Chapter 2 Imaging Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Imaging Spectrometry CHAPTER 2 IMAGING SPECTROMETRY: BASIC ANALYTICAL TECHNIQUES Freek VAN DER MEER α ,β , Steven DE JONG χ & Wim BAKKER α α International Institute for Aerospace Survey and Earth Sciences (ITC), Division of Geological Survey, Enschede, The Netherlands. β Delft University of Technology, Department of Applied Earth Sciences, Delft, The Netherlands χ Wageningen University and Research Center, Center for Geo-information, Wageningen, the Netherlands 1 Introduction Remote sensing (e.g., the observation of a target by a device separated from it by some distance thus without physical contact) of the surface of the Earth from aircraft and from spacecraft provides information not easily acquired by surface observations. Until recently, the main limitation of remote sensing was that surface information lacked detail due to the broad bandwidth of sensors available. Work on high-spectral resolution radiometry has shown that earth surface mineralogy can be identified using spectral information from sensor data (Goetz 1991). Conventional sensors (e.g., Landsat MSS and TM, and SPOT) acquire information in a few separate spectral bands of various widths (typically in the order of 0.1-0.2 µm), thus smoothing to a large extent the reflectance characteristics of the surface (Goetz & Rowan 1981). Most terrestrial materials are characterized by spectral absorption features typically 0.02-0.04 µm in width (Hunt 1980). High-spectral resolution remotely sensed images are acquired to produce reflectance or radiance spectra for each pixel in the scene. Based upon the molecular absorptions and constituent scattering characteristics expressed in the spectrum we seek to: • Detect and identify the surface and atmospheric constituents present • Assess and measure the expressed constituent concentrations • Assign proportions to constituents in mixed spatial elements • Delineate spatial distribution of the constituents • Monitor changes in constituents through periodic data acquisitions • Simulate, calibrate and intercompare sensors • Validate, constrain and improve models New analytical processing techniques have been developed to analyze such high spectral dimensional data sets. These methods are the scope of this chapter. The pre- 2 F.D. VAN DER MEER, S.M. DE JONG & W. BAKKER processing of imaging spectrometer data and the calibration of the instruments is briefly addressed. The chapter focuses on the processing of the data and new analytical approaches developed for the specific use with imaging spectrometer data. First we present a review of existing systems and design philosophy. 2 Imaging spectrometry: airborne systems Imaging spectrometers have been used for many years in military applications such as the detection of camouflage from real vegetation. Due to the classified nature of the data and sensors not much can be said about the origin and applications being served. The first scanning imaging spectrometer was the Scanning Imaging Spectroradiometer (SIS) constructed in the early 1970s for NASA's Johnson Space Center. After that, civilian airborne spectrometer data were collected in 1981 using a one-dimensional profile spectrometer developed by the Geophysical Environmental Research Company which acquired data in 576 channels covering the 0.4-2.5 µm wavelength range (Chiu & Collins, 1978) followed by the Shuttle Multispectral Infrared Radiometer (SMIRR) in 1981. The first imaging device was the Fluorescence Line Imager (FLI; also known as the Programmable Line Imager, PMI) developed Canada’s Department of Fisheries and Oceans (in 1981) followed by the Airborne Imaging Spectrometer (AIS), developed at the NASA Jet Propulsion Laboratory which was operational from 1983 onward acquiring 128 spectral bands in the range of 1.2-2.4 µm. The field-of-view of 3.7 degrees resulted in 32 pixels across-track. A later version of the instrument, AIS-2 (LaBaw, 1987), covered the 0.8-2.4 µm region acquiring images 64 pixels wide. Since 1987, NASA is operating the successor of the AIS systems, AVIRIS, the Airborne Visible/Infrared Imaging Spectrometer (Vane et al., 1993). Since that time many private companies also started to take part in the rapid development in imaging spectrometry. Initiatives are described in a later paragraph on airborne systems. Currently many space agencies and private companies in developed and developing countries operate there own instruments. It is impossible to describe all currently operational airborne imaging spectrometer systems in detail. Some systems will be highlighted to serve as examples rather than to provided an all-inclusive overview. The AISA Airborne Imaging Spectrometer is a commercial hyperspectral pushbroom type imaging spectrometer system developed by SPECIM based in Finland. The spectral range in standard mode is 430 to 900 nm and a spectral sampling interval of 1.63 nm a a total of 288 channels. Spectral channel bandwidth are programmable from 1.63 to 9.8 nm. The Field of view is 21 degrees across-track and 0.055 degrees along-track resulting in typical spatial Resolutions of 360 pixels per swath, 1 m across- track resolution at an aircraft altitude of 1000 m. The Advanced Solid-state Array Spectroradiometer (ASAS) is a hyper-spectral, multi-angle, airborne remote sensing instrument maintained and operated by the Laboratory for Terrestrial Physics at the NASA Goddard Space Flight Center. The system acquires 62 spectral channels in visible to near-infrared (404 to 1020 nm) with a spectral bandwidth of approximately 10 nm. The across-track resolution is 3.3 m (at nadir) to 6.6 m (60 deg) at 5000 m altitude, the along-track resolution is 3 m (at nadir) at 5000 m altitude. ANALYTICAL TECHNIQUES IN SPECTROMETRY 3 In 1987 NASA began operating the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS was developed as a facility that would routinely supply well-calibrated data for many different purposes. The AVIRIS scanner collects 224 contiguous bands resulting in a complete reflectance spectrum for each 20*20 m. pixel in the 0.4 to 2.5 µm region with a sampling interval of <10 nm. The field-of-view of the AVIRIS scanner is 30 degrees resulting in a ground field-of-view of 10.5km. AVIRIS uses scanning optics and four spectrometers to image a 614 pixel swath simultaneously in 224 contiguous spectral bands over the 400 to 2500nm. wavelength range. The Thermal Infrared Multispectral Scanner (TIMS) is a multispectral scanner that collects data in six channels. The six-element HgCdTe detector array provides six discrete channels: • Channel 1: 8.2 - 8.6 micrometers • Channel 2: 8.6 - 9.0 micrometers • Channel 3: 9.0 - 9.4 micrometers • Channel 4: 9.4 - 10.2 micrometers • Channel 5: 10.2 - 11.2 micrometers • Channel 6: 11.2 - 12.2 micrometers Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters at 10,000 feet). The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan. Swath width is 2.6 nautical miles (4.8 kilometers at 10,000 feet) while the scanner's Field of View equals 76.56 degrees. In Canada, ITRES developed the Compact Airborne Spectrographic Imager (CASI) that became operational in 1989. Recently, a revised version of the instrument has been put on the market. This pushbroom sensor has 288 spectral narrow (1.9nm.) bands with 512 pixels across track in the 400-870nm. range . The Geophysical Environmental Research Corporation (GER) based in Millbrook, U.S. develops a line of imaging spectrometers that included the GERIS (a 63 channel instrument no longer in production), the Digital Airborne Imaging Spectrometer (DAIS), and the Environmental Protection Systems (EPS) systems. The 79-channel Digital Airborne Imaging Spectrometer built by the Geophysical Environmental Research corp. (GER) is the successor of the 63-channel imaging spectrometer GERIS. This 15-bit instrument covers the spectral range from the visible to the thermal infrared wavelengths at variable spatial resolution from 3 to 20 m. depending on the carrier aircraft flight altitude. Six spectral channels in the 8 - 12 µm. region are used for temperature and emissivity of land surface objects. These and 72 narrow band channels in the atmospheric windows (e.g. those wavebands that pass relatively undiminished through the atmosphere) between 0.450 and 2.45 µm. are sensed using four spectrometers. The FOV is 32-39 degrees (depending on aircraft) and the IFOV is3.3 mrad. (0.189 degrees) yielding a GIFOV depending on aircraft altitude of between 5 - 20 m. The Hyperspectral Mapper (HyMAP), in the U.S. known as Probe-1, was build by Integrated Spectronics in Australia and operated by HyVISTA. The 126 channel Probe 1 (operated by ESSI in the US) is a "whiskbroom style" instrument that collects data in a cross-track direction by mechanical scanning and in an along-track direction by movement of the airborne platform. The instrument acts as an imaging spectrometer in 4 F.D. VAN DER MEER, S.M. DE JONG & W. BAKKER the reflected solar region of the electromagnetic spectrum (0.4 to 2.5 µm) and collects broadband information in the MIR (3 - 5 µm) and TIR (8 - 10 µm) spectral regions. In the VNIR and SWIR, the at-sensor radiance is dispersed by four spectrographs onto four detector arrays. Spectral coverage is nearly continuous in these regions with small gaps in the middle of the 1.4 and 1.9 µm atmospheric water bands. The spatial configuration of the Probe-1 is: • IFOV - 2.5 mrad along track, 2.0 mrad across track • FOV - 61.3 degrees (512 pixels) • GIFOV - 3 – 10 m (typical operational range) The Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) is a 102 channel imaging spectrometer developed by SensyTech. It has 92 channels covering the 400-2500nm region and 10 thermal channels.
Recommended publications
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • SWIFTS and SWIFTS-LA: Two Concepts for High Spectral Resolution Static Micro-Imaging Spectrometers
    EPSC Abstracts Vol. 9, EPSC2014-439-1, 2014 European Planetary Science Congress 2014 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2014 SWIFTS and SWIFTS-LA: two concepts for high spectral resolution static micro-imaging spectrometers E. Le Coarer(1), B. Schmitt(1), N. Guerineau (2), G. Martin (1) S. Rommeluere (2), Y. Ferrec (2) F. Simon (1) F. Thomas (1) (1) Univ. UGA ,CNRS, Lab. IPAG, Grenoble, France. (2) ONERA/DOTA Palaiseau France ([email protected] grenoble.fr). Abstract All these instruments use either optical gratings, Fourier transform or AOTF spectrometers. The two SWIFTS (Stationary-Wave Integrated Fourier first types need moving mirrors to scan spectrally Transform Spectrometer) represents a family of very thus adding complexity and failure risk in space. The compact spectrometers based on detection of interesting solution of AOTF, without moving part standing waves for which detectors play itself a role (only piezo) is however limited in resolution to a few in the interferential detection mechanism. The aim of cm-1 due to limitation in monocrystal size (fragile). this paper is to illustrate how these spectrometers can Strong limitations of these instruments in terms of be used to build efficient imaging spectrometers for performances (spectral & spatial resolution and range, planetary exploration inside dm3 instrumental volume. S/N ratio) come from their already large mass, The first mode (SWIFTS) is devoted to high spectral volume, and power consumption. Further increasing resolving power imaging (R~10000-50000) for one of these characteristics will be at the cost of even 40x40 pixels field of view. The second mode bigger instruments.
    [Show full text]
  • The Cassini Ultraviolet Imaging Spectrograph Investigation
    THE CASSINI ULTRAVIOLET IMAGING SPECTROGRAPH INVESTIGATION 1, 1 1 LARRY W. ESPOSITO ∗, CHARLES A. BARTH , JOSHUA E. COLWELL , GEORGE M. LAWRENCE1, WILLIAM E. McCLINTOCK1,A. IAN F. STEWART1, H. UWE KELLER2, AXEL KORTH2, HANS LAUCHE2, MICHEL C. FESTOU3,ARTHUR L. LANE4, CANDICE J. HANSEN4, JUSTIN N. MAKI4,ROBERT A. WEST4, HERBERT JAHN5, RALF REULKE5, KERSTIN WARLICH5, DONALD E. SHEMANSKY6 and YUK L. YUNG7 1University of Colorado, Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, CO 80303, U.S.A. 2Max-Planck-Institut fur¨ Aeronomie, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany 3Observatoire Midi-Pyren´ ees,´ 14 avenue E. Belin, F31400 Toulouse, France 4JetPropulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 5Deutsches Zentrum fur¨ Luft und Raumfahrt, Institut fur¨ Weltraumsensorik und Planetenerkundung, Rutherford Strasse 2, 12489 Berlin, Germany 6University of Southern California, Department of Aerospace Engineering, 854 W. 36th Place, Los Angeles, CA 90089, U.S.A. 7California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125, U.S.A. (∗Author for correspondence: E-mail: [email protected]) (Received 8 July 1999; Accepted in final form 18 October 2000) Abstract. The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission.
    [Show full text]
  • VIRTIS/Venus Express Summary
    VIRTIS for Venus Express Pierre Drossart# and Giuseppe Piccioni&, December 2002 #LESIA, Obs. Paris and &IASF,Rome VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) is a complex instrument initially devoted to the remote sensing study of comet Wirtanen on the Rosetta mission, at wavelengths between 0.3 and 5 mm. The focal planes, with state of the art CCD and infrared detectors achieve high sensitivity for low emissivity sources. Due to the high flexibility of the operational modes of VIRTIS, these performances are also ideally adapted for the study of Venus atmosphere, both on night and day sides. VIRTIS is therefore aimed to provide a 4- dimensional study of Venus atmosphere (2D imaging + spectral dimension + temporal variations), the spectral variations permitting a sounding at different levels of the atmosphere, from the ground up to the thermosphere. The infrared capability of VIRTIS is especially well fitted to the thermal sounding of the night side atmosphere (Taylor et al, 1997), which give a tomography of the atmosphere down to the surface. Precursors: First attempts of imaging spectrometry on the Venus night side from space in the near infrared were made by NIMS/Galileo (Figure 1) in 1990 (Carlson et al, 1990) and VIMS/Cassini in 1999 (Baines et al, 2000). These fast fly-bys gave an idea of how powerful this method of investigation could be at Venus. Unfortunately, the limited duration of the fly- bys allowed only limited investigations, in particular on the meteorological evolution of the clouds. Observation of Venus with a new generation imaging spectrometer like VIRTIS would provide a unique opportunity to continue these investigations on an extended basis.
    [Show full text]
  • The Science Return from Venus Express the Science Return From
    The Science Return from Venus Express Venus Express Science Håkan Svedhem & Olivier Witasse Research and Scientific Support Department, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Dmitri V. Titov Max Planck Institute for Solar System Studies, Katlenburg-Lindau, Germany (on leave from IKI, Moscow) ince the beginning of the space era, Venus has been an attractive target for Splanetary scientists. Our nearest planetary neighbour and, in size at least, the Earth’s twin sister, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense cloud. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, the Veneras 4 to14, the US Pioneer Venus mission, the Soviet Vega balloons and the Venera 15, 16 and Magellan radar-mapping orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. But despite all of this exploration by more than 20 spacecraft, the so-called ‘morning star’ remains a mysterious world! Introduction All of these earlier studies of Venus have given us a basic knowledge of the conditions prevailing on the planet, but have generated many more questions than they have answered concerning its atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and plasma environment. It is now high time that we proceed from the discovery phase to a thorough
    [Show full text]
  • VIRTIS on Venus Express: Retrieval of Real Surface Emissivity on Global Scales
    VIRTIS on Venus Express: retrieval of real surface emissivity on global scales Gabriele E. Arnold*a, David Kappela, Rainer Hausb, Laura Telléz Pedrozaa, c, Giuseppe Piccionid, and Pierre Drossarte aDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany; bWestfälische Wilhelms-Universität, Institute of Planetology, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany; cUniversity Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; dIstituto di Astrofisica e Planetologia Spaziali (IAPS), INAF, Via Fosso del Cavaliere 100, 00133, Roma, Italy; eLaboratoire d’Études Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, 5 Place Jules Janssen, 92195, Meudon, France. *[email protected]; phone +49-3067055370; fax + 49-3067055303 ABSTRACT The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus’ geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 µm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 – 1.2 µm – surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum.
    [Show full text]
  • The Micromega Investigation Onboard Hayabusa2
    Space Sci Rev (2017) 208:401–412 DOI 10.1007/s11214-017-0335-y The MicrOmega Investigation Onboard Hayabusa2 J.-P. Bibring1 · V. H a m m 1 · Y. Langevin 1 · C. Pilorget1 · A. Arondel1 · M. Bouzit1 · M. Chaigneau1 · B. Crane1 · A. Darié1 · C. Evesque1 · J. Hansotte1 · V. G a r d i e n 1 · L. Gonnod1 · J.-C. Leclech1 · L. Meslier1 · T. Redon1 · C. Tamiatto1 · S. Tosti1 · N. Thoores1 Received: 16 October 2015 / Accepted: 25 January 2017 / Published online: 9 March 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract MicrOmega is a near-IR hyperspectral microscope designed to characterize in situ the texture and composition of the surface materials of the Hayabusa2 target aster- oid. MicrOmega is implemented within the MASCOT lander (Ho et al. in Space Sci. Rev., 2016, this issue, doi:10.1007/s11214-016-0251-6). The spectral range (0.99–3.65 µm) and the spectral sampling (20 cm−1) of MicrOmega have been chosen to allow the identification of most potential constituent minerals, ices and organics, within each 25 µm pixel of the 3.2 × 3.2mm2 FOV. Such an unprecedented characterization will (1) enable the identifica- tion of most major and minor phases, including the potential organic phases, and ascribe their mineralogical context, as a critical set of clues to decipher the origin and evolution of this primitive body, and (2) provide the ground truth for the orbital measurements as well as a reference for the analyses later performed on returned samples. 1 Introduction The Hayabusa mission, launched May 9, 2003, and samples returned to Earth by June 13, 2010, enabled the study of 25143 Itokawa, an S class asteroid (Fujiwara et al.
    [Show full text]
  • Mars Express
    sp1240cover 7/7/04 4:17 PM Page 1 SP-1240 SP-1240 M ARS E XPRESS The Scientific Payload MARS EXPRESS The Scientific Payload Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 AAsec1.qxd 7/8/04 3:52 PM Page 1 SP-1240 August 2004 MARS EXPRESS The Scientific Payload AAsec1.qxd 7/8/04 3:52 PM Page ii SP-1240 ‘Mars Express: A European Mission to the Red Planet’ ISBN 92-9092-556-6 ISSN 0379-6566 Edited by Andrew Wilson ESA Publications Division Scientific Agustin Chicarro Coordination ESA Research and Scientific Support Department, ESTEC Published by ESA Publications Division ESTEC, Noordwijk, The Netherlands Price €50 Copyright © 2004 European Space Agency ii AAsec1.qxd 7/8/04 3:52 PM Page iii Contents Foreword v Overview The Mars Express Mission: An Overview 3 A. Chicarro, P. Martin & R. Trautner Scientific Instruments HRSC: the High Resolution Stereo Camera of Mars Express 17 G. Neukum, R. Jaumann and the HRSC Co-Investigator and Experiment Team OMEGA: Observatoire pour la Minéralogie, l’Eau, 37 les Glaces et l’Activité J-P. Bibring, A. Soufflot, M. Berthé et al. MARSIS: Mars Advanced Radar for Subsurface 51 and Ionosphere Sounding G. Picardi, D. Biccari, R. Seu et al. PFS: the Planetary Fourier Spectrometer for Mars Express 71 V. Formisano, D. Grassi, R. Orfei et al. SPICAM: Studying the Global Structure and 95 Composition of the Martian Atmosphere J.-L. Bertaux, D. Fonteyn, O. Korablev et al.
    [Show full text]
  • Ultraviolet Imaging Spectrometer (UVS) Experiment on Board the NOZOMI Spacecraft: Instrumentation and Initial Results
    Earth Planets Space, 52, 49–60, 2000 Ultraviolet imaging spectrometer (UVS) experiment on board the NOZOMI spacecraft: Instrumentation and initial results M. Taguchi1, H. Fukunishi2, S. Watanabe3, S. Okano1, Y. Takahashi2, and T. D. Kawahara4 1National Institute of Polar Research, Tokyo 173-8515, Japan 2Department of Geophysics, Tohoku University, Sendai 980-8578, Japan 3Department of Earth and Planetary Science, Hokkaido University, Sapporo 060-0810, Japan 4Department of Information Engineering, Shinshu University, Nagano 380-0922, Japan (Received March 18, 1999; Revised September 20, 1999; Accepted October 19, 1999) An ultraviolet imaging spectrometer (UVS) on board the PLANET-B (NOZOMI) spacecraft has been developed. The UVS instrument consists of a grating spectrometer (UVS-G), an absorption cell photometer (UVS-P) and an electronics unit (UVS-E). The UVS-G features a flat-field type spectrometer measuring emissions in the FUV and MUV range between 110 nm and 310 nm with a spectral resolution of 2–3 nm. The UVS-P is a photometer separately detecting hydrogen (H) and deuterium (D) Lyman α emissions by the absorption cell technique. They take images using the spin and orbital motion of the spacecraft. The major scientific objectives of the UVS experiment at Mars and the characteristics of the UVS are described. The MUV spectra of geocoronal and interplanetary Lyman α emissions and lunar images taken at wavelength of hydrogen Lyman α and the background at 170 nm are presented as representative examples of the UVS observations during the Earth orbiting phase and the Mars transfer phase. 1. Introduction objectives. The ultraviolet spectra of the Martian airglow Due to a weak or no intrinsic magnetic field on Mars, the were obtained by the Mariner 9 ultraviolet spectrometer solar wind plasma can deeply penetrate into the Martian experiment (Barth et al., 1972).
    [Show full text]
  • Methane Mapping with Future Satellite Imaging Spectrometers
    remote sensing Article Methane Mapping with Future Satellite Imaging Spectrometers Alana K. Ayasse 1,*, Philip E. Dennison 2 , Markus Foote 4 , Andrew K. Thorpe 3, Sarang Joshi 4, Robert O. Green 3, Riley M. Duren 3,5, David R. Thompson 3 and Dar A. Roberts 1 1 Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA; [email protected] 2 Department of Geography, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; [email protected] (A.K.T.); [email protected] (R.O.G.); [email protected] (R.M.D.); [email protected] (D.R.T.) 4 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA; [email protected] (M.F.); [email protected] (S.J.) 5 Office for Research, Innovation and Impact, University of Arizona, Tucson, AZ 85721, USA * Correspondence: [email protected] Received: 14 November 2019; Accepted: 13 December 2019; Published: 17 December 2019 Abstract: This study evaluates a new generation of satellite imaging spectrometers to measure point source methane emissions from anthropogenic sources. We used the Airborne Visible and Infrared Imaging Spectrometer Next Generation(AVIRIS-NG) images with known methane plumes to create two simulated satellite products. One simulation had a 30 m spatial resolution with ~200 Signal-to-Noise Ratio (SNR) in the Shortwave Infrared (SWIR) and the other had a 60 m spatial resolution with ~400 SNR in the SWIR; both products had a 7.5 nm spectral spacing.
    [Show full text]
  • Scientific Payload
    Planetary and Space Science 49 (2001) 1467–1479 www.elsevier.com/locate/planspasci The MESSENGER mission to Mercury: scientiÿc payload Robert E. Golda;∗, Sean C. Solomonb, RalphL. McNutt Jr. a, Andrew G. Santoa, James B. Abshirec, Mario H. Acu˜nac, Robert S. Afzalc, Brian J. Andersona, G. Bruce Andrewsa, Peter D. Bedinid, John Caind, Andrew F. Chenga, Larry G. Evansc, William C. Feldmane, Ronald B. Follasc, George Gloecklerd;f , John O. Goldstena, S. Edward Hawkins IIIa, Noam R. Izenberga, Stephen E. Jaskuleka, Eleanor A. Ketchumc, Mark R. Lanktong, David A. Lohra, Barry H. Mauka, William E. McClintockg, Scott L. Murchiea, Charles E. Schlemm IIa, David E. Smithc, Richard D. Starrc, Thomas H. Zurbuchend aThe John Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA cNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA dDepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA eLos Alamos National Laboratory, Los Alamos, NM 87545, USA f Department of Physics, University of Maryland, College Park, MD 20742, USA gLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA Received 1 November 2000; accepted 12 January 2001 Abstract The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission will send the ÿrst spacecraft to orbit the planet Mercury. A miniaturized set of seven instruments, along with the spacecraft telecommunications system, provide the means of achieving the scientiÿc objectives that motivate the mission. The payload includes a combined wide- and narrow-angle imaging system; -ray, neutron, and X-ray spectrometers for remote geochemical sensing; a vector magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-infrared spectrometer to detect atmospheric species and map mineralogical absorption features; and an energetic particle and plasma spectrometer to characterize ionized species in the magnetosphere.
    [Show full text]
  • Npoess Acronyms
    Northrop Grumman Space & Mission Systems Corp. Space Technology One Space Park Redondo Beach, CA 90278 Engineering & Manufacturing Development (EMD) Phase Acquisition &Operations Contract CAGE NO. 11982 NPOESS ACRONYMS DATE: 3 March 2009 DOC D35838 REV. H PREPARED BY: ___________________________________ Rand Nelson, System Engineering IPT ELECTRONIC APPROVAL SIGNATURES: ____________________________________ ___________________________________ Fabrizio Pela, SE&I IPT Lead Keith Reinke, GS IPT Lead ____________________________________ ___________________________________ Mary Ann Chory, SS IPT Lead Ben James, O&S IPT Lead ____________________________________ ___________________________________ Joe Snyder, Chief Software Engineer Andrea Yeiser, PL IPT Lead ____________________________________ ___________________________________ Roy Tsugawa, AD&P IPT Lead Clark Snodgrass, SEITO Director Prepared by Prepared for Northrop Grumman Space Technology Department of the Air Force One Space Park NPOESS Integrated Program Office Redondo Beach, CA 90278 C/O SMC/CIK 2420 Vela Way, Suite 1467-A8 Los Angeles AFB, CA 90245-4659 DISTRIBUTION STATEMENT F: Distribution statement “F” signifies that further dissemination should only be made as Under directed by the controlling DoD Office (NPOESS IPO). Ref Contract No. F04701-02-C-0502 DODD 5230.24D. This document has been identified per the NPOESS Common Data Format Control Book – External Volume 5 Metadata, D34862-05, Appendix B as a document to be provided to the NOAA Comprehensive Large Array-data D35838, H. PDMO Released: 2009-03-12 (VERIFY REVISION STATUS) Stewardship System (CLASS) via the delivery of NPOESS Document Release Packages to CLASS. PD O M Northrop Grumman Space & Mission Systems Corp. Space Technology One Space Park Redondo Beach, CA 90278 For Document Revision/Change Record No. D35838 Document Pages Revision Date Revision/Change Description Affected -- 8 Nov 02 Initial Issue All Incorporates CCB Approved ECR P164.
    [Show full text]