FOUNDATIONS and PHILOSOPHY Philosophers Investigate Notions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Creating New Concepts in Mathematics: Freedom and Limitations. the Case of Category Theory
Creating new concepts in mathematics: freedom and limitations. The case of Category Theory Zbigniew Semadeni Institute of Mathematics, University of Warsaw Abstract In the paper we discuss the problem of limitations of freedom in mathematics and search for criteria which would differentiate the new concepts stemming from the historical ones from the new concepts that have opened unexpected ways of thinking and reasoning. We also investigate the emergence of category theory (CT) and its origins. In particular we explore the origins of the term functor and present the strong evidence that Eilenberg and Carnap could have learned the term from Kotarbinski´ and Tarski. Keywords categories, functors, Eilenberg-Mac Lane Program, mathematical cognitive transgressions, phylogeny, platonism. CC-BY-NC-ND 4.0 • 1. Introduction he celebrated dictum of Georg Cantor that “The essence of math- Tematics lies precisely in its freedom” expressed the idea that in mathematics one can freely introduce new notions (which may, how- Philosophical Problems in Science (Zagadnienia FilozoficzneNo w Nauce) 69 (2020), pp. 33–65 34 Zbigniew Semadeni ever, be abandoned if found unfruitful or inconvenient).1 This way Cantor declared his opposition to claims of Leopold Kronecker who objected to the free introduction of new notions (particularly those related to the infinite). Some years earlier Richard Dedekind stated that—by forming, in his theory, a cut for an irrational number—we create a new number. For him this was an example of a constructed notion which was a free creation of the human mind (Dedekind, 1872, § 4). In 1910 Jan Łukasiewicz distinguished constructive notions from empirical reconstructive ones. -
Basic Concepts of Set Theory, Functions and Relations 1. Basic
Ling 310, adapted from UMass Ling 409, Partee lecture notes March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory........................................................................................................................1 1.1. Sets and elements ...................................................................................................................................1 1.2. Specification of sets ...............................................................................................................................2 1.3. Identity and cardinality ..........................................................................................................................3 1.4. Subsets ...................................................................................................................................................4 1.5. Power sets .............................................................................................................................................4 1.6. Operations on sets: union, intersection...................................................................................................4 1.7 More operations on sets: difference, complement...................................................................................5 1.8. Set-theoretic equalities ...........................................................................................................................5 Chapter 2. Relations and Functions ..................................................................................................................6 -
The Development of Mathematical Logic from Russell to Tarski: 1900–1935
The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives . -
Ralph Martin Kaufmann Publications 1. Kaufmann, Ralph
Ralph Martin Kaufmann Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN 47907{2067 Tel.: (765) 494-1205 Fax: (765) 494-0548 Publications 1. Kaufmann, Ralph M., Khlebnikov, Sergei, and Wehefritz-Kaufmann, Birgit \Local models and global constraints for degeneracies and band crossings" J. of Geometry and Physics 158 (2020) 103892. 2. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background I: operadic & simplicial aspects" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 1-90. 3. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 91-169. 4. Kaufmann, Ralph M. \Lectures on Feynman categories", 2016 MATRIX annals, 375{438, MATRIX Book Ser., 1, Springer, Cham, 2018. 5. Kaufmann, Ralph M. and Kaufmann-Wehfritz, B. Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid in: \The Role of Topology in Materials", Eds: Gupta, S. and Saxena, A., Springer series in Solid State Sciences. Springer, 2018 6. Kaufmann, Ralph and Lucas, Jason. \Decorated Feynman categories". J. of Noncommutative Geometry, 1 (2017), no 4 1437-1464 7. Berger, C. and Kaufmann R. M. \Comprehensive Factorization Systems". Special Issue in honor of Professors Peter J. Freyd and F.William Lawvere on the occasion of their 80th birthdays, Tbilisi Mathematical Journal 10 (2017), no. 3,. 255-277 8. Kaufmann, Ralph M. -
An Interview with F. William Lawvere
An Interview with F. William Lawvere You have written a paper, published for the first time in 1986, entitled \Taking categories seriously"1. Why should we take categories seriously ? In all those areas where category theory is actively used the categorical concept of adjoint functor has come to play a key role. Such a universal instrument for guiding the learning, development, and use of advanced mathematics does not fail to have its indications also in areas of school and college mathematics, in the most basic relationships of space and quantity and the calculations based on those relationships. By saying \take categories seriously", I meant that one should seek, cultivate, and teach helpful examples of an elementary nature. The relation between teaching and research is partly embodied in simple general concepts that can guide the elaboration of examples in both. No- tions and constructions, such as the spectral analysis of dynamical systems, have important aspects that can be understood and pursued without the complications of limiting the models to specific classical categories. The application of some simple general concepts from category theory can lead from a clarification of basic con- structions on dynamical systems to a F. William Lawvere (Braga, March 2007) construction of the real number system with its structure as a closed cate- gory; applied to that particular closed category, the general enriched category theory leads inexorably to embedding the- orems and to notions of Cauchy completeness, rotation, convex hull, radius, and 1Revista Colombiana de Matematicas 20 (1986) 147-178. Reprinted in Repr. Theory Appl. Categ. 8 (2005) 1-24 (electronic). -
Definitions and Nondefinability in Geometry 475 2
Definitions and Nondefinability in Geometry1 James T. Smith Abstract. Around 1900 some noted mathematicians published works developing geometry from its very beginning. They wanted to supplant approaches, based on Euclid’s, which han- dled some basic concepts awkwardly and imprecisely. They would introduce precision re- quired for generalization and application to new, delicate problems in higher mathematics. Their work was controversial: they departed from tradition, criticized standards of rigor, and addressed fundamental questions in philosophy. This paper follows the problem, Which geo- metric concepts are most elementary? It describes a false start, some successful solutions, and an argument that one of those is optimal. It’s about axioms, definitions, and definability, and emphasizes contributions of Mario Pieri (1860–1913) and Alfred Tarski (1901–1983). By fol- lowing this thread of ideas and personalities to the present, the author hopes to kindle interest in a fascinating research area and an exciting era in the history of mathematics. 1. INTRODUCTION. Around 1900 several noted mathematicians published major works on a subject familiar to us from school: developing geometry from the very beginning. They wanted to supplant the established approaches, which were based on Euclid’s, but which handled awkwardly and imprecisely some concepts that Euclid did not treat fully. They would present geometry with the precision required for general- ization and applications to new, delicate problems in higher mathematics—precision beyond the norm for most elementary classes. Work in this area was controversial: these mathematicians departed from tradition, criticized previous standards of rigor, and addressed fundamental questions in logic and philosophy of mathematics.2 After establishing background, this paper tells a story about research into the ques- tion, Which geometric concepts are most elementary? It describes a false start, some successful solutions, and a demonstration that one of those is in a sense optimal. -
GRASSMANN's DIALECTICS and CATEGORY THEORY in Several
F. WILLIAM LAWVERE GRASSMANN'S DIALECTICS AND CATEGORY THEORY PROGRAMMATIC OUTLINE In several key connections in his foundations of geometrical algebra, Grassmann makes significant use of the dialectical philosophy of 150 years ago. Now, after fifty years of development of category theory as a means for making explicit some nontrivial general arguments in geometry, it is possible to recover some of Grassmann's insights and to express these in ways comprehensible to the modem geometer. For example, the category J/. of affine-linear spaces and maps (a monument to Grassmann) has a canonical adjoint functor to the category of (anti)commutative graded algebras, which as in Grassmann's detailed description yields a sixteen-dimensional algebra when applied to a three dimensional affine space (unlike the eight-dimensional exterior algebra of a three-dimensional vector space). The natural algebraic structure of these algebras includes a boundary operator d which satisfies the (signed) Leibniz rule; for example, if A, B are points of the affine space then the product AB is the axial vector from A to B which the boundary degrades to the corresponding translation vector: d(AB) = B-A (since dA = dB = I for points). Grassmann philosophically motivated a notion of a "simple law of change," but his editors in the 1890' s found this notion incoherent and decided he must have meant mere translations. However, translations are insufficient for the foundational task of deciding when two formal products are geometrically equal axial vectors. But if "Iaw of change" is understood as an action of the additive monoid of time, "simple" turns out to mean that the action is internal to the category J/. -
Taboo Versus Axiom
TABOO VERSUS AXIOM KATUZI ONO Some important formal systems are really developable from a finite number of axioms in the lower classical predicate logic LK or in the intuitionistic predicate logic LJ. Any system of this kind can be developed in LK (or in LJ) from the single conjunction of all the axioms of the system. I have been intending to develop usual formal systems starting from TABOOS and standing on the primitive logic LO at first, since the logic too could be brought up to the usual logics by means of TABOOS in LOυ. In developing any formal system from TABOOS, we are forced to assume unwillingly that all the TABOOS are mutually equivalent, as far as we adopt more than one TABOOS for the system. If we could develop formal systems from single- TABOO TABOO-systems, we could get rid of this unwilling assumption. It would be well expected that any formal theory developable from a finite number of axioms in LK or in LJ would be developable from a single TABOO.2) In the present paper, I will prove that this is really the case. Before stating the theorem, let us define the δ-TRANSFORM Spy] of any sentence ® with respect to an h-ary relation £y (λ>0). SΓ&3 is introduced by a structural recursive definition as follows: @C8Qs (r)((©->g(r))->#(r)) for any elementary sentence ©, Received January 20, 1966. *> As for this plan, see Ono [1]. LO is called PRIMITIVE SYSTEM OF POSITIVE LOGIC in Ono [1]. The terminology PRIMITIVE LOGIC together with its reference notation LO has been introduced in Ono [2], 2) In my work [1], I had to assume this to bring up logics by means of TABOO systems. -
CONCEPTUAL MATHEMATICS, a Review by Scott W. Williams
CONCEPTUAL MATHEMATICS, a review by Scott W. Williams Not long ago, I spoke with a professor at strong HBCU department. Her Ph.D. was nearly twenty years ago, but I shocked her with the following statement, "Most of our beginning graduate students [even those in Applied Mathematics] are entering with the basic knowledge and language of Category Theory. These days one might find Chemists, Computer Scientists, Engineers, Linguists and Physicists expressing concepts and asking questions in the language of Category Theory because it slices across the artificial boundaries dividing algebra, arithmetic, calculus, geometry, logic, topology. If you have students you wish to introduce to the subject, I suggest a delightfully elementary book called Conceptual Mathematics by F. William Lawvere and Stephen H. Schanuel" [Cambridge University Press 1997, $35 on Amazon.com) (ISBN: 0521478170 | ISBN- 13:9780521478175)]. From the introduction: "Our goal in this book is to explore the consequences of a new and fundamental insight about the nature of mathematics which has led to better methods for understanding and usual mathematical concepts. While the insight and methods are simple ... they will require some effort to master, but you will be rewarded with a clarity of understanding that will be helpful in unraveling the mathematical aspect of any subject matter." Who are the authors? Lawvere is one of the greatest visionaries of mathematics in the last half of the twentieth century. He characteristically digs down beneath the foundations of a concept in order to simplify its understanding. Though Schanuel has published research in diverse areas of Algebra, Topology, and Number Theory, he is known as a great teacher. -
Gödel's Unpublished Papers on Foundations of Mathematics
G¨odel’s unpublished papers on foundations of mathematics W. W. Tait∗ Kurt G¨odel: Collected Works Volume III [G¨odel, 1995] contains a selec- tion from G¨odel’s Nachlass; it consists of texts of lectures, notes for lectures and manuscripts of papers that for one reason or another G¨odel chose not to publish. I will discuss those papers in it that are concerned with the foun- dations/philosophy of mathematics in relation to his well-known published papers on this topic.1 1 Cumulative Type Theory [*1933o]2 is the handwritten text of a lecture G¨odel delivered two years after the publication of his proof of the incompleteness theorems. The problem of giving a foundation for mathematics (i.e. for “the totality of methods actually used by mathematicians”), he said, falls into two parts. The first consists in reducing these proofs to a minimum number of axioms and primitive rules of inference; the second in justifying “in some sense” these axioms and rules. The first part he takes to have been solved “in a perfectly satisfactory way” ∗I thank Charles Parsons for an extensive list of comments on the penultimate version of this paper. Almost all of them have led to what I hope are improvements in the text. 1This paper is in response to an invitation by the editor of this journal to write a critical review of Volume III; but, with his indulgence and the author’s self-indulgence, something else entirely has been produced. 2I will adopt the device of the editors of the Collected Works of distinguishing the unpublished papers from those published by means of a preceding asterisk, as in “ [G¨odel, *1933o]”. -
Toposes of Laws of Motion
Toposes of Laws of Motion F. William Lawvere Transcript from Video, Montreal September 27, 1997 Individuals do not set the course of events; it is the social force. Thirty-five or forty years ago it caused us to congregate in centers like Columbia University or Berkeley, or Chicago, or Montreal, or Sydney, or Zurich because we heard that the pursuit of knowledge was going on there. It was a time when people in many places had come to realize that category theory had a role to play in the pursuit of mathematical knowledge. That is basically why we know each other and why many of us are more or less the same age. But it’s also important to point out that we are still here and still finding striking new results in spite of all the pessimistic things we heard, even 35 or 40 years ago, that there was no future in abstract generalities. We continue to be surprised to find striking new and powerful general results as well as to find very interesting particular examples. We have had to fight against the myth of the mainstream which says, for example, that there are cycles during which at one time everybody is working on general concepts, and at another time anybody of consequence is doing only particular examples, whereas in fact serious mathematicians have always been doing both. 1. Infinitesimally Generated Toposes In fact, it is the relation between the General and the Particular about which I wish to speak. I read somewhere recently that the basic program of infinitesimal calculus, continuum mechanics, and differential geometry is that all the world can be reconstructed from the infinitely small. -
Colin S. Mclarty Truman P. Handy Professor of Intellectual Philosophy, and of Mathematics Case Western Reserve University
Colin S. McLarty Truman P. Handy Professor of Intellectual Philosophy, and of Mathematics Case Western Reserve University 211 Clark Hall Phone: (w) 216 368-2632 (h) 440 286-7431 Cleveland OH 44106 Fax: 216 368-0814 Email: [email protected] Homepage: cwru.edu/artsci/phil/mclarty.html Education Ph.D. Philosophy, Case Western Reserve University, 1980. Dissertation: Things and Things in Themselves: The Logic of Reference in Leibniz, Lambert, and Kant. Advisors: Raymond J. Nelson and Chin-Tai Kim. M.A. Philosophy, Case Western Reserve University, 1975. B.S. Mathematics, Case Institute of Technology, 1972. Area of Specialization: Logic; history and philosophy of mathematics. Areas of Competence: Philosophy of Science; History of Philosophy esp. Plato, Kant; Contemporary French Philosophy. Employment Shanxi University, China. Visiting Lecturer, Philosophy of Science and Technology, 2011. University of Notre Dame,Visiting Associate Professor, Philosophy, Fall 2002. Harvard University, Visiting Scholar, Mathematics 1995–1996. Case Western Reserve University, Philosophy 1987–. Chair of Department 1996–2010. Cleveland State University, Lecturer, Mathematics 1984–1986. Cleveland Art Institute, Lecturer, Philosophy 1984–1986. Current Research My Summer School in Denmark on a structural foundation for mathematics, expanded my Beijing (2007) talk and is now a book forthcoming with OUP. I pursue the perspective one mathematician expressed say- ing “philosophers should know our objects only have the properties we say they do.” Those are structural properties and in practice rely on category theory. My recent articles show how this ontology suits current research. And I have a series of articles on Emmy Noether (1882–1935, generally considered the greatest of woman mathematicians) and Saunders Mac Lane (1909–2005, greatly influenced by Noether) showing how deep the attitude goes in 20th century mathematics.