Inhibition of the Pim1 Oncogene Results in Diminished Visual Function

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of the Pim1 Oncogene Results in Diminished Visual Function Inhibition of the Pim1 Oncogene Results in Diminished Visual Function Jun Yin1, Lisa Shine2, Francis Raycroft3, Sudhakar Deeti2, Alison Reynolds2, Kristin M. Ackerman3, Antonino Glaviano2, Sean O’Farrell2, Olivia O’Leary2, Claire Kilty2, Ciaran Kennedy2, Sarah McLoughlin2, Megan Rice2, Eileen Russell2, Desmond G. Higgins1, David R. Hyde3, Breandan N. Kennedy2* 1 UCD School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland, 2 UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland, 3 Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America Abstract Our objective was to profile genetic pathways whose differential expression correlates with maturation of visual function in zebrafish. Bioinformatic analysis of transcriptomic data revealed Jak-Stat signalling as the pathway most enriched in the eye, as visual function develops. Real-time PCR, western blotting, immunohistochemistry and in situ hybridization data confirm that multiple Jak-Stat pathway genes are up-regulated in the zebrafish eye between 3–5 days post-fertilisation, times associated with significant maturation of vision. One of the most up-regulated Jak-Stat genes is the proto-oncogene Pim1 kinase, previously associated with haematological malignancies and cancer. Loss of function experiments using Pim1 morpholinos or Pim1 inhibitors result in significant diminishment of visual behaviour and function. In summary, we have identified that enhanced expression of Jak-Stat pathway genes correlates with maturation of visual function and that the Pim1 oncogene is required for normal visual function. Citation: Yin J, Shine L, Raycroft F, Deeti S, Reynolds A, et al. (2012) Inhibition of the Pim1 Oncogene Results in Diminished Visual Function. PLoS ONE 7(12): e52177. doi:10.1371/journal.pone.0052177 Editor: Ryan Thummel, Wayne State University School of Medicine, United States of America Received May 14, 2012; Accepted November 14, 2012; Published December 26, 2012 Copyright: ß 2012 Yin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The authors thank the Irish Research Council for Science Engineering and Technology (IRCSET) Graduate Education Programme (GREP), and Science Foundation Ireland (SFI) SFI 04/IN3/B559 (BK), and SFI 06/RFP/BIM052 (BK) for funding support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction The first electrical responses from the retina have been detected as early as 72 hpf [7]. These responses are also small in amplitude, Our objective was to investigate the molecular genetics requiring high intensity stimuli. Zebrafish electroretinograms regulating maturation of visual function in vertebrates. Develop- (ERG) are typically recorded from 5 dpf larvae in which responses ment of the zebrafish visual system is rapid with morphogenesis of are more robust [8]. the optic vesicles beginning at ,10 hours post-fertilisation (hpf) Here, we avail of Affymetrix GeneChip technology to globally [1]. Rapid proliferation and progressive lamination follows. By profile genes with significant differential expression in the zebrafish ,72 hpf, most retinal cell types are distinguishable, and lamina- eye between 3–5 dpf, as visual function matures. Interestingly, tion of the retina does not significantly change from 3–5 days post- significantly enhanced expression of Jak-Stat signalling genes, a fertilisation (dpf). However, progression from a morphologically pathway typically associated with interferon and cytokine signal- developed eye, to an eye with robust visual function occurs ling, correlates with maturation of visual function [9]. Pim1–2 between 3–5 dpf [2,3]. kinases, proto-oncogenes and downstream components of Jak-Stat A light-evoked locomotor response is detected in zebrafish at signalling, unexpectedly displayed differential expression in the ,68 hpf [3]. This startle response likely recapitulates an escape developing eye [10]. Pharmacological and genetic inhibition of response invoked by the shadow of an approaching predator [4]. Pim1 kinase results in a specific disruption of visual behaviour and Initially known as the shadow-induced startle response, it was first retinal function. These results highlight a novel role for the Pim1 assessed by placing larvae in a petri dish, extinguishing a light kinase in visual function. source for 1 second and observing whether larvae moved in response. The related visual motor response (VMR) is assessed Materials and Methods using an automated system which uses an infrared camera to quantify the movement of larvae in response to lights turned on or Microarray experiment off [4]. Another visual response, the optokinetic response (OKR) Zebrafish were maintained according to standard procedures on represents the ability of zebrafish to detect contrasting patterns a 14 h light/10 h dark cycle at 28uC. Embryos were obtained by and is detected from 73 hpf [3,5]. The initial OKR is slow and natural spawning and developmental stages established by time sporadic, but improves so that by 96 hpf, larvae track the drum and morphological criteria. Microarray experiments were per- analogous to adult fish and by 5 dpf, the response is adult-like [6]. formed as previously described [11]. Eyes were dissected from 3, 4 PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e52177 Inhibition of Pim1 Diminishes Visual Function and 5 days post fertilization (dpf) zebrafish larvae. Total RNA was Histological Analysis extracted and labeled using a two-cycle target labelling protocol Whole larvae were fixed overnight in a solution of 4% (Affymetrix, Santa Clara, USA) and hybridised with Affymetrix paraformaldehyde and 2.5% gluteraldehyde diluted in 0.1 M Zebrafish Genome Arrays. Three biological replicates per time Sorenson phosphate buffer (pH 7.3) at room temperature. point were used with equal amounts of RNA. The 3, 4 and 5 dpf Samples were then post-fixed in 1% osmium tetroxide in 0.1 M eyes microarray data set was deposited in GEO with accession ID Sorenson phosphate buffer for 1 hour at room temperature, GSE19320. All experimental protocols were approved by the dehydrated in ascending concentrations of ethanol to 100% and UCD Animal Research Ethics Committee, and the University of embedded in epon resin according to standard methods. Semi-thin Notre Dame Animal Care and Use Committee. (1 mm) sections were cut using a glass knife and a Reichert-Jung Ultracut E microtome and visualised by light microscopy using a Zebrafish genome reannotation and probe remapping Nikon E80i transmission microscope Gene annotation was based on the zebrafish genome version 9 (Zv9) and integrating gene transcript collections from multiple Immunoblot Analysis genome annotation databases [11]. Transcript data from the Immunoblots were performed similar to previously described RefSeq, GenBank and Ensembl databases were downloaded from (Kassen et al., 2007). Protein was harvested from ,30 larvae, the UCSC genome browser [12]. Transcripts were clustered into homogenized in 15 ml of extraction buffer (16 PBS/10% genes from overlapping coding exons. A customized probe Glycerol/1% Triton X-100/5 mM KPO4/0.05 mM EDTA/16 remapping was performed as previously described [11]. In order Complete Protease Inhibitor Cocktail Tablet (Roche; Indianapo- to take advantage of the human genome annotation, human- lis, IN) and a tyrosine and serine/threonine phosphatase inhibitor zebrafish homology data were downloaded from Ensembl [13], cocktail mix (Phosphatase Inhibitor Cocktails 2 and 3, Sigma; St. BioMart [14], ZFIN [15], and NCBI HomoloGene [16]. These Louis, MO) and stored at 220uC. After SDS-PAGE, proteins homology databases were combined with the zebrafish genome were electrotransferred to a PVDF H-Bond membrane (Amer- annotation databases. Where no functional annotation for a sham; Pis-cataway, NJ) and blocked in 16PBS/0.1% Tween-20/ transcript could be found, cDNA sequences were searched against 5% non-fat dry milk overnight at 4uC. The membrane was the NCBI refseq_protein database using blastx [17]. The highest incubated with immunopurified anti-Stat3 polyclonal antisera scoring human homologs were identified with at least 30% identity (1:5,000) [24], anti-Socs1 polyclonal antisera (1:5,000), anti-Socs3a to the query sequence over at least 30% sequence length. Human polyclonal antisera (1:2,000) or an anti-actin monoclonal antibody KEGG pathway [18] and Gene Ontology [19] annotations were (1:10,000, Calbiochem; San Diego, CA) overnight at 4uCin combined with zebrafish annotations for gene set analysis. Human blocking buffer. The membranes were washed in 16 PBS/0.1% retinal disease information was downloaded from RETNET [20]. Tween-20 (3610 min), and incubated for 1 hr at room temper- ature with either an anti-rabbit or anti-mouse HRP-conjugated Microarray data analysis secondary antibody (1:10,000, Amersham). The membranes were The Bioconductor package, gcrma, was used to normalize and washed in 16 PBS/0.1% Tween-20 (3610 min) and the summarize microarrays signal
Recommended publications
  • METTL3-Mediated M6a Modification Is Required for Cerebellar Development
    RESEARCH ARTICLE METTL3-mediated m6A modification is required for cerebellar development Chen-Xin Wang1,2☯, Guan-Shen Cui3,4☯, Xiuying Liu5☯, Kai Xu1,2☯, Meng Wang5☯, Xin- Xin Zhang1, Li-Yuan Jiang1, Ang Li2,3, Ying Yang3, Wei-Yi Lai2,6, Bao-Fa Sun2,3,7, Gui- Bin Jiang6, Hai-Lin Wang6, Wei-Min Tong8, Wei Li1,2,7, Xiu-Jie Wang2,5,7*, Yun- Gui Yang2,3,7*, Qi Zhou1,2,7* 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing a1111111111 Institute of Genomics, Chinese Academy of Sciences, Beijing, China, 4 Sino-Danish College, University of a1111111111 Chinese Academy of Sciences, Beijing, China, 5 Key Laboratory of Genetic Network Biology, Institute of a1111111111 Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 6 State Key Laboratory a1111111111 of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese a1111111111 Academy of Sciences, Beijing, China, 7 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China, 8 Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] (XJW); [email protected] (YGY); [email protected] (QZ) Citation: Wang C-X, Cui G-S, Liu X, Xu K, Wang M, Zhang X-X, et al.
    [Show full text]
  • Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo)
    animals Article Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo) Kyu-Sang Lim 1 , Sun-Sik Chang 2, Bong-Hwan Choi 3, Seung-Hwan Lee 4, Kyung-Tai Lee 3 , Han-Ha Chai 3, Jong-Eun Park 3 , Woncheoul Park 3 and Dajeong Lim 3,* 1 Department of Animal Science, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25340, Korea; [email protected] 3 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; [email protected] (B.-H.C.); [email protected] (K.-T.L.); [email protected] (H.-H.C.); [email protected] (J.-E.P.); [email protected] (W.P.) 4 Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected] Received: 26 July 2019; Accepted: 23 September 2019; Published: 26 September 2019 Simple Summary: Allele-specific expression (ASE) is the biased allelic expression of genetic variants within the gene. Recently, the next-generation sequencing (NGS) technologies allowed us to detect ASE genes at a transcriptome-wide level. It is essential for the understanding of animal development, cellular programming, and the effect on their complexity because ASE shows developmental, tissue, or species-specific patterns. However, these aspects of ASE still have not been annotated well in farm animals and most studies were conducted mainly at the fetal stages. Hence, the current study focuses on detecting ASE genes in 17 tissues in adult cattle.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12
    [Show full text]
  • Linked Mental Retardation Detected by Array CGH
    JMG Online First, published on September 16, 2005 as 10.1136/jmg.2005.036178 J Med Genet: first published as 10.1136/jmg.2005.036178 on 16 September 2005. Downloaded from Chromosomal copy number changes in patients with non-syndromic X- linked mental retardation detected by array CGH D Lugtenberg1, A P M de Brouwer1, T Kleefstra1, A R Oudakker1, S G M Frints2, C T R M Schrander- Stumpel2, J P Fryns3, L R Jensen4, J Chelly5, C Moraine6, G Turner7, J A Veltman1, B C J Hamel1, B B A de Vries1, H van Bokhoven1, H G Yntema1 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 2Department of Clinical Genetics, University Hospital Maastricht, Maastricht, The Netherlands; 3Center for Human Genetics, University of Leuven, Leuven, Belgium; 4Max Planck Institute for Molecular Genetics, Berlin, Germany; 5INSERM 129-ICGM, Faculté de Médecine Cochin, Paris, France; 6Service de Génétique et INSERM U316, Hôpital Bretonneau, Tours, France; 7 GOLD Program, Hunter Genetics, University of Newcastle, Callaghan, New South Wales 2308, Australia http://jmg.bmj.com/ Corresponding author: on October 2, 2021 by guest. Protected copyright. Helger G. Yntema, PhD Department of Human Genetics Radboud University Nijmegen Medical Centre P.O. Box 9101 6500 HB Nijmegen The Netherlands E-mail: [email protected] tel: +31-24-3613799 fax: +31-24-3616658 1 Copyright Article author (or their employer) 2005. Produced by BMJ Publishing Group Ltd under licence. J Med Genet: first published as 10.1136/jmg.2005.036178 on 16 September 2005. Downloaded from ABSTRACT Introduction: Several studies have shown that array based comparative genomic hybridization (array CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder.
    [Show full text]
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • 'Next- Generation' Sequencing Data Analysis
    Novel Algorithm Development for ‘Next- Generation’ Sequencing Data Analysis Agne Antanaviciute Submitted in accordance with the requirements for the degree of Doctor of Philosophy University of Leeds School of Medicine Leeds Institute of Biomedical and Clinical Sciences 12/2017 ii The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly given within the thesis where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement ©2017 The University of Leeds and Agne Antanaviciute The right of Agne Antanaviciute to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. Acknowledgements I would like to thank all the people who have contributed to this work. First and foremost, my supervisors Dr Ian Carr, Professor David Bonthron and Dr Christopher Watson, who have provided guidance, support and motivation. I could not have asked for a better supervisory team. I would also like to thank my collaborators Dr Belinda Baquero and Professor Adrian Whitehouse for opening new, interesting research avenues. A special thanks to Dr Belinda Baquero for all the hard wet lab work without which at least half of this thesis would not exist. Thanks to everyone at the NGS Facility – Carolina Lascelles, Catherine Daley, Sally Harrison, Ummey Hany and Laura Crinnion – for the generation of NGS data used in this work and creating a supportive and stimulating work environment.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Supplementary Figure 1
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Mutations in ABCD4 cause a new inborn error of vitamin B(12) metabolism Coelho, David ; Kim, Jaeseung C ; Miousse, Isabelle R ; Fung, Stephen ; du Moulin, Marcel ; Buers, Insa ; Suormala, Terttu ; Burda, Patricie ; Frapolli, Michele ; Stucki, Martin ; Nürnberg, Peter ; Thiele, Holger ; Robenek, Horst ; Höhne, Wolfgang ; Longo, Nicola ; Pasquali, Marzia ; Mengel, Eugen ; Watkins, David ; Shoubridge, Eric A ; Majewski, Jacek ; Rosenblatt, David S ; Fowler, Brian ; Rutsch, Frank ; Baumgartner, Matthias R Abstract: Inherited disorders of vitamin B(12) (cobalamin) have provided important clues to how this vitamin, which is essential for hematological and neurological function, is transported and metabolized. We describe a new disease that results in failure to release vitamin B(12) from lysosomes, which mimics the cblF defect caused by LMBRD1 mutations. Using microcell-mediated chromosome transfer and exome sequencing, we identified causal mutations in ABCD4, a gene that codes for an ABC transporter, which was previously thought to have peroxisomal localization and function. Our results show that ABCD4 colocalizes with the lysosomal proteins LAMP1 and LMBD1, the latter of which is deficient in the cblF defect. Furthermore, we show that mutations altering the putative ATPase domain of ABCD4 affect its function, suggesting that the ATPase activity of ABCD4 may be involved in intracellular processing of vitamin B(12).
    [Show full text]
  • Germline Mutations Causing Familial Lung Cancer
    Journal of Human Genetics (2015) 60, 597–603 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Germline mutations causing familial lung cancer Koichi Tomoshige1,2, Keitaro Matsumoto1, Tomoshi Tsuchiya1, Masahiro Oikawa1, Takuro Miyazaki1, Naoya Yamasaki1, Hiroyuki Mishima2, Akira Kinoshita2, Toru Kubo3, Kiyoyasu Fukushima3, Koh-ichiro Yoshiura2 and Takeshi Nagayasu1 Genetic factors are important in lung cancer, but as most lung cancers are sporadic, little is known about inherited genetic factors. We identified a three-generation family with suspected autosomal dominant inherited lung cancer susceptibility. Sixteen individuals in the family had lung cancer. To identify the gene(s) that cause lung cancer in this pedigree, we extracted DNA from the peripheral blood of three individuals and from the blood of one cancer-free control family member and performed whole-exome sequencing. We identified 41 alterations in 40 genes in all affected family members but not in the unaffected member. These were considered candidate mutations for familial lung cancer. Next, to identify somatic mutations and/or inherited alterations in these 40 genes among sporadic lung cancers, we performed exon target enrichment sequencing using 192 samples from sporadic lung cancer patients. We detected somatic ‘candidate’ mutations in multiple sporadic lung cancer samples; MAST1, CENPE, CACNB2 and LCT were the most promising candidate genes. In addition, the MAST1 gene was located in a putative cancer-linked locus in the pedigree. Our data suggest that several genes act as oncogenic drivers in this family, and that MAST1 is most likely to cause lung cancer.
    [Show full text]
  • Prenatal Bisphenol a Exposure, DNA Methylation, and Low Birth Weight: a Pilot Study in Taiwan
    International Journal of Environmental Research and Public Health Article Prenatal Bisphenol a Exposure, DNA Methylation, and Low Birth Weight: A Pilot Study in Taiwan Yu-Fang Huang 1,2,3, Chia-Huang Chang 4, Pei-Jung Chen 5, I-Hsuan Lin 6 , Yen-An Tsai 5, Chian-Feng Chen 6 , Yu-Chao Wang 7, Wei-Yun Huang 8,9,10, Ming-Song Tsai 11,12,* and Mei-Lien Chen 5,* 1 Department of Safety, Health and Environmental Engineering, National United University, Miaoli 360, Taiwan; [email protected] 2 Center for Chemical Hazards and Environmental Health Risk Research, National United University, Miaoli 360, Taiwan 3 Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan 4 School of Public Health, Taipei Medical University, Taipei 110, Taiwan; [email protected] 5 Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] (P.-J.C.); [email protected] (Y.-A.T.) 6 VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] (I.-H.L.); [email protected] (C.-F.C.) 7 Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; [email protected] 8 Immuno Genomics Co., Ltd., Taipei 112, Taiwan; [email protected] 9 Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan 10 Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan Citation: Huang, Y.-F.; Chang, C.-H.; 11 Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 110, Taiwan Chen, P.-J.; Lin, I-H.; Tsai, Y.-A.; Chen, 12 School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan C.-F.; Wang, Y.-C.; Huang, W.-Y.; Tsai, * Correspondence: [email protected] (M.-S.T.); [email protected] (M.-L.C.) M.-S.; Chen, M.-L.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Bioinformatic Protein Family Characterisation
    Linköping studies in science and technology Dissertation No. 1343 Bioinformatic protein family characterisation Joel Hedlund Department of Physics, Chemistry and Biology Linköping, 2010 1 The front cover shows a tree diagram of the relations between proteins in the MDR superfamily (papers III–IV), excluding non-eukaryotic sequences as well as four fifths of the remainder for clarity. In total, 518 out of the 16667 known members are shown, and 1.5 cm in the dendrogram represents 10 % sequence differences. The bottom bar diagram shows conservation in these sequences using the CScore algorithm from the MSAView program (papers II and V), with infrequent insertions omitted for brevity. This example illustrates the size and complexity of the MDR superfamily, and it also serves as an illuminating example of the intricacies of the field of bioinformatics as a whole, where, after scaling down and removing layer after layer of complexity, there is still always ample size and complexity left to go around. The back cover shows a schematic view of the three-dimensional structure of human class III alcohol dehydrogenase, indicating the positions of the zinc ion and NAD cofactors, as well as the Rossmann fold cofactor binding domain (red) and the GroES-like folding core of the catalytic domain (green). This thesis was typeset using LYX. Inkscape was used for figure layout. During the course of research underlying this thesis, Joel Hedlund was enrolled in Forum Scientium, a multidisciplinary doctoral programme at Linköping University, Sweden. Copyright © 2010 Joel Hedlund, unless otherwise noted. All rights reserved. Joel Hedlund Bioinformatic protein family characterisation ISBN: 978-91-7393-297-4 ISSN: 0345-7524 Linköping studies in science and technology, dissertation No.
    [Show full text]