARD,Ewanetal. HYBRIDELECTRICSCHOOLBUSPRELIMINARY BUSINESSFEASIBILITYREPORT. Raleigh,N.C.:HybridElectricSchoolBusPro- gram.3June2005.[accessed31May2010]Availablefrom: .

[86]GreenLightforEVCharging(EnstoGreenPark-PlugintoaFreshToday). Ensto Group.[accessed17May2010]Availablefrom: .

[87]PuroNovo-GreenEnergyLogistics. PuroNovo.[accessed17May2010]Available from:.

[88]PETERSON,Scottetal.Lithium-IonBatteryCellDegradationResultingfromRe- alisticVehicleandVehicle-to-GridUtilization .JournalofPowerSources ,4/15,2010, vol.195,no.8.pp.2385-2392.ISSN0378-7753.

[89]KEMPTON,WillettandLETENDRE,StevenE.ElectricVehiclesasaNewPower SourceforElectricUtilities .TransportationResearchPartD:TransportandEnviron- ment ,9,1997,vol.2,no.3.pp.157-175.ISSN1361-9209.

[90]KEMPTON,WillettandTOMI Ć,Jasna.Vehicle-to-GridPowerFundamentals: CalculatingCapacityandNetRevenue .JournalofPowerSources ,6/1,2005,vol.144, no.1.pp.268-279.ISSN0378-7753.

[91]PEHNT,MartinandHÖPFNER,Ulrich. Kurzgutachten-Wasserstoff-UndStrom- speicherinEinemEnergiesystemMitHohenAnteilenErneuerbarerEnergien:Analyse DerKurz-UndMittelfristigenPerspektive. Heidelberg,Germany:ifeu-InstitutfürEn- ergie-undUmweltforchung,HeidelbergGmbH.May2009.[accessed2May2010] Availablefrom: .

[92]CHECKEL,David. HybridDiesel-ElectricBus/TrolleyBusDemonstrationPro- ject:TechnicalComparisonofin-usePerformance-APPENDIXH,ENERGYDE- MANDANDEFFICIENCYOFTHETRANSLINK(NEWFLYER/KIEPPE)TROLLEY. Alberta,Canada:UniversityofAlberta,MechanicalEngineering.18April2008.[ac- cessed3June2010]Availablefrom: .

[93]ALATALO,Martti. PersonalCommunication. EuropeanBatteriesOy.

[94]VALØEN,LarsO.andSHOESMITH,MarkI. THEEFFECTOFPHEVAND HEVDUTYCYCLESONBATTERYANDBATTERYPACKPERFORMANCE. Miljø InnovasjonAS(Norway),E-OneMoliEnergy(Canada)Ltd.10October2007.[ac- cessed9June2010]Availablefrom: .

[95]EAVES,Stephen;andEAVES,James. ACostComparisonofFuel-CellandBat- teryElectricVehicles. EavesDevices,Charlestown,RI,ArizonaStateUniversity-East,

81 Mesa,AZ.2003.[accessed21September2010]Availablefrom: .

[96]SAARI,Petri. 2010.HelsinkiRegionTransport(HRT).Helsinki,POBOX100, 00077HSL.Interview7June2010.

[97]NYLUND,Nils-Olof. PersonalCommunication. VTTTechnicalResearchCenter ofFinland.

[98]Fuel-CellBusesPromisedfor2010Olympics. VancouverSun-©CanWestMe- diaWorksPublicationsInc.4August2007.[accessed2June2010]Availablefrom: .

[99]SähköntuotannonPolttoaineetJaCO2-Päästöt. Energiateollisuusry.15June2010. [accessed16June2010]Availablefrom: .

[100]SAARI,Petri. JoukkoliikenteenSähköistäminen. HRTHelsinkiRegionTransport. 24May2010.[accessed11June2010]Availablefrom: .

[101]TheEuropeanParliament. Regulation(EC)no595/2009oftheEuropeanPar- liamentandoftheCouncilof18June2009onType-ApprovalofMotorVehiclesand EngineswithRespecttoEmissionsfromHeavyDutyVehicles(EuroVI)andonAc- cesstoVehicleRepairandMaintenanceInformationandAmendingRegulation(EC) no715/2007andDirective2007/46/ECandRepealingDirectives80/1269/EEC, 2005/55/ECand2005/78/EC(1) .ISSN1725-2555.18July2009.[accessed17June 2010]Availablefrom:.

[102]InternationalEnergyAgencyImplementingAgreementonAdvancedMotorFuels. AutomotiveFuelsfortheFuture:TheSearchforAlternatives/IEA-AFIS,IEA-AMF. Paris:OECD/IEA,1999.ISBN9264169601.Availablefrom:.

[103]HydrogenProduction-SteamMethaneReforming(SMR). Albany,NY:New YorkStateEnergyResearchandDevelopmentAuthority.2005.[accessed27July2010] Availablefrom: .

[104]GUPTA,RamB. HydrogenFuel:Production,Transport,andStorage. Boca Raton:CRCPress,cop.2009.ISBN9781420045758.

[105]COLLODI,Guido. HydrogenProductionViaSteamReformingwithCO2Cap- ture. Milan,Italy:FosterWheeler.2010.[accessed27July2010]Availablefrom: .

[106]HSL/HRT-HelsinkiRegionTransport. HSL,HelsinkiRegionalTransportAu- thority.[accessed22June2010]Availablefrom: .

82 [107]Ympäristöraportti2009. HKL.7June2010.[accessed23June2010]Available from: .

[108]VÄKEVÄ,Outi. VähäpäästöistenAjoneuvojenEdistäminenJaYmpäristövyöhyk- keenPerustaminenHelsingissä-IlmansuojelutyöryhmänEhdotusToimenpiteiksi. City ofHelsinki-EnvironmentCentre.14September2009.[accessed15July2010]Avail- ablefrom: .

[109]KALLIONPÄÄ,Leo. TARJOUSPYYNTÖHELSINGINKAUPUNGINSISÄISTEN BUSSILINJOJENLIIKENNÖINNISTÄ-KILPAILU19/2009. Helsinki,Finland: HELSINGINKAUPUNKI,HKL-liikelaitos,suunnitteluyksikkö.4December2009.

[110]KALLIONPÄÄ,Leo. KILPAILUTETTAVANLIIKENTEENLINJA- AUTOKALUSTONRAKENNE-JAVARUSTETASOVAATIMUKSET. Helsinki,Finland: HELSINGINKAUPUNKI,HKL-liikelaitos,suunnitteluyksikkö.26January2007.

[111]JohdinautonHankeselvityksenTilannekatsaus16.04.2010. HSL,HelsinkiRe- gionalTransportAuthority.16April2010.

[112]ILMANSUOJELUTYÖRYHMÄNEHDOTUSVÄHÄPÄÄSTÖISTENAJONEUVO- JENEDISTÄMISESTÄJAYMPÄRISTÖVYÖHYKKEENPERUSTAMISESTA. Cityof Helsinki.30March2010.[accessed15July2010]Availablefrom: .

[113]DABLANC,Laetitia.GoodsTransportinLargeEuropeanCities:DifficulttoOr- ganize,DifficulttoModernize .TransportationResearchPartA:PolicyandPractice ,3, 2007,vol.41,no.3.pp.280-285.ISSN0965-8564.

[114]YleistajuinenTiivistelmä-EU:NIlmasto-JaEnergiapaketti. EuropeanUnion. 2008.[accessed24August2010]Availablefrom: .

[115]TÁNCZOS,KatalinandTÖRÖK,Ádám.ImpactofTransportationonEnviron- ment .PeriodicaPolytechnica.TransportationEngineering. ,2008,vol.36,no.1-2,pp. 105-110.[accessed24August2010]Availablefrom: .

[116]ElectricVehicleforGoodsDistribution. CIVITAS.14February2010.[accessed 27August2010]Availablefrom:.

[117]THINK. [accessed27August2010]Availablefrom:.

[118]THINKCity. ValmetAutomotive.2010.[accessed16September2010]Available from:.

[119]KING,Danny. EnerDel,ThinkLithium-IonBatterySystemsGoingPostalinJa- pan. 28July2009.[accessed28August2010]Availablefrom:

83 .

[120]ADAMSLOPEZ,Theresa. ElectricTruckDemonstrationProjectFactSheet. Port ofLosAngeles.2008.[accessed28August2010]Availablefrom: .

[121]BalqonReceivesInitial$490,000PurchaseOrderfromNewChina-BasedDis- tributor,DynaProTech-OrderExpandsDistributionofBalqon'sLeadingZero- EmissionsElectricDriveSystemsintoChina. Marketwire.25August2010.Available from:.

[122]PINKSTON,Christian. PresidentObamaSpeaksatSmithElectricVehicles Headquarters-CEOBryanHanselRespondstothePresident’sRemarksontheEcon- omy. SmithElectricvehicles.2010.[accessed30August2010]Availablefrom: .

[123]Plug-in.Swithon. SmithElectricvehicles.2010.[accessed30August2010] Availablefrom:.

[124]WIPKE,Keithetal. EvaluationofRangeEstimatesforToyotaFCHV ‐advUnder OpenRoadDrivingConditions. [SRNS ‐STI ‐2009 ‐00446]SavannahRiverNational Laboratory,NationalRenewableEnergyLaboratory.10August2009.[accessed17Sep- tember2010]Availablefrom:.

[125]Itella. ItellaCorporation.[accessed16September2010]Availablefrom: .

[126]KORKIA-AHO,Sampo. ItellaCorporation.P.O.Box1,FI-00011Itella,Finland. Interview15September2010.

[127]Norsjö. NorsjöMopedAB.[accessed16September2010]Availablefrom: .

[128] RegulatoryFramework. DieselNet.Copyright©1997-2010EcopointInc.2010. [accessed12October2010]Availablefrom: .

84 AppendixA:Europeanemissionstandards

Table 9 presents the guidelines (i.e., standards) forthemaximumemissionlevelsfor heavy-dutydieselvehiclesinsidetheEuropeanUnion.Theimplementationdatesofthe standardsrefertonewtypeapprovals. Table 9: European emission standards for heavy-duty diesel engines, g/kWh (smokeinm -1)[128]

Tier Date CO HC NO X PM Smoke EuroI 1992, < 4.5 1.1 8.0 0.612 85kW 1992, > 4.5 1.1 8.0 0.36 85kW EuroII Oct.1996 4.0 1.1 7.0 0.25 Oct.1998 4.0 1.1 7.0 0.15 EuroIII Oct.1999, 1.5 0.25 2.0 0.02 0.15 EEVsonly Oct.2000 2.1 0.66 5.0 0.10 0.8 0.13 a EuroIV Oct.2005 1.5 0.46 3.5 0.02 0.5 EuroV Oct.2008 1.5 0.46 2.0 0.02 0.5 EuroVI Jan.2013 1.5 0.13 0.4 0.01 aforenginesoflessthan0.75dm 3sweptvolumepercylinderandaratedpowerspeed ofmorethan3,000min -1

85