1 DYNAMIC UPLIFT DURING SLAB FLATTENING 1,2Federico M

Total Page:16

File Type:pdf, Size:1020Kb

1 DYNAMIC UPLIFT DURING SLAB FLATTENING 1,2Federico M DYNAMIC UPLIFT DURING SLAB FLATTENING 1,2Federico M. Dávila and 1Carolina Lithgow-Bertelloni 1Dept. Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 2CICTERRA-CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina. [email protected] Abstract Subduction exerts a strong control on surface topography and is the main cause of large vertical motions in continents, including past events of large-scale marine flooding and tilting. The mechanism is dynamic deflection: the sinking of dense subducted lithosphere gives rise to stresses that directly pull down the surface. Here we show that subduction does not always lead to downward deflections of the Earth's surface. Subduction of young lithosphere at shallow angles (flat subduction) leaves it neutrally or even positively buoyant with respect to underlying mantle because the lithosphere is relatively warm compared with older lithosphere, and because the thickened and hence drier oceanic crust does not undergo the transformation of basalt to denser eclogite. Accounting for neutrally buoyant flat segments along with large variations in slab morphology in the South American subduction zone explains along- strike and temporal changes in dynamic topography observed in the geologic record since the beginning of the Cenozoic. Our results show that the transition from normal subduction to slab flattening generates dynamic uplift, preventing back-arc marine flooding. Introduction South America is an ideal natural laboratory to study the influence of subduction morphology on dynamic topography. The present-day geometry of subduction (>3000 km length) changes radically 1 along strike (Booker et al., 2004; Gans et al., 2011) and includes two regions with flat subduction, each associated with the subduction of aseismic ridges with over thickened crust (Nazca and Juan Fernandez ridges, Fig. 1). The location and extent of flat subduction segments has varied with time (Kay and Mpodozis, 2002), allowing us to relate the time history of dynamic topography as revealed in foreland basins to secular variation in subduction zone morphology. Global and regional models of present-day South American dynamic topography and its temporal evolution (Lithgow-Bertelloni and Gurnis, 1997; Lithgow-Bertelloni and Richards, 1998; Shephard et al., 2010, 2012) disagree with the geologic record (Jordan and Allmendinger, 1986; Espurt et al., 2007; Dávila et al., 2010, 2012; Devlin et al., 2012). Though the temporal evolution in both Lithgow-Bertelloni and Gurnis (1997) and Shephard et al. (2010) imply differential uplift and subsidence from the early Cenozoic to the present, the amplitudes and locations differ substantially with respect to the geologic record and imply different dynamical mechanisms. Shephard et al. (2010) predict a large subsiding area 30-40 My that occupies almost all of northern South America including the Andes and Andean foreland that gradually uplifts dynamically as the slab migrates and steepens. The models predict subsidence in geographic disagreement with the location of the northern and southern Amazonian basins and in detail with topographic observations of uplift (e.g., Espurt et al., 2007 in Peru or Dávila et al., 2012 in Argentina). The dynamical evolution of the slab is also in stark contrast with the present-day Nazca slab morphology (Fig. 1b). At 60 My an enormous mass of flat cold material (‘slab’) occupies the entire upper mantle evolving to a more steeply dipping slab for the present-day. The slab evolution is not a short-coming of these sophisticated state-of-the-art adjoint models, but rather stems from known limitations for the backwards advection of initial conditions (Bello et al., 2014) choices regarding slab and plate boundary rheology and an initial buoyancy source derived from global tomographic models whose wavelengths, inherent damping and resolution do not capture crucial aspects of slab morphology and density structure. The latter include along- 2 strike variations in subduction angle and density structure due to age variations and thicker than normal crust. These large age variations are important for elevations within and away from the mountain belt as highlighted by Capitanio et al. (2011). Older (cooler, denser) slabs lead to faster subduction and more vigorous flow in the mantle wedge. In turn the flow exerts stronger shear tractions at the base of the overriding plate leading to crustal thickening and higher elevations. Along-strike variations in subduction morphology (e.g., Fig. 1) are apparent in South America’s foreland surface topography. In the southern part of the Peruvian foreland (10˚ S) up to >700 km from the trench we find the Fitzcarrald arch, an elevated long-wavelength bulge (Espurt et al., 2007; Fig. 1b). This Arch overlies the Peru flat slab and lies eastward from the easternmost Andean thrusts, where no thrusting or folding has been documented (Espurt et al., 2007). This segment also exposes a high- elevation intermontane broken foreland system (Devlin et al., 2012) (PBF in Fig. 1b). Further south, above the Argentine-Chilean flat-slab segment at 30-32˚ S, the distal foreland (>600 km eastward) also shows a high-elevation foreland system (Fig. 1b): the Sierras Pampeanas broken foreland (often used as a modern analogue for the US Laramide, Jordan and Allmendinger, 1986). The Sierras Pampeanas are isostatically uncompensated and have associated high-elevation depocenters >1 km above sea level (Dávila et al., 2012). These features date to the latest Miocene-Pliocene, coeval with the advent of flat subduction (Ramos, 2009). Flat subduction is also often associated with tectonic deformation like lithospheric thickening and basement thrusting, present in the Sierras Pampeanas but not on the Fitzcarrald Arch. Here we first produce high-resolution models that capture the morphology and density structure of the Nazca slab (Fig 1b) and then use them to predict the surface dynamic topography produced by the induced viscous flow (Fig. 2). We show that flat subduction has a decisive influence on the sign, amplitude, and pattern of dynamic topography. We suggest that the change from ‘typical’ subduction to slab flattening leads to dynamic uplift rather than subsidence (Fig. 3). Together with crustal deformation (Dávila et al., 2010; Dávila and Lithgow-Bertelloni, 2013) and lithospheric thickness 3 changes due to, for example delamination (Garzione et al., 2008), the dynamic uplift determines today’s total topography (Fig. 3) as suggested by observed deficits and excesses in residual topography (Steinberger, 2007). We compare our results with two independent sources, a regional residual topography model and structural reconstruction of the regional paleosol marker of the Los Llanos Formation, which developed on a flattened surface across the Miocene foreland (Fig 2 bottom right panel). Methodology We assume that the dominant driving force for mantle flow and the resulting surface dynamic topography is subducted density heterogeneity. Subducted heterogeneity, in an otherwise neutrally buoyant mantle, excites instantaneous flow that produces surface deformation, plate motions, and geoid in good agreement with a wealth of observations as shown in a number of previous studies (e.g. Lithgow-Bertelloni and Richards, 1998). An important advantage of focusing on subducted heterogeneity is that slab morphology for South America is known in detail. Our present-day Nazca slab model (Fig 1 bottom panel) is considered as representative of the slab geometry over the Neogene (~20 My to present), and derived from constraints on slab morphology from regional seismic and magneto-telluric surveys (Gutscher, 2002; Booker et al., 2004; Gans et al., 2011). This episode temporally matches the formation of the foreland landscapes in Peru and Argentina (Espurt et al., 2007; Dávila et al., 2012) described above. Some uncertainty exists over the exact timing of the arrival of the flat slab, which could be as late as 12-11 Ma (Ramos and Folguera, 2009) though the vas majority of the literature supports a date closer to 20 Ma (Dávila et al., 2004). The subduction angles vary along strike from flat (0˚) to a typical (30˚) for South America and the density contrasts (∆) of the slab (with respect to the mantle) are controlled by the slab age, the inferred crustal thickness and the Benioff zone geometry (Fig. 1 bottom panel). The net buoyancy 4 difference between normal and oceanic lithosphere with overthickened crust is largely determined by the thickness of the basaltic layer and that of the depleted harzburgitic mantle (c.f. Cembrano et al. 2007, Arrial and Billen, 2013). From the crustal thicknesses and compositions across the Argentine and Peruvian flat-slab segments (~20 km, Gans et al., 2011; Bishop et al., 2013) and the Nazca ridge offshore (~17-18 km, Woods and Okal, 1994) and the self-consistent thermodynamics of Stixrude and Lithgow-Bertelloni (2011), we estimated an integrated density contrast across the modern flat slab of ~10 kg/m3 less than ambient mantle (c.f. Appendix). To be conservative we modeled flat-slab segments with neutral buoyancy ∆ = 0 (Fig. 1, see Appendix for further detail), though we also show results for the former. Typical density contrasts for subducting slabs are as high as 80 kg/m3 greater than ambient mantle. Our highest density contrast is 50 kg/m3 for the oldest subducting lithosphere. The resulting Nazca slabs have a resolution of 1°x1°, considerably higher than previous models, though density and geometric variations occur on average every 400-500 km (Fig. 1 bottom panel). The new high-resolution Nazca slabs are embedded in an existing global slab model (Lithgow-Bertelloni and Richards, 1998) and expanded to spherical harmonic degree and order 80. We compute the instantaneous flow and resulting dynamic topography (c.f Appendix for technical details) induced by these density fields in a spherical shell to degree and order 50 for a mantle with a radially layered viscosity that best matches the observed geoid (Lithgow-Bertelloni and Richards, 1998) (Appendix, Fig. Ap2). The density and flow field expansions correspond to wavelengths between 500-800 km, comparable to the variations in slab morphology and density.
Recommended publications
  • Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment
    Accepted Manuscript Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment S. Maruyama, M. Santosh, S. Azuma PII: S1674-9871(16)30207-9 DOI: 10.1016/j.gsf.2016.11.009 Reference: GSF 514 To appear in: Geoscience Frontiers Received Date: 9 May 2016 Revised Date: 13 November 2016 Accepted Date: 25 November 2016 Please cite this article as: Maruyama, S., Santosh, M., Azuma, S., Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment, Geoscience Frontiers (2017), doi: 10.1016/ j.gsf.2016.11.009. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED P a g e ‐|‐1111‐‐‐‐ ACCEPTED MANUSCRIPT ‐ 1‐ Initiation of plate tectonics in the Hadean: 2‐ Eclogitization triggered by the ABEL 3‐ Bombardment 4‐ 5‐ S. Maruyama a,b,*, M. Santosh c,d,e , S. Azuma a 6‐ a Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1, 7‐ Ookayama-Meguro-ku, Tokyo 152-8550, Japan 8‐ b Institute for Study of the Earth’s Interior, Okayama University, 827 Yamada, 9‐ Misasa, Tottori 682-0193, Japan 10‐ c Centre for Tectonics, Resources and Exploration, Department of Earth 11‐ Sciences, University of Adelaide, SA 5005, Australia 12‐ d School of Earth Sciences and Resources, China University of Geosciences 13‐ Beijing, 29 Xueyuan Road, Beijing 100083, China 14‐ e Faculty of Science, Kochi University, KochiMANUSCRIPT 780-8520, Japan 15‐ *Corresponding author.
    [Show full text]
  • Geologic Extremes of the NW Himalaya
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Geologic Extremes of the NW Himalaya: Investigations of the Himalayan Ultra-high Pressure and Low Temperature Deformation Histories Dennis Girard Donaldson Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Donaldson, Dennis Girard, "Geologic Extremes of the NW Himalaya: Investigations of the Himalayan Ultra-high Pressure and Low Temperature Deformation Histories" (2016). LSU Doctoral Dissertations. 3295. https://digitalcommons.lsu.edu/gradschool_dissertations/3295 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. GEOLOGIC EXTREMES OF THE NW HIMALAYA: INVESTIGATIONS OF THE HIMALAYAN ULTRA-HIGH PRESSURE AND LOW TEMPERATURE DEFORMATION HISTORIES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Dennis G. Donaldson Jr. B.S., Virginia State University, 2009 August 2016 Dedicated to Jaime, Eliya, Noah, my siblings and parents. ii ACKNOWLEDGEMENTS I am very pleased that I have had a rewarding journey during this chapter of my life with the Department of Geology and Geophysical at Louisiana State University. I would not be here right now if it wasn’t for Dr. Alex Webb, Dr.
    [Show full text]
  • The High Pressure Belt in the Grenville Province: 75 Architecture, Timing, and Exhumation1
    100 867 100 95 95 75 The High Pressure belt in the Grenville Province: 75 architecture, timing, and exhumation1 25 25 Toby Rivers, John Ketchum, Aphrodite Indares, and Andrew Hynes 5 5 0 0 Abstract: We propose that the Grenvillian allochthonous terranes may be grouped into High Pressure (HP) and Low Pressure (LP) belts and examine the HP belt in detail in the western and central Grenville Province. The HP belt is developed in Paleo- and Mesoproterozoic rocks of the pre-Grenvillian Laurentian margin and characterized by Grenvillian eclogite and co-facial HP granulite in mafic rocks. Pressure–temperature (P–T) estimates for eclogite-facies conditions in well-preserved assemblages are about 1800 MPa and 850°C. In the central Grenville Province, HP rocks formed at -1060–1040 Ma and underwent a single stage of unroofing with transport into the upper crust by -1020 Ma, whereas farther west they underwent two stages of unroofing separated by penetrative mid-crustal recrystallization before transport to the upper crust at -1020 Ma. Unroofing processes were comparable in the two areas, involving both thrusting and extensional faulting in an orogen propagating into its foreland by understacking. In detail, thrusting episodes preceded extension in the western Grenville Province, whereas in the central Grenville Province, they were coeval, resulting in unroofing by tectonic extrusion. In the central Grenville Province, the footwall ramp is well preserved, but any former ramp in the western Grenville Province was obliterated by later lower crustal extensional flow. Continuation of the HP belt into the eastern Grenville Province is not established, but likely on geological grounds.
    [Show full text]
  • Oceanic Residual Depth Measurements, the Plate Cooling 10.1002/2016JB013457 Model, and Global Dynamic Topography
    Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Oceanic residual depth measurements, the plate cooling 10.1002/2016JB013457 model, and global dynamic topography Key Points: • 1936 academic and industrial Mark J. Hoggard1 , Jeff Winterbourne2 , Karol Czarnota3, and Nicky White1 seismic surveys from oceanic crust have been analyzed 1Department of Earth Sciences, Bullard Laboratories, Cambridge, UK, 2BP Exploration Operating Co. Ltd, Middlesex, UK, • Oceanic residual depth anomalies 3 have wavelengths of thousands of Geoscience Australia, Canberra, ACT, Australia kilometers and amplitudes of ±1km • Correlation with gravity anomalies, magmatism, and seismic tomography Abstract Convective circulation of the mantle causes deflections of the Earth’s surface that vary as imply convective origin a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. Supporting Information: The complex architecture of continental lithosphere means that measurement of present-day dynamic • Supporting Information S1 topography is more straightforward in the oceanic realm. Here we present an updated methodology for •DataSetS1 calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied •DataSetS2 •DataSetS3 that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness •DataSetS4 variations, for subsidence of oceanic lithosphere as a function of age and for non-hydrostatic geoid •DataSetS5 height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this •DataSetS6 •DataSetS7 methodology to a global database of 1936 seismic surveys located on oceanic crust and generate 2297 spot •DataSetS8 measurements of residual topography, including 1161 with crustal corrections.
    [Show full text]
  • Backarc Origin for Neoarchean Ultrahigh-Temperature Metamorphism, Eclogitization, and Orogenic Root Growth
    Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth Gregory Dumond1*, Michael L. Williams2, Julia A. Baldwin3, and Michael J. Jercinovic2 1Department of Geosciences, University of Arkansas, Fayetteville, Arkansas 72701, USA 2Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA 3Department of Geosciences, University of Montana, Missoula, Montana 59812-1296, USA ABSTRACT modeling of Thompson et al. (2001) and provide evidence for crustal Contraction of continental crust during orogeny results in elevated root growth associated with high-P metamorphism of mid-oceanic ridge topography at the surface and a root at depth. Thermomechanical basalt (MORB)–like mafc intrusions. Intraplating of these intrusions models suggest that root growth is enhanced by thickening of ther- facilitated partial melting and UHT metamorphism of peraluminous supra- mally softened thin lithosphere. A >400 km2 region of Archean gneiss crustal host rocks (Dumond et al., 2015). We use Th–U–total Pb monazite in the Athabasca granulite terrane in the Canadian shield contains petrochronology to constrain the timing of high-P melting preserved in abundant mafc sills with mid-oceanic ridge basalt–like chemistry. felsic granulite paragneiss in contact with a previously dated eclogite Heat from the sills facilitated melting of supracrustal host rocks along sill that yielded U-Pb zircon dates of 2.54 Ga and 1.90 Ga (Baldwin et a prograde pressure-temperature (P-T) path culminating at P > 1.4 al., 2004). These results are combined with bulk-rock geochemistry for GPa and T > 950 °C in the Neoarchean. A basalt sill, converted to mafc granulites and eclogite near the base of the Upper Deck to infer a eclogite near the base of the domain, exhibits positive Eu anomalies backarc origin for a Neoarchean orogenic root.
    [Show full text]
  • Andean Flat-Slab Subduction Through Time
    Andean flat-slab subduction through time VICTOR A. RAMOS & ANDRE´ S FOLGUERA* Laboratorio de Tecto´nica Andina, Universidad de Buenos Aires – CONICET *Corresponding author (e-mail: [email protected]) Abstract: The analysis of magmatic distribution, basin formation, tectonic evolution and structural styles of different segments of the Andes shows that most of the Andes have experienced a stage of flat subduction. Evidence is presented here for a wide range of regions throughout the Andes, including the three present flat-slab segments (Pampean, Peruvian, Bucaramanga), three incipient flat-slab segments (‘Carnegie’, Guan˜acos, ‘Tehuantepec’), three older and no longer active Cenozoic flat-slab segments (Altiplano, Puna, Payenia), and an inferred Palaeozoic flat- slab segment (Early Permian ‘San Rafael’). Based on the present characteristics of the Pampean flat slab, combined with the Peruvian and Bucaramanga segments, a pattern of geological processes can be attributed to slab shallowing and steepening. This pattern permits recognition of other older Cenozoic subhorizontal subduction zones throughout the Andes. Based on crustal thickness, two different settings of slab steepening are proposed. Slab steepening under thick crust leads to dela- mination, basaltic underplating, lower crustal melting, extension and widespread rhyolitic volcan- ism, as seen in the caldera formation and huge ignimbritic fields of the Altiplano and Puna segments. On the other hand, when steepening affects thin crust, extension and extensive within-plate basaltic flows reach the surface, forming large volcanic provinces, such as Payenia in the southern Andes. This last case has very limited crustal melt along the axial part of the Andean roots, which shows incipient delamination.
    [Show full text]
  • Eroding Dynamic Topography J Braun, X Robert, T Simon-Labric
    Eroding dynamic topography J Braun, X Robert, T Simon-Labric To cite this version: J Braun, X Robert, T Simon-Labric. Eroding dynamic topography. Geophysical Research Letters, American Geophysical Union, 2013, 40 (8), pp.1494 - 1499. 10.1002/grl.50310. hal-03135812 HAL Id: hal-03135812 https://hal.archives-ouvertes.fr/hal-03135812 Submitted on 9 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1–6, doi:10.1002/grl.50310, 2013 Eroding dynamic topography J. Braun,1 X. Robert,1 and T. Simon-Labric1 Received 10 January 2013; revised 28 February 2013; accepted 28 February 2013. [1] Geological observations of mantle flow-driven dynamic perturbation to oceanic circulation [Poore and White, 2011], topography are numerous, especially in the stratigraphy large scale continental drainage reorganizations [Shephard of sedimentary basins; on the contrary, when it leads et al., 2010] or the formation of major geomorphic features to subaerial exposure of rocks, dynamic topography must such as the Grand Canyon [Karlstrom et al., 2008]. be substantially eroded to leave a noticeable trace in the [4] Interestingly, quantifying the amplitude and scale geological record.
    [Show full text]
  • Foreland Uplift During Flat Subduction Insights from the Peruvian Andes
    Tectonophysics 731–732 (2018) 73–84 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Foreland uplift during flat subduction: Insights from the Peruvian Andes and T Fitzcarrald Arch ⁎ Brandon T. Bishopa, , Susan L. Becka, George Zandta, Lara S. Wagnerb, Maureen D. Longc, Hernando Taverad a Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, AZ 85721, USA b Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA c Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA d Instituto Geofísico del Perú, Calle Badajoz 169, Lima 15012, Peru ARTICLE INFO ABSTRACT Keywords: Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking Basal shear these two processes remains unclear. One example of foreland deformation corresponding in space and time to Flat slab flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area Andes of > 4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab Crustal thickening shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the Lithosphere present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge Fitzcarrald Arch of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that ~5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene.
    [Show full text]
  • Eclogites and Other High-Pressure Rocks in the Himalaya: a Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Eclogites and other high-pressure rocks in the Himalaya: a review PATRICK J. O’BRIEN Department of Earth and Environmental Sciences, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14469 Potsdam-Golm, Germany 0000-0003-0235-9116 [email protected] Abstract: Himalayan high-pressure metamorphic rocks are restricted to three environments: the suture zone; close to the suture zone; and (mostly) far (>100 km) from the suture zone. In the NW Himalaya and South Tibet, Cretaceous-age blueschists (glaucophane-, lawsonite- or carpholite-bearing schists) formed in the accretionary wedge of the subducting Neo-Tethys. Microdiamond and associated phases from suture-zone ophiolites (Luo- busa and Nidar) are, however, unrelated to Himalayan subduction–collision processes. Deeply subducted and rapidly exhumed Indian Plate basement and cover rocks directly adjacent to the suture zone enclose eclogites of Eocene age, some coesite-bearing (Kaghan/Neelum and Tso Morari), formed from Permian Panjal Trap, con- tinental-type, basaltic magmatic rocks. Eclogites with a granulite-facies overprint, yielding Oligocene–Miocene ages, occur in the anatectic cordierite ± sillimanite-grade Indian Plate mostly significantly south of the suture zone (Kharta/Ama Drime/Arun, north Sikkim and NW Bhutan) but also directly at the suture zone at Namche Barwa. The sequence carpholite-, coesite-, kyanite- and cordierite-bearing rocks of these different units dem- onstrates the transition from oceanic subduction to continental collision via continental subduction. The gran- ulitized eclogites in anatectic gneisses preserve evidence of former thick crust as in other wide hot orogens, such as the European Variscides.
    [Show full text]
  • Foundered Lithospheric Segments Dropped Into the Mantle Transition Zone Beneath Southern California, USA Youqiang Yu1, Stephen S
    https://doi.org/10.1130/G46889.1 Manuscript received 20 August 2019 Revised manuscript received 23 October 2019 Manuscript accepted 29 October 2019 © 2019 Geological Society of America. For permission to copy, contact [email protected]. Published online 9 December 2019 Foundered lithospheric segments dropped into the mantle transition zone beneath southern California, USA Youqiang Yu1, Stephen S. Gao2, Kelly H. Liu2 and Dapeng Zhao3 1 State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2 Geology and Geophysics Program, Missouri University of Science and Technology, Rolla, Missouri 65409, USA 3 Department of Geophysics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ABSTRACT most likely due to the low number of receiver The diverse range of active tectonics occurring in southern California, USA, offers an functions (RFs) used in the studies (Gurrola opportunity to explore processes of continental deformation and modification in response to and Minster, 1998; Ramesh et al., 2002; Lewis the instability of the Pacific and Farallon plates. Here, we present a high-resolution receiver- and Gurrola, 2004; Vinnik et al., 2010). On the function image of the mantle transition zone (MTZ). Our result reveals significant lateral other hand, more recent RF studies using USAr- heterogeneities in the deep mantle beneath southern California. Both seismic tomography ray data are focused on the western or the entire and MTZ discontinuity deflections reveal foundered lithospheric segments that have dropped United States with resolutions that are not high into the MTZ beneath the western Transverse Ranges, the Peninsular Ranges, and part of the enough for identifying finer MTZ features in southern Sierra Nevada.
    [Show full text]
  • Isostasy, Dynamic Topography, and the Elevation of the Apennines of Italy ∗ Claudio Faccenna A, , Thorsten W
    Earth and Planetary Science Letters 407 (2014) 163–174 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Isostasy, dynamic topography, and the elevation of the Apennines of Italy ∗ Claudio Faccenna a, , Thorsten W. Becker b, Meghan S. Miller b, Enrico Serpelloni c, Sean D. Willett d a Laboratory Experimental Tectonics, Università Roma TRE, Roma, Italy b Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA c Istituto Nazionale Geofisica e Vulcanologia, Centro Nazionale Terremoti, Bologna, Italy d Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland a r t i c l e i n f o a b s t r a c t Article history: The elevation of an orogenic belt is commonly related to crustal/lithosphere thickening. Here, we discuss Received 19 March 2014 the Apennines as an example to show that topography at a plate margin may be controlled not only by Received in revised form 28 August 2014 isostatic adjustment but also by dynamic, mantle-driven processes. Using recent structural constraints for Accepted 14 September 2014 the crust and mantle we find that the expected crustal isostatic component explains only a fraction of Available online xxxx the topography of the belt, indicating positive residual topography in the central Apennines and negative Editor: Y. Ricard residual topography in the northern Apennines and Calabria. The trend of the residual topography Keywords: matches the mantle flow induced dynamic topography estimated from regional tomography models. Apennines We infer that a large fraction of the Apennines topography is related to mantle dynamics, producing elevation relative upwellings in the central Apennines and downwellings in the northern Apennines and Calabria subduction where subduction is still ongoing.
    [Show full text]
  • Eclogite Formation and the Rheology, Buoyancy, Seismicity, and H2O
    Eclogite Formationand the Rheology,Buoyancy, Seismicity,and H20 Contentof OceanicCrust BradleyR. Hacker1 Departmentof Geologicaland EnvironmentalSciences, Stanford University, Stanford, California A broad spectrumof variably altered igneous rocks with a wide range of grain sizes are compressedand heated over a wide range of pressure-temperaturepaths in subductionzones. Although experimentalkinetic data cannotbe extrapolatedto predict the rates of blueschistand eclogite formation in nature, textural data from rocks indicate that transformationbelow temperaturesof 150øCis minimal. Completetransformation of volcanicrocks occurs by •-250øC, but incompletetransformation of gabbroicrocks heatedto 800øC has been observed.There are important consequencesto the rapid transformation of volcanic rocks and the metastable persistenceof gabbroicrocks into the blueschistand eclogite stability fields. Fast seismic velocities shouldbe evident first in the upper oceaniccrust and may be substantiallyretarded in the lower oceaniccrust. The upper oceaniccrust will be denserthan asthenospherebefore the lower oceanic crust.Early in the processof eclogiteformation, volcanic rocks will be placedin deviatorictension and the underlyingcoarser grained rocks in compression;with furtherreaction, the stateof stressin gabbroicrocks will changefrom compressiveto tensile.Earthquakes at shallowdepths should be extensional in basalt and contractionalin gabbro, changing at deeper levels to extensional throughoutthe crust. INTRODUCTION This paper summarizes the rates and
    [Show full text]