Andromeda Galaxygalaxy Formed Early on Almost As Old As the Universe

Total Page:16

File Type:pdf, Size:1020Kb

Andromeda Galaxygalaxy Formed Early on Almost As Old As the Universe Structure/Formation of the Milky Way (a spiral galaxy) bulge: halo: ~10 billion years, ~13 billion years, AndromedaAndromeda GalaxyGalaxy formed early on almost as old as the Universe disk: 0...10 billion years stars still forming Past star formation Young and blue Old and Red Star formation going on A galaxy is an island of stars Elliptical galaxies are no longer forming stars, so they look red. GalaxyGalaxy EvolutionEvolution NatureNature oror Elliptical galaxies grow by NurtureNurture?? swallowing other galaxies. Abell 3827: clumps of stars were centers of consumed galaxies. It helps to be able to see galaxies when they are just born. More spiral galaxies Sombrero galaxy (infrared + optical) Look out into space = look back in time Face-on Giant molecularedge-on clouds Dusty lane where stars are being born Milky Way: currently forming stars in the disk at a rate of ~1 M /year sun mostly at spiral arms (the slow mode) star formation in the past much more intense (starbursts, the fast mode) new stars formed out of recycled materials; Galaxy-galaxyGalaxy-galaxy collisionscollisions induce starburst (the fast mode) induce starburstRadio (the fast mode) Visible M82 M81 UV and X-ray Our neighbor M82 has a star formation rate ~ 10 time higher (starburst). Lots of supernova and galactic superwind... Stars inside a galaxy Distance to nearest Galaxy 2,500,000light-year = =25 Diameter of Milky Way 100,000light-year Galaxies inside a group Local supercluster Local group 60 million Milky Way galaxy light-years virtually never Stars in open cluster 2.5 million 28,000 light-years light-years Universe common Earth Solar system (not to scale) Galaxies inside a cluster almost never Stars in globular cluster 0.04 light-seconds Collisions Collisions 8 light-minutes 5 light-seconds often Distance to nearest Star 3 light-year = =20million rare Diameter of Sun 5 light-second GalaxyGalaxy ClustersClusters LocalLocal GroupGroup The Andromeda galaxy Some galaxy-galaxy collision leads to merger and great starbursts. Central galaxies in galaxy clusters have undergone a lot of collisions and mergers. They are more massive and redder (oligarchs). The Milky way has cannibalized a number of smaller galaxies, and is eating more... RemainsRemains ofof ourour cannibalismcannibalism AlsoAlso forfor us,us, inin 2-32-3 billionbillion years?years? Andromeda-like Milky Way-like Or perhaps here You are here The sky will light up very brightly; the Sun may leave the galaxy, be incorporated into the mega-galaxy, or... Antannae UncertainUncertain FateFate StarburstsStarbursts inducedinduced byby mergersmergers Young and blue Or perhaps here You wind up here Something is astir in the centers of galaxies M87M87 Central black hole mass ~ a few billion solar masses Supermassive blackholes lurking in the center QuasiQuasi StellarStellar ObjectsObjects TheThe largerlarger thethe galaxy,galaxy, a blackhole outshining 100 billion stars? thethe biggerbigger thethe blackblack holehole Or are you joking? Black Hole in the Galactic Centre 6 M BH=3.6×10 M sun Did someone just drop a blackhole in our galactic center? SmallerSmaller fryfry Assignment 8 due next monday. AndromedaAndromeda GalaxyGalaxy ActiveActive GalacticGalactic NucleiNuclei Looks pretty steady... NGC 5548 NGC 3277 FormationFormation ofof GalaxiesGalaxies Hubble Ultradeep Field Ultradeep Hubble Hubble Ultradeep Field Ultradeep Hubble Hubble'sHubble's tuningtuning forkfork Along the 106 Main Sequence: Andromeda More Massive ⇒ Much Brighter BRIGHT 107 yr SMC ⇒ Burns Faster 1000 ⇒ Lives Shorter 108 yr 9 1 10 yr 1010 yr Lum. (solar units) Lum. (solar 1011 yr 0.001 LMC DIM Milky Way 30,000 10,000 6,000 3,000 Hertzsprung-Russel Diagram Hertzsprung-Russel Hertzsprung-Russel Diagram Hertzsprung-Russel HOT Surface temp. (K) COOL GalaxyGalaxy GroupsGroups MoreMore interactionsinteractions inin clustersclusters NGC 5350 group NGC 3166 group Leo group Abell 1185 Hubble Ultradeep Field Ultradeep Hubble Hubble Ultradeep Field Ultradeep Hubble 8 M84M84 M BH3×10 M sun NGCNGC 45284528 7 M BH=4×10 M sun CosmicCosmic MicrowaveMicrowave BackgroundBackground FormationFormation ofof StructureStructure Structure forms hierarchically: Differences in density: a few in 100,000! small things merge into big ones.
Recommended publications
  • Unusual Orbits in the Andromeda Galaxy Post-16
    Unusual orbits in the Andromeda galaxy Post-16 Topics covered: spectra, Doppler effect, Newton’s law of gravitation, galaxy rotation curves, arc lengths, cosmological units, dark matter Teacher’s Notes In this activity students will use real scientific data to plot the rotation curve of M31 (Andromeda), our neighbouring spiral galaxy. They will use Kepler’s third law to predict the motion of stars around the centre of M31. They will then measure the wavelengths of hydrogen emission spectra taken at a range of radii. The Doppler equation will be used to determine whether these spectra come from the approaching or receding limb of the galaxy and the velocity of rotation at that point. They will plot a velocity vs radius graph and compare it with their predicted result. A flat rotation curve indicates the presence of dark matter within Andromeda. Equipment: calculator, ruler, graph paper (if needed) Questions to ask the class before the activity: What is the Universe composed of? Answer: energy, luminous matter, dark matter, dark energy. What is a spectrum and how so we get spectral lines? Answer: a ‘fingerprint’ of an object made of light. The spectrum of visible light is composed of the colours of the rainbow. Absorption lines arise from electrons absorbing photons of light and jumping an energy level or levels; emission lines occur when electrons fall down to a lower energy level and emit a photon in the process. What can a spectrum tell us? Answer: the composition of an object such as a star, its temperature, its pressure, the abundance of elements in the star, its motion (velocity).
    [Show full text]
  • Lecture 7: the Local Group and Nearby Clusters
    Lecture 7: the Local Group and nearby clusters • in this lecture we move up in scale, to explore typical clusters of galaxies – the Local Group is an example of a not very rich cluster • interesting topics include: – clusters and the structure of the Universe – the fate of galaxies: stable, destroyed or cannibals? Galaxies – AS 3011 1 the Local Group Galaxies – AS 3011 2 1 Inner Solar System Galaxies – AS 3011 3 Galaxies – AS 3011 4 2 some Local Group galaxies, roughly to the same physical scale: M31, Leo I LMC, M32 SMC MW M33 (images courtesy AAO) Galaxies – AS 3011 5 first impressions • there are some obvious properties of the Local Group: – it’s mostly empty, i.e. galaxies are quite distant from each other – with some exceptions like satellite galaxies – the three spirals are easily the biggest – dwarf galaxies are on the outskirts of the group • how typical is this of other galaxy groups? – turns out that the Local group is not very rich in galaxies Galaxies – AS 3011 6 3 groups and clusters • groups contain a smaller number of galaxies than clusters, and are more compact in both space and velocity spread: group: cluster: no. galaxies ~10+ >50 core radius ~300 kpc ~300 kpc median radius ~1 Mpc ~ 3Mpc v-dispersion 150 km/s 800 km/s M/L ~200 ~200 13 15 total mass few 10 Msolar few 10 Msolar Galaxies – AS 3011 7 classifying the Local Group • the Local Group has only about 10 significant galaxies 8 (L > 10 Lsolar), so does not qualify as a cluster – NB, dwarf spheroidals etc.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • 1410.0681V1.Pdf
    ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 05/12/14 THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA1 THOMAS M. BROWN2, JASON TUMLINSON2, MARLA GEHA3, JOSHUA D. SIMON4,LUIS C. VARGAS3,DON A. VANDENBERG5,EVAN N. KIRBY6, JASON S. KALIRAI2,7,ROBERTO J. AVILA2, MARIO GENNARO2,HENRY C. FERGUSON2 RICARDO R. MUÑOZ8,PURAGRA GUHATHAKURTA9, AND ALVIO RENZINI10 Accepted for publication in The Astrophysical Journal ABSTRACT We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolutionspectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W.M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z ∼ 10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z ∼ 6 (12.8 Gyr ago) and 100% of the stars forming by z ∼ 3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe. Keywords: Local Group — galaxies: dwarf — galaxies: photometry — galaxies: evolution — galaxies: for- mation — galaxies: stellar content 1.
    [Show full text]
  • Facilitator Information – Galaxies
    Facilitator Information (All you need to know about galaxies to survive the day) What is a galaxy? Galaxies are large collections of stars and gas and dust. They have millions to billions of stars, all held into a cluster by gravitational attraction. Most galaxies are flat, but there are different shapes — some are spirals, some are elliptical, and some are irregular. Our Galaxy The Milky Way is a galaxy, a slowly rotating cluster of more than 200,000,000,000 stars! Our Milky Way Galaxy looks a little like a pinwheel. It is a spiral galaxy, about 100,000 light years across. Spiral galaxies have: a bulge in the center (called the nuclear bulge) that contains the nucleus; a wide, flat disk with distinct spiral arms containing stars; and a surrounding halo of stars. There are several “spiral arms” in our Milky Way: Sagittarius, Cygnus, Perseus, and Orion. Where are we in the Milky Way Galaxy? We are in one of the spiral arms, about 30,000 light years from the center of the Milky Way Galaxy — or about two-thirds of the way from the center. Can you see the Milky Way? Yes! On a very dark night, away from bright lights, you can see a faint, hazy — or milky — band in the sky. This is the Milky Way. The hazy appearance is because there so many stars that are very distant; your eye cannot distinguish the stars as separate points of light. By using binoculars or a telescope, you can see the individual stars. The Milky Way is like a big, flat disk in space.
    [Show full text]
  • The Andromeda Galaxy's Most Important Merger
    The Andromeda Galaxy’s most important merger ~ 2 Gyrs ago as M32’s likely progenitor Richard D’Souza* & Eric F. Bell Although the Andromeda Galaxy’s (M31) proximity offers a singular opportunity to understand how mergers affect galaxies1, uncertainty remains about M31’s most important mergers. Previous studies focused individually on the giant stellar stream2 or the impact of M32 on M31’s disk3,4, thereby suggesting many significant satellite interactions5. Yet, models of M31’s disk heating6 and the similarity between the stellar populations of different tidal substructures in M31’s outskirts7 both suggested a single large merger. M31’s outer low- surface brightness regions (its stellar halo) is built up from the tidal debris of satellites5 and provides decisive guidance about its important mergers8. Here we use cosmological models of galaxy formation9,10 to show that M31’s massive11 and metal-rich12 stellar halo, containing intermediate-age stars7, dramatically narrows the range of allowed interactions, requiring a 10 single dominant merger with a large galaxy (M*~2.5x10 M¤, the third largest member of the Local Group) ~2 Gyr ago. This single event explains many observations that were previously considered separately: its compact and metal-rich satellite M3213 is likely to be the stripped core of the disrupted galaxy, M31’s rotating inner stellar halo14 contains most of the merger debris, and the giant stellar stream15 is likely to have been thrown out during the merger. This interaction may explain M31’s global burst of star formation ~2 Gyr ago16 in which ~1/5 of its stars were formed.
    [Show full text]
  • Stars and Galaxies
    Stars and Galaxies STUDENT PAGE Se e i n g i n to t h e Pa S t A galaxy is a gravitationally bound system of stars, gas, and dust. Gal- We can’t travel into the past, but we axies range in diameter from a few thousand to a few hundred thou- can get a glimpse of it. Every sand light-years. Each galaxy contains billions (10 9) or trillions (1012) time we look at the Moon, for of stars. In this activity, you will apply concepts of scale to grasp the example, we see it as it was a distances between stars and galaxies. You will use this understanding little more than a second ago. to elaborate on the question, Do galaxies collide? That’s because sunlight reflected from the Moon’s surface takes a little more EX P LORE than a second to reach Earth. We see On a clear, dark night, you can see hundreds of bright stars. The next table the Sun as it looked about eight minutes shows some of the brightest stars with their diameters and distances from ago, and the other stars as they were a the Sun. Use a calculator to determine the scaled distance to each star few years to a few centuries ago. (how many times you could fit the star between itself and the Sun). Hint: And then there’s M31, the Androm- you first need to convert light-years and solar diameters into meters. One eda galaxy — the most distant object light-year equals 9.46 x 1015 meters, and the Sun’s diameter is 1.4 x 109 that’s readily visible to human eyes.
    [Show full text]
  • Extragalactic Astronomy: the U Nivcre Bey Nd Our Galaxy
    U1IJT RESUPE EU 1J3 199 021 775 dacon Eenneth Char TITLE Extragalactic Astronomy: The U nivcre Bey nd Our Galaxy. American Astronomical Society, Princeton, N.J. SFONS AGENCY National Aeronautics and Space Administra ashingtonl D.C.; National Science Foundation, Washington, D.C. REPOBT NO NASA-i:T-129 PUB DATE Sep 76 NOTE 44p.; FOF ltEd aocunents, _e SE 021 773-776 AVAII,AULE Superintendent of Documents, U.S. G-vernment Prin ing Office, Washington, D.C. 20402(5 ock Number 033-000-00657-8, $1.30) E.-RS PE10E 1F-$0.03 HC-$2.06 Plus Postige. DESCilIPTORS *Astronomy; Curriculum; *Instructional Materials; Science Education; *Scientific iesearch; Secondary Education; *Secondary School Science; *Space Sciences TIF NASA; National Aeronautics and Space Administration BSTRACT This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers or secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in detail, and the last section summarizes the earlier discussions within the structure of the Big Bang Theory of Evolution. Each of the three sections is followed by student exercises and activities, laboratory projects, and questions and answers. The glossary contains unfamiliar terms used in the text and a collection of teacher aids such as literature references and audiovisual materials. (111) ***** *** * ** ** ***************** ********** Document., acquired by IC include many informal unpublished aterials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and tbis affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document Reproduction Service (EDRS).
    [Show full text]
  • Snake in the Clouds: a New Nearby Dwarf Galaxy in the Magellanic Bridge ∗ Sergey E
    MNRAS 000, 1{21 (2018) Preprint 19 April 2018 Compiled using MNRAS LATEX style file v3.0 Snake in the Clouds: A new nearby dwarf galaxy in the Magellanic bridge ∗ Sergey E. Koposov,1;2 Matthew G. Walker,1 Vasily Belokurov,2;3 Andrew R. Casey,4;5 Alex Geringer-Sameth,y6 Dougal Mackey,7 Gary Da Costa,7 Denis Erkal8, Prashin Jethwa9, Mario Mateo,10, Edward W. Olszewski11 and John I. Bailey III12 1McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, 15213, USA 2Institute of Astronomy, University of Cambridge, Madingley road, CB3 0HA, UK 3Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA 4School of Physics and Astronomy, Monash University, Clayton 3800, Victoria, Australia 5Faculty of Information Technology, Monash University, Clayton 3800, Victoria, Australia 6Astrophysics Group, Physics Department, Imperial College London, Prince Consort Rd, London SW7 2AZ, UK 7Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 8Department of Physics, University of Surrey, Guildford, GU2 7XH, UK 9European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 10Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Avenue, Ann Arbor, MI 48109, USA 11Steward Observatory, The University of Arizona, 933 N. Cherry Avenue., Tucson, AZ 85721, USA 12Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We report the discovery of a nearby dwarf galaxy in the constellation of Hydrus, between the Large and the Small Magellanic Clouds. Hydrus 1 is a mildy elliptical ultra-faint system with luminosity MV 4:7 and size 50 pc, located 28 kpc from the Sun and 24 kpc from the LMC.
    [Show full text]
  • Stars and Their Purpose
    Stars & Their Purpose.indd 3 8/17/06 8:19:54 AM First Master Books printing: August 2006 Copyright © 2006 by Werner Gitt. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission of the publisher except in the case of brief quotations in articles and reviews. For information write: Master Books, P.O. Box 726, Green Forest, AR 72638. ISBN-13: 978-0-89051-482-5 ISBN-10: 0-89051-482-8 Library of Congress Number: 2006929548 Cover by Bryan Miller Unless otherwise noted, all Scripture is from the New International Version of the Bible. References to apocryphal books have been taken from The Jerusalem Bible (London: Darton, Longman & Todd, 1966 edition). Printed in the United States of America. Please visit our website for other great titles: www.masterbooks.net. For information regarding author interviews, please contact the publicity department at (870) 528-5288. Stars & Their Purpose.indd 4 8/17/06 8:19:54 AM INDEX Preface............................................................................. 7 Preface to the English Edition ....................................... 13 Introduction.................................................................. 15 1. Can the Stars Be Counted?............................................ 17 2. In What Respects Do the Stars Differ?........................... 27 3. How Big Is the Universe? .............................................. 39 4. Four Characteristics of Space......................................... 43 5. Why Were the Stars Created? ........................................ 49 5.1 The Stars Were Made to Shine on Earth................. 50 5.2 The Stars Were Made to Determine Times and Seasons ................................................. 53 6. How Do the Stars Transmit Their Messages? ................. 57 6.1 Their Messages Are Silent....................................... 57 6.2 God’s Message Can Be Understood by Anybody ...
    [Show full text]
  • Ml Driven Prediction of Collision of Milky Way & Andromeda
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September 2019 Ml Driven Prediction of Collision of Milky Way & Andromeda Ansh Mittal, Anusurya, Deepika Kumar, Garima Kumar Abstract: The 3D position of Sun with respect to the galactic center of Milky Way can be used to understand its evolution. After Milky Way collides with Andromeda(M31), the same will hold true. Ensuing sections deal with the implementation of Regressive Analysis to predict the location of Sun in the galactic center after Galactic collision. This model utilizes results of previous studies of black hole mergers to predict the resultant mass of Sagittarius A* and M31’s black hole, which had been found to be (1.49±0.16) × Figure 1: Different types of Collisions between two 8 10 M☉. This mass has been used to calculate the centrifugal force galaxies as has been mentioned in [5] that Sun might experience during and after the galactic collision. The current position, inclination, and velocity of Sun (derived Galaxies may be of various types [7] like the dark galaxy, from aforementioned predictions) have been used to predict its Type CD galaxy, Type D galaxy, and Ultra Diffuse galaxy. distance and inclination after the collision which has been Out of these galaxies, UDG or the ultra-diffuse galaxy had o predicted as 63,362.83 ly and 32.75 , from the new galactic center been a galaxy which has very low luminosity. Although Milky and its plane (97.48% and 96.32% accurate) respectively. way and UDG galaxy share the same mass and size, only 1% Index Terms: Sun, Milky Way, Andromeda(M31), Regression of the visible star count has been observed there for UDG Analysis, Galactic collision, Sagittarius A*.
    [Show full text]