The Discovery of the Law of Energy Conservation

Total Page:16

File Type:pdf, Size:1020Kb

The Discovery of the Law of Energy Conservation The Discovery of the Law of Energy Conservation At least 12 scientists (Sadi Carnot, Marc Séguin, Karl Holtzmann, Gustave-Adolphe Hirn, William Grove, Michael Faraday, Ludwig Colding, Karl Friedrich Mohr, Justus von Liebig, James Prescott Joule, Julius Robert von Mayer, and Hermann von Helmholtz) state, with varying degrees of perfection, the law of conservation of energy between 1839 and 1850. Heinrich Helmholtz probably gives the most achieved version of this law in 1847. It is a little surprising to note that so many scientists were able to discover the law almost simultaneously but it must be said that the conditions necessary for the discovery of the energy conservation were met at the beginning of the 19 th century. Thus, several researchers succeeded in assembling the pieces of the puzzle leading to the discovery of the law. What were these favourable conditions? New Transformations At the beginning of the 19 th century, several new phenomena linked to energy transformations can be studied. Many of these phenomena were discovered through the study of steam engines and the use of the electric battery. In order to improve their efficiency, the study of steam engines took a paramount importance at the beginning of the 19 th century. This study implies that several transformation processes must be examined such as: 1) Combustion generates heat. 2) Heat can generate work. 3) The compression of a gas generates heat. 4) Compressed gas can do work. 5) Friction generates heat. The electric battery, invented in 1800, allows the study of several new transformation processes related to electricity such as: 1) An electric current generates heat and sometimes even light. 2) A current can be created by a chemical reaction (battery). 3) An electric current can separate compounds (electrolysis). 4) A magnetic field exerts a force on currents (which led to the invention of the electric motor). 5) A moving loop in a magnetic field generates a current. 6) Heat can generate a current (Seebeck effect). There are also some other transformation phenomena studied such as: 1) Light can generate chemical transformations (photograph 1827). 2) Respiration is related to body heat and to work in humans and animals. The study of these transformations required a lot of work since it was necessary to first define and measure a whole series of quantities. The examples of the measure of the efficiency of machines and heat shows this difficulty. Savery proposed, as early as 1702, to measure the efficiency of steam engines with the work of F∆scos θ and this way of measuring did not impose itself until the end of the 18 th century after a struggle against many other ways of measuring that had been proposed. (Besides, it is the use of the work F∆scos θ by the engineers which brings its introduction in mechanics in the 1820s.) As for heat, it is distinguished from temperature by Joseph Black in 1761 and several more years were needed before everyone agrees on how to measure it and elucidates how it makes a steam engine work. The study of these phenomena leads directly to the laws of energy transformations because Newton’s laws can hardly be applied in these cases. To explain a phenomenon with Newton’s laws, the details of each step of the transformation must be known, and this can be almost impossible in some cases. With energy conservation, it is enough to know only the initial and final configurations without having to know all the details of the transformation. This simplicity means that the laws of conservation of energy are often found first. A Conviction That the Principle of Conservation Must Exist There is also a deep conviction among some physicists of the day that there must be some unity in physics and that this connection implies some law of conservation. The idea was already present with Descartes (conservation of mv ) and Leibniz (conservation of mv ²). For the living force mv ², several scholars of the time firmly believed that it should always be conserved, even if it was observed that it was conserved only in a collision with well-bouncing balls. To preserve the principle of conservation, it was said that the lost living force must be found in another form. In the case of collisions, it was suggested that the living force could be transformed in the deformation or in the internal energy of the object’s atoms (an idea already formulated by Gassendi in 1647 to justify the apparent loss of Descartes’ mv in collisions). Note that no one thought at the time that kinetic energy could be lost as heat in a collision. The idea of a certain unity between physical phenomena is also present in a fairly popular philosophy in Germany at the beginning of the 19 th century (the Naturphilosophy ). It was this belief in certain connections between physical phenomena that had motivated Œrsted when he discovered the link between electricity and magnetism in 1820. At least 7 discoverers of the principle of conservation (Colding, Helmholtz, Liebig, Mayer, Mohr, Hirn and Séguin) have been influenced, to varying degrees, by this philosophy. For several centuries, it was also believed that perpetual motion was impossible. According to this principle, it is impossible get something out of nothing. It also involves a certain idea of transforming one form of energy into another and the existence of conversion factors. For example, Volta claimed in the early 19th century that the electric currents supplied by a battery come from simple contact between metals. Many physicists, including Faraday, argue that without chemical transformations, a current would be obtained out of thin air and that this could result in perpetual motion. Transformations in a loop were also an important clue to the existence of the principle of conservation of energy. We have transformation in a loop if the system returns to its initial state after a series of transformations. For example, there is such a loop when one battery is used to make a current and then this current is used to charge another battery. To prevent a perpetual motion, the charge received by the second battery should not be greater than that given by the first battery. This implies a certain equivalence between the current generated and the amount of chemicals transformed in the reaction. How Energy Conservation Was Discovered Beginning from very different starting points, the 12 discoverers will all come to the same conclusion. Some, like Colding and Mohr, start from this conviction that there must be a law of conservation and others (most of them) start from the study of a specific conversion process (in fact, they all start, except Mayer and Helmholtz, from the study of steam engines or electric motors). In all cases, their work then leads them to incorporate the results of the work of those who study other transformations, in order to arrive at an increasingly global vision of physics and, finally, to formulate the principle of conservation of energy. This line of events can be illustrated by following the career of James Prescott Joule. It all began in 1838 when he was studying the efficiency of electric motors. Wanting to quantify this efficiency, he discovered the work of those who studied the efficiency of steam engines. When he became interested in the batteries that power these motors, he discovered Faraday’s work in chemistry. Joule then discovered in 1841 that part of the energy was lost as heat when the current passed through the wires of the electric motor. In wanting to quantify this link between heat and work, in 1842 he developed a famous experiment in which descending masses turn blades in the water. http://www.youtube.com/watch?v=bZbTZN6V7YI The stirring of the water caused by the motion of the blades then causes an increase in temperature. Joule can then measure the conversion factor between the work done by the descending masses and the heat generated. Having observed so many connections between different phenomena, Joule came to formulate his first version of the principle of conservation of energy in 1843. One would have thought that the conservation of energy was discovered from the conservation of mechanical energy, but that was not really the case. The conservation of mechanical energy has actually played only a very minor role. Carnot made the link between work and kinetic energy quite early, but it was not until the 1820s before this link was clearly established in mechanics. Once this link had been made, we still have to wait until the 1840s before two of the discoverers (Helmholtz and Mayer) mention it (by rediscovering it themselves). The discovery of the law of conservation of energy was made by studying transformations that did not really involve a change in kinetic energy by researchers primarily interested in steam engines and electric motors. The links that made it possible to discover the conservation of energy were made from the concept of work used for a century by engineers and not by generalizing the principle of conservation of mechanical energy. .
Recommended publications
  • On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
    Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics.
    [Show full text]
  • Weberˇs Planetary Model of the Atom
    Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S.
    [Show full text]
  • Helmholtz's Physiological Psychology1
    Helmholtz’s Physiological Psychology1 Lydia Patton [email protected] In Philosophy of Mind in the Nineteenth Century, ed. S. Lapointe (Routledge, 2018) Author’s copy. Published version available at: https://www.routledge.com/Philosophy-of- Mind-in-the-Nineteenth-Century-The-History-of-the- Philosophy/Lapointe/p/book/9781138243965 Hermann von Helmholtz (1821-1894) contributed two major works to the theory of sensation and perception in the nineteenth century. The first edition of the The Doctrine of the Sensations of Tone was published in 1863, and the first edition of the Handbook of Physiological Optics was published in toto in 1867. These works established results both controversial and enduring: Helmholtz’s analysis of mixed colors and of combination tones, his arguments against nativism, and his commitment to analyzing sensation and perception using the techniques of natural science, especially physiology and physics. This study will focus on the Physiological Optics (hereafter PO), and on Helmholtz’s account of sensation, perception, and representation via “physiological psychology”. Helmholtz emphasized that external stimuli of sensations are causes, and sensations are their effects, and he had a practical and naturalist orientation toward the analysis of phenomenal experience. 1 Above all, I would like to thank Sandra Lapointe for her insight into the configuration and promise of this project, for conceiving of this volume, and for astute and perceptive responses to earlier versions, which shaped the project as it stands now. Clinton Tolley read the penultimate version of the paper and contributed invaluable suggestions, including preventing me from making a most consequential error of translation, for which I am grateful.
    [Show full text]
  • Laboratories at the Faculty of Medicine of the University of Coimbra in the XIX Century
    Scientific Research and Essays Vol. 5(12), pp. 1402-1417, 18 June, 2010 Available online at http://www.academicjournals.org/SRE ISSN 1992-2248 ©2010 Academic Journals Review Laboratories at the Faculty of Medicine of the University of Coimbra in the XIX century Maria Burguete Instituto Rocha Cabra, l Calçada Bento da Rocha Cabral, 14; 1250-047 Lisboa, Portugal. E-mail: [email protected]. Accepted 25 March, 2010 The beginning of natural sciences came to predominate in medicine with the emergence of natural scientific thinking in the first half of the 19th century. Philosophical approaches became less relevant. Research concentrated on the biological, physiological and chemical foundations of life. Therefore, the creation of laboratories of experimental physiology, histology, toxicology and pathological anatomy was the result of the reorganization of the medicine faculty at Coimbra university between 1866 - 1872, according to the following paradigm replacement: The superficial look at disease was replaced by the study of the inner body, an attempt to understand the symptoms, giving rise to a new paradigm of medicine practice – evidence-based-medicine (EBM). However, in spite of the good conditions of space and light provided by the Colégio de Jesus in Coimbra to accommodate the laboratory of physiology and histology, an important “ingredient” was missing: the experimental instruments to design experimental works to provide - good teaching and research model for the Coimbra faculty of medicine. In peripheral countries, as Portugal, some professors played a central role in this development, bringing in new ideas, new instruments, and new techniques and producing scientific and didactic texts in native languages.
    [Show full text]
  • Hermann Von Helmholtz, Ewald Hering and Color Vision: a Controversy Over Styles of Reasoning? ______
    HERMANN VON HELMHOLTZ, EWALD HERING AND COLOR VISION: A CONTROVERSY OVER STYLES OF REASONING? _________ JULIANA GUTIÉRREZ1,2 https://orcid.org/0000-0002-5433-9080 1Universidad del Rosario - Escuela de Ciencias Humanas Bogotá, D.C. Colombia 2Universidad de los Andes – Facultad de Ciencias Sociales Department of Philosophy Bogotá, D.C. Colombia [email protected] Article info CDD: 501 Received: 11.05.2020; Revised: 20.08.2020; Accepted: 07.10.2020 https://doi.org/10.1590/0100-6045.2021.V44N1.JG Keywords Scientific Controversy Color Vision Physiological Optics Styles of Reasoning Abstract: During the second half of the 19th century, in the field of physiological optics, there was a strong controversy between Hermann von Helmholtz and Ewald Hering. This controversy has been usually characterized as “empiricism” vs. “nativism”. In the field of physiology of visual perception, several subjects demanded attention, among them, color vision. Helmholtz and Hering suggested different theories for the physiological correlate of color sensation and different color spaces to give an account of the relationships between colors. In this article, I will argue that the controversy between the two authors could be understood as differences between styles of reasoning, and these different styles Manuscrito – Rev. Int. Fil. Campinas, v. 44, n. 1, pp. 37-97, Jan.-Mar. 2021. Juliana Gutiérrez 38 express different presuppositions. More specifically, I want to suggest that the disagreements could be linked to the discussions on how vital phenomena should be studied. Introduction During the last decades of the 19th century there was a significant controversy in the field of physiological optics.
    [Show full text]
  • In the Beginning Was the Act a Historical And
    Faculteit Letteren & Wijsbegeerte Liesbet De Kock In the Beginning was the Act A Historical and Systematic Analysis of Hermann von Helmholtz's Psychology of the Object Proefschrift voorgelegd tot het behalen van de graad van Doctor in de wijsbegeerte 2014 Der Denker stellt sich in den grossen Zusammenhang der Philosophie- und Wissenschaftsgeschichte: den dem “Philosophieren auf eigene Faust”, bei dem jedes Individuum nur in einem persönlichen zufälligen Reflex die Antwort auf die Rätsel des Seins zu finden sucht, soll ein Ende gemacht werden. […] Jeder Gedanke, jedes echte Grundmotiv des Philosophierens steht mit der Gesamtheit der übrigen in einer ideellen Gemeinschaft: und diese Gemeinschaft der Ideen ist es, die auch der geschichtlichen Betrachtung erst Sinn und Leben verleiht - Ernst Cassirer (1912), p. 252. Promotor Prof. Dr. Gertrudis Van de Vijver Copromotor Prof. Dr. Steffen Ducheyne iii Table of Contents TABLE OF CONTENTS V PREFACE AND ACKNOWLEDGEMENTS 1 CHAPTER 1 4 INTRODUCTION: THE POETRY OF PERCEPTION 4 1.1 Hermann von Helmholtz: General Introduction 4 1.1.1 Selective Biography 4 1.1.2 Helmholtz and the Problem of the Object 7 1.2 The Poetry of Perception: Helmholtz’s Faust 11 1.2.1 The Realm of the Mothers: Faust in the Dark Gallery 14 1.2.2 The Symbolic Relation to the World: Chorus Mysticus 20 1.2.3 What was There in the Beginning? The First Study Room Scene 24 1.3 General Aim and Strategy 28 1.3.1 Main Research Question 28 1.3.2 The Problem of the Object: Interpretive Framework 29 1.3.2.1 Helmholtz and Empiricism: The Problem of Psychological Construction 30 1.3.2.2 Helmholtz and Kant: The A priori Structure of Understanding 32 1.3.2.3 Helmholtz and Fichte: The Problem of Differentiation 35 CHAPTER 2 39 HELMHOLTZ’S PHYSIOLOGICAL EPISTEMOLOGY AND THE GENESIS OF THE PSYCHOLOGICAL PROBLEM OF THE OBJECT 39 2.1 Introduction 39 2.2 Hermann von Helmholtz and Johannes Peter Müller 40 v 2.3 Helmholtz’s Physiological Reductionism: Anti-Vitalism 42 2.4 Goethe, Purkinje, Müller and the Primacy of Subjective Perception.
    [Show full text]
  • The Important Consequences of the Reversible Heat Production in Nerves
    The important consequences of the reversible heat production in nerves and the adiabaticity of the action potential Thomas Heimburg∗ Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark ABSTRACT It has long been known that there is no measurable heat production associated with the nerve pulse. Rather, one finds that heat production is biphasic, and a heat release during the first phase of the action potential is followed by the reabsorption of a similar amount of heat during the second phase. We review the long history the measurement of heat production in nerves and provide a new analysis of these findings focusing on the thermodynamics of adiabatic and isentropic processes. We begin by considering adiabatic oscillations in gases, waves in layers, oscillations of springs and the reversible (or irreversible) charging and discharging of capacitors. We then apply these ideas to the heat signature of nerve pulses. Finally, we compare the temperature changes expected from the Hodgkin-Huxley model and the soliton theory for nerves. We demonstrate that heat production in nerves cannot be explained as an irreversible charging and discharging of a membrane capacitor as it is proposed in the Hodgkin-Huxley model. Instead, we conclude that it is consistent with an adiabatic pulse. However, if the nerve pulse is adiabatic, completely different physics is required to explain its features. Membrane processes must then be reversible and resemble the oscillation of springs more than resembling “a burning fuse of gunpowder” (quote A. L. Hodgkin). Theories acknowledging the adiabatic nature of the nerve pulse have recently been discussed by various authors.
    [Show full text]
  • On the Trail of Helmholtz and Virchow
    116 2021 Auf den Spuren von Helmholtz und Virchow On the Trail of Helmholtz and Virchow Zwei Workaholics Abstrakte Halbleiterkrise als an der Spree Eleganz Entwicklungsmotor Two workaholics Abstract Semiconductor crisis as an at the Spree elegance innovation catalyst 8 16 26 Editorial Inhalt Contents 4 Nachrichten News 7 Direktorenkolumne: Schutz der Artenvielfalt – „Es muss ein kühner und mutiger Plan sein“ Director‘s column: Protecting biodiversity – “It needs to be a bold and courageous plan” Luc De Meester Liebe Leserin, lieber Leser, Berlin feiert 2021 den 200. Geburtstag des Physiologen und Physikers Hermann von Helmholtz sowie des Arztes und Politikers Rudolf Virchow. Dies greifen wir gerne auf – und zeigen in dieser Ausgabe Forschung aus unseren Instituten, in der auch die wissenschaftliche TITEL | TITLE Arbeit von Helmholtz und Virchow fortlebt. Auf den Spuren von Helmholtz und Virchow | Berlin richtet dieses Jahr nicht nur den Blick auf die On the trail of Helmholtz and Virchow beiden Universalgelehrten, sondern auch auf wichtige Themen unserer Zeit – Gesundheit, Klima und Zusammenleben. All dies findet im Rahmen des Projekts 8 Gastinterview | Guest interview „Wissensstadt Berlin 2021“ statt. Wir freuen uns, mit mit/with Ursula Klein, Max-Planck-Institut der vielfältigen Forschung aus unseren Instituten einen für Wissenschaftsgeschichte wertvollen Beitrag hierfür zu leisten. Wir sind Teil der Zwei Workaholics an der Spree Wissensstadt! Two workaholics at the Spree Seien Sie neugierig und schauen Sie bei der FMP 12 Nach altem Muster Wissensstadt vorbei: www.wissensstadt.berlin. The new old-fashioned way Viel Spaß beim Lesen wünscht MBI 14 Aus Weiß wird (Extrem)-Ultraviolett Anja Wirsing White turns into (extreme-)ultraviolet WIAS 16 Abstrakte Eleganz Abstract elegance Dear Reader, IZW 18 Schallphysik meets Wildtierforschung 2021 is the year in which Berlin celebrates the 200th Acoustics meets wildlife research birthdays of physiologist and physicist Hermann von Helmholtz and physician and politician Rudolf Virchow.
    [Show full text]
  • Hermann Von Helmholtz (1821-1894)
    Hermann von Helmholtz (1821-1894) Notes for Multimedia Fluid Mechanics Cambridge University Press, 2008 The breadth of Helmholtz’s interests and contributions is outstanding. He is one of the rare scientists able to be creative in domains, as diverse as medicine, anatomy, physiology, acoustics, fluid mechanics, physics, music, aesthetics, epistemology… Although he was a universal mind, he insisted on his preference for physics, both theoretical and experimental. He was among the too rare scientists able to combine fundamental research and practical applications related to everyday life. Two years before his death, he gave us the following warning, which is still pertinent today: ‘Whoever in the pursuit of science, seeks after immediate practical utility may rest assured that he seeks in vain.’ The applicability of science is a consequence of research and not its sole goal, since the creativity requires the freedom to speculate on fundamental issues. The life of Helmholtz perfectly illustrates his point. ________________________________________________________________ His life Berlin (1821-1848) Hermann Ludwig Ferdinand Helmholtz was born in Potsdam (Prussia) on August 31st 1821. His mother was a descendent of William Penn, who founded Pennsylvania, and his father was a teacher of philosophy and literature. As a boy he was fragile, often ill, and had difficulties in memorizing matters that he could not first understand, which indeed gives a better mastery of the topics afterwards. At the age of 9 he entered the Potsdam Gymnasium where his father was teaching. He was the first child of a family of five and, since his father had difficulties in paying for their studies, he was sent to the ‘Royal Medical and Surgical Friedrich-Wilhems Institute’ in Berlin, where he got a scholarship under the commitment to be a military surgeon for at least 8 years.
    [Show full text]
  • 1 Between Light and Eye: Goethe's Science of Colour and the Polar
    Between Light and Eye: Goethe’s Science of Colour and the Polar Phenomenology of Nature Alex Kentsis∗ Abstract In his interviews with Eckermann in the 1820s, Goethe referred to his Theory of Colours as his greatest and ultimate achievement.1 Its reception following publication in 1810 and subsequent reviews throughout the history of physical science did not reflect this self-assessment. Even Hermann von Helmholtz, who in part modeled his scientific work after Goethe’s, initially thought that Goethe’s poetic genius prevented him from understanding physical science.2 Why did Goethe champion his Farbenlehre so ardently even years after it was dismissed by almost everyone else? In answering this question, this essay will attempt to add to the existing scholarship by considering Goethe’s Theory of Colours in the context of his natural philosophy, and generalizing the variety of objectifications of the concepts invoked by his colour theory and their relationships to Goethe’s epistemology and Newton’s mechanics. In this fashion, I attempt to show that the reason for Goethe’s self-assessment of his Theory of Colours is less enigmatic than appears from its examination solely as a work of physics. Rather, Zur Farbenlehre was the clearest expression of Goethe’s most universal archetype—polarity of opposites— ∗ Mount Sinai School of Medicine, New York University, New York, New York, 10029, USA. 1 J. P. Eckermann, Conversations of Goethe, (tr. J. Oxenford), London, 1930, 301-2. 2 H. von Helmholtz, ‘On Goethe’s Scientific Researches’, in Science and Culture (ed. D. Cahan), Chicago, 1995, 7. 1 which bridged Goethe’s conflicts with Kant’s and Spinoza’s epistemologies, and in an over-reaching way served as a cosmology underlying Goethe’s art and his science.
    [Show full text]
  • Von Helmholtz, Hermann. in Robert W. Rieber
    Thomas, R. K. (2012). Von Helmholtz, Hermann. In Encyclopedia of the history of psychological theories(Vol. 2, pp.1170-1172. New York, NY: Springer-Verlag Manuscript Version. ©Springer-Verlag holds the Copyright If you wish to quote from this entry you must consult the Springer-Verlag published version for precise location of page and quotation Von Helmholtz, Hermann 1 Roger K. Thomas r.s:;;! (1) Department of Psychology, University of Georgia, 30602-3013 Athens, GA, USA B Roger K. Thomas Email: [email protected] Without Abstract Basic Biographical Information Helmholtz (1821-1894) was born in Potsdam, Germany, where his father taught languages and philosophy at the Gymnasium (secondary school) where Hermann attended. His mother was a descendant of William Penn, after whom the colony, later, the state of Pennsylvania (USA) was named. After completing studies at the Gymnasium, Helmholtz wanted to study physics, but financial considerations led him to study medicine in Berlin, free of charge, in return for an 8- year service commitment to the Army. He studied under the great Johannes Muller, and among his friends and fellow students were Emil Du Bois-Reymond, Ernst Briicke, and Karl Ludwig. Despite Muller's acceptance of vitalism (the beliefthat life is based on a supernatural "force"), these students had in common opposition to it, and Helmholtz's research would serve well the rejection of vitalism. Helmholtz's medical dissertation (1843) and his early work on conservation of energy (Uber die Erhaltung der Kraft, 1847) gained him an offer to become Associate Professor of Physiology at the University of Konigsberg which resulted in early release from his military commitment.
    [Show full text]
  • Physiological Chemistry
    Medical History, 1980, 24: 20-59. THE ROLE OF FORCE OR POWER IN LIEBIG'S PHYSIOLOGICAL CHEMISTRY by VANCE M. D. HALL* I IN THE last two decades historians of science have shown increasing interest in the emergence of the doctrine of the conservation of energy. A particular aspect of this topic has been the contribution made to nineteenth-century discussions on force and power by men working in physiology: Hermann Helmholtz (1821-1894) and Julius Robert Mayer (1814-1878) are probably the best known. The seminal paper for this topic among historians ofscience was T. S. Kuhn's 'Energy conservation as an example of simultaneous discovery',1 in which Kuhn identified about a dozen natural philosophers in Europe who, largely independent of one another, were developing views on forces and their interrelations which resembled and probably led up to the formal principles of the correlation of forces (as enunciated especially by William Robert Grove (1811-1896)2) and the conservation of energy (as enunciated by Hermann Helmholtz in 18473). Of those dozen natural philosophers, Kuhn identified three who were working in physiology - Helmholtz, Mayer, and Liebig (1803-1873).4 This paper will examine Liebig's ideas on force or power in the light of Kuhn's and later scholars' studies. However, I wish to make three preliminary comments before examining Liebig's work in detail. First, although some scholars have discussed Liebig's interest in dynamics since Kuhn's paper and in greater detail than he did, they have usually addressed themselves * Vance M. D. Hall, B.A., D.I.C., M.Sc., Ph.D., Department ofHistory ofScience, The Open University, Walton Hall, Milton Keynes, Bucks.
    [Show full text]