The Tallgrass Prairie Ecosystem Prairies

Total Page:16

File Type:pdf, Size:1020Kb

Load more

The Tallgrass Prairie Ecosystem Prairies once accounted for twenty-four percent of the total land cover worldwide (Howell & Kline 1987). In North America, grasslands extend from the western boundary of the eastern deciduous forest to the base of the Rocky Mountains from southern Alberta and Saskatchewan to central Texas. The grasslands shift in composition and height with tallgrass prairie, mixedgrass prairie and shortgrass prairie distributed from east to west, respectively. The tallgrass prairie receives more rainfall, and has greater species richness and more dominant species than the shortgrass or mixedgrass prairie (Cochrane & Iltis 2000). Although grasses comprise only 10% of the species, they constitute most of the biomass in tallgrass prairies. The dominant grasses vary across a moisture gradient ranging from xeric (dry), mesic (moist), and wet prairies. Common grasses include little blue stem (Schizachyrium scoparium), big bluestem (Andropogon gerardii) and indian grass (Sorghastrum nutans). Forbs, another important prairie component, align themselves along a similar moisture gradient. These herbaceous species add seasonal color and texture to prairie vegetation. Besides grasses, the most common plant families in tallgrass prairies include composites and legumes (Cochrane & Iltis 2000). Climate change during the Holocene played a role in determining the distribution of prairie in the Great Plains. High temperatures and periodic summer droughts favor grassland over forest. Fire and grazing also influence the distribution of prairie, especially along the margins of its range. The rolling topography of the Great Plains covered with flammable plant material encourages the spread of fire through the landscape. The lightning fires and frequent burns by the Native Americans slows the invasion of woody species, hinders competitive grasses, and reduces litter in the prairie. Grazing by ungulates alters the landscape by removing plant material, concentrating nutrients, trampling, and influencing decomposition (Cochrane & Iltis 2000). Currently, the tallgrass prairie ecosystem is one of the most threatened ecosystems in the Midwest United States (Wisconsin Department of Natural Resources 1995). The relatively flat topography and fertile prairie soils encouraged the conversion of prairie for agricultural purposes. Of the remnant prairies that remain, most are dry prairies found on steep slopes, or mesic prairies located along railroads and in cemeteries. Due to an invasion by woody species, overgrazing, and poor management practices, many of these remnant prairies are severely degraded and have lost many plant species (Leach & Givnish 1996). Regional context The tallgrass prairie ecosystem occupies a large portion of the Upper Midwest region of the United States, including Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa. This geographic region has ample fresh water and fertile land. With the exception of Iowa, each of these states border at least one of the Great Lakes: Michigan, Superior, Huron, or Erie. Most of the Upper Midwest was once covered by the Laurentide Ice Sheet with the exception of the Driftless Area in southwestern Wisconsin and the southernmost reaches of Indiana and Illinois (Cochrane & Iltis 2000). The glaciers shaped the land in many ways, leaving behind moraines, outwash plains, and kettle holes. The resulting topography consists of gently rolling hills and large flat expanses punctuated by lakes. The region epitomizes the humid continental climate type characterized by warm summers and long, cold winters. The Great Lakes buffer the surrounding areas providing cooler summers and milder winters. The amount of rainfall ranges from 63 to 100 cm of precipitation annually (Mattson 1996) Figure 1. Mean monthly temperature (above) and precipitation (below) for Madison, Wisconsin, USA, for the years 1971-2000 (Lindstrom & Young 2002) Prior to European settlement, many factors including climate created a gradation of boreal forest and mixed hardwood forests in the north and tallgrass prairie and savannas in the south. Most of the fertile land that was once prairie and savanna has been converted into farmland and pasture. Corn, soybeans, dairy products and cattle are the most common agricultural uses, bringing in at least 3 billion dollars annually in each state (Mattson 1996). Significant areas were retained as woodlots, but these have grown up to form dense stands of shade-tolerant trees characterized by a reduced number of the oak species that were abundant. The richness of the prairie soils attracted immigrants from Northern Europe. By 1880, over two-thirds of all immigrant farmers had settled in the Midwest (Hurt 2001). The immigrants who settled in the region were motivated to improve their standard of living and brought “strong beliefs and moral values that encouraged hard work” (Hurt 2001). After many years of cultural give-and-take, the distinctive Midwestern culture emerged, characterized by a strong work ethic and moderate conservatism. Local context The Curtis Prairie is located in Madison, Wisconsin. As both the capitol of Wisconsin and home of the state’s largest university, Madison has a population of 298,054 (U.S. Census 2002). Curtis Prairie (W89.4°, N43.1°) is a restored tallgrass prairie that is situated within the University of Wisconsin-Madison Arboretum. It represents one of thirty-one biotic communities included in the University’s 500-ha Arboretum. Aldo Leopold, a forward- thinking professor at the University, recognized early on that native communities were being lost and suggested in 1934 that the Arboretum (then a farm) could ultimately provide a “sample of what Dane county looked like when our ancestors arrived here” (Blewett & Cottam 1984; Sachse 1965). Based on U.S. Government Land Survey records from 1835, the presettlement condition of the Arboretum consisted of oak openings and marsh. The uplands contained bur and white oaks with about 36 to 48 trees per hectare. Prairie grasses, prairie forbs and shrubby black oaks made up the ground cover (Blewett & Cottam 1984; Curtis 1951). The 25-hectare area that would become Curtis Prairie was first settled for farming in 1836. After eleven owners, the Bartlett family purchased the land in 1860. By 1863 the western two-thirds of the land was regularly plowed and planted with corn, oats and pasture in rotation. The wetter eastern third was probably not plowed, with the northern section undisturbed and the southern half used for a mowing meadow. The Bartlett family abandoned cultivation in 1920. The land was fallow until 1926 or 1927 when a veterinarian named West leased the land to pasture 35 to 40 horses. This pasture incorporated the eastern third of the property including the previously undisturbed section and the mowing meadow (Blewett & Cottam 1984). By 1932 the Arboretum was becoming a reality. In that year a part of the Nelson farm was purchased, and in 1933, the University of Wisconsin regents purchased the Bartlett farm. When the fields were purchased, quackgrass (Agropyron repens) dominated the fields. Eventually, two bluegrass species (Poa pratensis and P. compressa) took over (Blewett & Cottam 1984). All three species are considered weedy and non-native components of tallgrass prairies. The creation of a prairie within the Arboretum proved challenging. Not only was this the first ecological restoration, but also there was little tallgrass prairie habitat left to characterize reference conditions due to conversion to agriculture. In The Vegetation of Wisconsin, John Curtis (1959) estimates the original area of over 800,000 hectares has been reduced to remnants, with none larger than 16 hectares. Restoration approaches The restoration goal was to replace pasture and ruderal vegetation with species of native plants for use in research and education. Over the decades that followed the dedication of the Arboretum in 1934, scientists from the University of Wisconsin conducted many experiments involving planting methods and controlled burning. These experiments were aimed at increasing the number of native plant species and decreasing the abundance of weedy and exotic plant species. From 1936 to 1940, Dr. Theodore Sperry directed the first effort to establish a prairie with supervision from Aldo Leopold and William Longenecker. About 200 recruits of the Civilian Conservation Corps (CCC) planted 42 plant species in large blocks within 237 plantings. Three methods of planting were tested: seeds, seedlings and sod transplants. This approach likely represents the first example of experimentation in a restoration site. Prairie remnants along the Wisconsin River provided a source of native seeds and sods, and the seedlings were cultivated in a nursery within the prairie. The establishment rates for the planting treatments were similar, but the sod transplants had slightly higher survival; however, the expense of the sod techniques far outweighed the benefits (Blewett & Cottam 1984). Between 1950 and 1957, a second major planting program added 156 species to selected areas of Curtis Prairie. New planting methods were utilized: seed casting after a burn, hand insertion of large seeds, transplanting sods, and disking followed by seed casting with the addition of cover crops. The last method provided the best results (Blewett & Cottam 1984; Wilson 1964). Curtis Prairie also supported experiments on soil preparation, plant competition, controlled fire treatments, and germination studies. John T. Curtis, Professor of Botany at the University
Recommended publications
  • Key Points for Sustainable Management of Northern Great Plains Grasslands

    Key Points for Sustainable Management of Northern Great Plains Grasslands

    CORE Metadata, citation and similar papers at core.ac.uk Provided by Public Research Access Institutional Repository and Information Exchange South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Natural Resource Management Faculty Publications Department of Natural Resource Management 2019 Looking to the Future: Key Points for Sustainable Management of Northern Great Plains Grasslands Lora B. Perkins Marissa Ahlering Diane L. Larson Follow this and additional works at: https://openprairie.sdstate.edu/nrm_pubs Part of the Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons REVIEW ARTICLE Looking to the future: key points for sustainable management of northern Great Plains grasslands Lora B. Perkins1,2 , Marissa Ahlering3, Diane L. Larson4 The grasslands of the northern Great Plains (NGP) region of North America are considered endangered ecosystems and priority conservation areas yet have great ecological and economic importance. Grasslands in the NGP are no longer self-regulating adaptive systems. The challenges to these grasslands are widespread and serious (e.g. climate change, invasive species, fragmentation, altered disturbance regimes, and anthropogenic chemical loads). Because the challenges facing the region are dynamic, complex, and persistent, a paradigm shift in how we approach restoration and management of the grasslands in the NGP is imperative. The goal of this article is to highlight four key points for land managers and restoration practitioners to consider when planning management or restoration actions. First, we discuss the appropriateness of using historical fidelity as a restoration or management target because of changing climate, widespread pervasiveness of invasive species, the high level of fragmentation, and altered disturbance regimes.
  • Historic Illinois and Percentage of Prairie

    Historic Illinois and Percentage of Prairie

    Historic Illinois and Percentage of Prairie The tall grass prairie is found in the easternmost third of the Great Plains. It receives the most rainfall, averaging 30-40 inches a year. The tallgrass prairie is predominantly made up of Indian grass, switchgrass, and especially big blues stem, which can grow up to 12 feet high and a half an inch a day. The tallgrass prairie is the most lush , with much taller and denser grasses than the western prairie. An acre of intact tallgrass hosts somewhere between 200 and 400 species of native plants—3 out of 4 of them wildflowers. Each week from April to September, about a dozen new kinds of flowers come into bloom. An acre of good tallgrass may have 5 to 10 acres of leaf surfaces and produce 5000 pounds of forage a year. Grazing cattle typically gain 2-3 pounds a day on these grasslands. Today, what was the tallgrass prairie is now the ‘cornbelt’. http://www.inhs.uiuc.edu/~kenr/percentprairie.gif Illinois Symbols The land that became the state of Illinois was covered by prairie grasses. Big Bluestem may have been the most widespread and abundant grass throughout the true prairie. Big Bluestem grows in such tall and dense stands that it often prevents other grasses from growing around it by shading them out. In the past this resulted in large areas of almost pure big bluestem in the prairies. Big bluestem grows to the height of between three and twelve feet (one to three meters). It has tall slender stems. The grass is green throughout most much of the summer ; the stem turns to blue-purple as it matures; thus the name bluestem.
  • Central Mixedgrass Prairie Ecological System (Central Shortgrass Prairie Ecoregion Version)

    Central Mixedgrass Prairie Ecological System (Central Shortgrass Prairie Ecoregion Version)

    CENTRAL MIXEDGRASS PRAIRIE ECOLOGICAL SYSTEM (CENTRAL SHORTGRASS PRAIRIE ECOREGION VERSION) ECOLOGICAL INTEGRITY ASSESSMENT Draft of June 29, 2007 Prepared by: Karin Decker Colorado Natural Heritage Program Colorado State University 254 General Services Building Fort Collins, CO 80523 Table of Contents A. INTRODUCTION ........................................................................................................ 3 A.1 Classification Summary ........................................................................................... 3 A.2 Ecological System Description ................................................................................ 5 A.2.1 Environment....................................................................................................... 5 A.2.2 Vegetation & Ecosystem.................................................................................... 6 A.2.3 Dynamics ........................................................................................................... 8 A.2.4 Landscape......................................................................................................... 10 A.2.5 Size................................................................................................................... 11 A.3 Ecological Integrity................................................................................................ 12 A.3.1 Threats.............................................................................................................. 12 A.3.2 Justification of Metrics....................................................................................
  • Native Or Suitable Plants City of Mccall

    Native Or Suitable Plants City of Mccall

    Native or Suitable Plants City of McCall The following list of plants is presented to assist the developer, business owner, or homeowner in selecting plants for landscaping. The list is by no means complete, but is a recommended selection of plants which are either native or have been successfully introduced to our area. Successful landscaping, however, requires much more than just the selection of plants. Unless you have some experience, it is suggested than you employ the services of a trained or otherwise experienced landscaper, arborist, or forester. For best results it is recommended that careful consideration be made in purchasing the plants from the local nurseries (i.e. Cascade, McCall, and New Meadows). Plants brought in from the Treasure Valley may not survive our local weather conditions, microsites, and higher elevations. Timing can also be a serious consideration as the plants may have already broken dormancy and can be damaged by our late frosts. Appendix B SELECTED IDAHO NATIVE PLANTS SUITABLE FOR VALLEY COUNTY GROWING CONDITIONS Trees & Shrubs Acer circinatum (Vine Maple). Shrub or small tree 15-20' tall, Pacific Northwest native. Bright scarlet-orange fall foliage. Excellent ornamental. Alnus incana (Mountain Alder). A large shrub, useful for mid to high elevation riparian plantings. Good plant for stream bank shelter and stabilization. Nitrogen fixing root system. Alnus sinuata (Sitka Alder). A shrub, 6-1 5' tall. Grows well on moist slopes or stream banks. Excellent shrub for erosion control and riparian restoration. Nitrogen fixing root system. Amelanchier alnifolia (Serviceberry). One of the earlier shrubs to blossom out in the spring.
  • Area Requirements and Landscape-Level Factors Influencing

    Area Requirements and Landscape-Level Factors Influencing

    The Journal of Wildlife Management 81(7):1298–1307; 2017; DOI: 10.1002/jwmg.21286 Research Article Area Requirements and Landscape-Level Factors Influencing Shrubland Birds H. PATRICK ROBERTS,1 Department of Environmental Conservation, University of Massachusetts, 204 Holdsworth Hall, Amherst, MA 01003, USA DAVID I. KING, U.S. Forest Service Northern Research Station, University of Massachusetts, 201 Holdsworth Hall, Amherst, MA 01003, USA ABSTRACT Declines in populations of birds that breed in disturbance-dependent early-successional forest have largely been ascribed to habitat loss. Clearcutting is an efficient and effective means for creating early- successional vegetation; however, negative public perceptions of clearcutting and the small parcel size typical of private forested land in much of the eastern United States make this practice impractical in many situations. Group selection harvests, where groups of adjacent trees are removed from a mature forest matrix, may be more acceptable to the public and could provide habitat for shrubland birds. Although some shrubland bird species that occupy clearcuts are scarce or absent from smaller patches created by group selection, some of these smaller patches support shrubland species of conservation concern. The specific factors affecting shrubland bird occupancy of these smaller patches, such as habitat structure, patch area, and landscape context, are poorly understood. We sampled birds in forest openings ranging 0.02–1.29 ha to identify species-specific minimum-area habitat requirements and other factors affecting shrubland birds. We modeled bird occurrence in relation to microhabitat-, patch-, and landscape-level variables using occupancy models. The minimum-area requirements for black-and-white warblers (Mniotilta varia), common yellowthroats (Geothlypis trichas), chestnut-sided warblers (Setophaga pensylvanica), eastern towhees (Pipilo erythrophthalmus), and gray catbirds (Dumetella carolinensis)were0.23 ha, whereas indigo buntings (Passerina cyanea) and prairie warblers (S.
  • 7. Shrubland and Young Forest Habitat Management

    7. Shrubland and Young Forest Habitat Management

    7. SHRUBLAND AND YOUNG FOREST HABITAT MANAGEMENT hrublands” and “Young Forest” are terms that apply to areas Shrubland habitat and that are transitioning to mature forest and are dominated by young forest differ in “Sseedlings, saplings, and shrubs with interspersed grasses and forbs (herbaceous plants). While some sites such as wetlands, sandy sites vegetation types and and ledge areas can support a relatively stable shrub cover, most shrub communities in the northeast are successional and change rapidly to food and cover they mature forest if left unmanaged. Shrub and young forest habitats in Vermont provide important habitat provide, as well as functions for a variety of wildlife including shrubland birds, butterflies and bees, black bear, deer, moose, snowshoe hare, bobcat, as well as a where and how they variety of reptiles and amphibians. Many shrubland species are in decline due to loss of habitat. Shrubland bird species in Vermont include common are maintained on the species such as chestnut-sided warbler, white-throated sparrow, ruffed grouse, Eastern towhee, American woodcock, brown thrasher, Nashville landscape. warbler, and rarer species such as prairie warbler and golden-winged warbler. These habitat types are used by 29 Vermont Species of Greatest Conservation Need. While small areas of shrub and young forest habitat can be important to some wildlife, managing large patches of 5 acres or more provides much greater benefit to the wildlife that rely on the associated habitat conditions to meet their life requirements. Birds such as the chestnut- sided warbler will use smaller areas of young forest, but less common species such as golden-winged warbler require areas of 25 acres or more.
  • A Prairie Ecosystem the Kansas Grassland Biome Is Divided Into Tallgrass, Mixed-Grass, and Shortgrass Prairies

    A Prairie Ecosystem the Kansas Grassland Biome Is Divided Into Tallgrass, Mixed-Grass, and Shortgrass Prairies

    A Prairie Ecosystem The Kansas grassland biome is divided into tallgrass, mixed-grass, and shortgrass prairies. ​ ​Emporia, KS is located in the Tallgrass prairie ecosystem. Before settlement, the tallgrass prairie occupied a north-south strip which encompassed the eastern third of Kansas. The tallgrass prairie exists today since much the land is not farmable due to terrain (slope, rock layers, soil depth, etc.). The grasses can grow in excess of six feet tall during moist years if they reside in deep soils. The annual precipitation, or rainfall, in this region exceeds 30 inches. The original tallgrass prairie spanned almost 250 million acres. Today, about four percent remains with the largest areas being the Flint Hills of Kansas and the Osage Hills of Oklahoma. Examples of grasses found in tallgrass prairies include big bluestem, indian grass, switchgrass, and eastern gamagrass. The sun is the main source of energy for every living thing on earth. An organism that makes its own food from the sun is called a ​producer​. Examples of producers in the prairie are grasses and wildflowers because they use the sun to make their own food through a process called photosynthesis. An organism that depends on others for food is called a ​consumer​. Examples of consumers in the prairie include coyotes, snakes, mice and prairie chickens because they hunt or scavenge for their food. An organism that breaks down materials in dead organisms is called a decomposer​. Examples of decomposers in the prairie are worms. Recycling happens in the prairie through decomposition. Recycling means to reuse something once it has died or has been thrown away.
  • Great Plains Ecosystems: Past, Present, and Future

    Great Plains Ecosystems: Past, Present, and Future

    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2004 Great Plains Ecosystems: Past, Present, and Future Fred B. Samson United States Forest Service Fritz L. Knopf United States Geological Survey Biological Resources Division Wayne Ostlie The Nature Conservancy, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Samson, Fred B.; Knopf, Fritz L.; and Ostlie, Wayne, "Great Plains Ecosystems: Past, Present, and Future" (2004). USGS Staff -- Published Research. 45. https://digitalcommons.unl.edu/usgsstaffpub/45 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Ecosystems: Past, Present, and Future Fred B. Samson, Fritz L. Knopf, & Wayne R. Ostlie 6 SPECIALCOVERAGE ...eat Plains ecosystems: _ _ t, present, and future HH[[~dIed B. Samson, Fritz L. Knopf, and e R. Ostlie sts that the main bodies of North American prairie (i.e., the tall- grass, mixed, and shortgrass) are among the most endangered resources on the con- tinent. The purpose of this paper is to provide a past and present biological base- line by which to understand North American prairies and to provide a platform for future conservation. Events both immediate to the end of the Pleistocene and his- toric suggest that the present grassland conditions are different from those within which most of the grassland organisms evolved.
  • Where Are Shortgrass Prairies in Wyoming? Basically, Shortgrass Prairie Is Found in the Eastern One-Third of Wyoming, in the Rain Shadow of the Rocky Mountains

    Where Are Shortgrass Prairies in Wyoming? Basically, Shortgrass Prairie Is Found in the Eastern One-Third of Wyoming, in the Rain Shadow of the Rocky Mountains

    Shortgrass Prairie Ecosystem Flashcards Shortgrass Prairie What is a shortgrass prairie? Short grass prairie habitat is flat to rolling terrain dominated by short grasses that form a nearly continuous carpet across the landscape. Grama grass and buffalo grass make up 70% to 90% of the plants growing on the short grass prairie. A few mid-grasses and forbs also grow there. Short grass prairie s is the westernmost and driest of the true North American grasslands. Average annual precipitation is 10 to 12 inches. Why are shortgrass prairies important? Shortgrass prairies provide essential habitat for many species of wildlife that live nowhere else. Grazing buffalo, deer, and pronghorn as well as burrowing mammals are the iconic animals of this landscape. However, the grasses are the real star of this ecosystem. They can withstand the harsh climate better than any other plants and help to protect the essential topsoil. Without the grasses, we’d have no plant or animal life, just dust. Where are shortgrass prairies in Wyoming? Basically, shortgrass prairie is found in the eastern one-third of Wyoming, in the rain shadow of the Rocky Mountains. It becomes and replaced by sagebrush grasslands and foothills shrub land as the terrain rises westward toward the Rocky Mountains. rockies.audubon.org plt.wyomingplt.org Shortgrass Prairie Ecosystem Flashcards American Badger Black-tailed Jackrabbit Swift Fox Northern Pocket Gopher Ferruginous Hawk Short-eared Owl Page 1 A rockies.audubon.org plt.wyomingplt.org Shortgrass Prairie Ecosystem Flashcards Western
  • Grasslands and Prairies Grassland

    Grasslands and Prairies Grassland

    Grasslands and Prairies Grassland Dominated by grasses (Poaceae) and grass-like plants (sedges, rushes) 30 – 40 % of world land surface Climate composed of moderate precipitation (10 - 50 inches/yr) and periodic drought Other environmental factors Fire Grazing Major Global Grasslands Temperate Grasslands North America Prairie, Great Plains Grasslands Eurasia Steppe South America Pampas Subtropical to Tropical Grasslands South America Cerrado, Llanos Africa Savanna, Veldt Australia Mitchell Grasslands Prairie From the historic French word for a tree-less meadow or pasture co-dominated by perennial grasses and forbs. Generally used by North American ecologists to describe a tree-less vegetation of grasses, dicotyledonous herbs, and small shrubs. Steppe From the Russian word “степ” for an extensive, flat grassland. Sometimes used by North American ecologists to describe a grassland composed of short statured, perennial grasses or bunch grasses. Temperate Grasslands Cold season alternating with Warm to Hot season 10 – 35 inches of annual precipitation alternating with drought Deep, porous soils (e.g., loess) Subtropical to Tropical Grasslands Cool to Warm seasons alternating with Warm to Hot seasons 20 – 50 inches of annual precipitation alternating with drought Soils vary from deep to thin, porous to clay pampas prairie steppe savannah Adaptations perennial, cespitose habit thin, narrow leaves that grow from the base deep, compact root systems G G G G G G G G G Fire “Grazing” Grazing: feeding primarily on grasses and grass-like plants Browsing:
  • Native Prairie Roadsides: the Iowa Example

    Native Prairie Roadsides: the Iowa Example

    Kansas State University Libraries New Prairie Press 2011 – Freedom’s Frontier in the Flint Hills Symphony in the Flint Hills Field Journal (Laurie J. Hamilton, Editor) Native Prairie Roadsides: The Iowa Example Daryl D. Smith Follow this and additional works at: https://newprairiepress.org/sfh Recommended Citation Smith, Daryl D. (2011). "Native Prairie Roadsides: The Iowa Example," Symphony in the Flint Hills Field Journal. https://newprairiepress.org/sfh/2011/nature/7 To order hard copies of the Field Journals, go to shop.symphonyintheflinthills.org. The Field Journals are made possible in part with funding from the Fred C. and Mary R. Koch Foundation. This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Symphony in the Flint Hills Field Journal by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Native Prairie Roadsides: The Iowa Example “No doubt each of us relates to certain aspects of the prairie that have special meaning. For me, the plants of the prairie invoke feelings of awe and wonderment as well as continuity with the past. Nothing is more relaxing than lying on your back in late summer and viewing a deep blue sky through the outstretched turkeyfeet of bluestem.” 1 Most original roads in Iowa and Kansas followed existing trails and traversed the tallgrass prairie. As long as prairie was adjacent to the roadside, seed was available to maintain prairie vegetation in disturbed rights-of-way. As the human population and Management (IRVM) programs that KANSAS TURNPIKE agriculture increased, cropland replaced combined native vegetation, reduced Ron Klataske the adjacent prairies.
  • Habitats Prairies

    Habitats Prairies

    Little Habitats ▼ oung on the Y Prairies naturalists By Kathleen Weflen Illustrations by Vera Ming Wong Minnesota has a wild place called tallgrass prairie. Millions of bison once grazed on this native grassland. Prairie Indians hunted bison for food, clothing, shelter, and tools. When French explorers arrived, they looked out on miles of tall grass stretching all the way to the horizon. They called it prairie, meaning meadow. On an 1838 expedition, Joseph Nicollet wrote, “The plateau ... is high, grand, and beautiful prairie. The view to the south seems limitless. The spectacle is full of grandeur.” Today, you can explore much smaller prairies at state parks such as Blue Mounds, Glacial Lakes, and Buffalo River. Most of the original prairie is gone, but the little habitats that remain still hold a surprising variety of wildlife. Lie down in a tallgrass prairie and listen to millions of blades of grass swaying in the wind. A hawk swoops to catch a ground squirrel. Frogs and ducks call from ponds. Thousands of dragonflies, bees, and other insects travel among hundreds of kinds of wildflowers. Under the ground, gophers, snakes, and voles scurry through tunnels or curl up in dens. From spring until fall, about a dozen species of prairie plants come into bloom each week. Any day is a fine time to explore a prairie. Prairie to Farm. After traveling for several months from the mountains of Norway, Ann Pederson and her family stepped off a train in Taopi, Minn., in July 1879. They saw bright blue sky over a sea of tall grass.