Claudin-2–Deficient Mice Are Defective in the Leaky and Cation-Selective

Total Page:16

File Type:pdf, Size:1020Kb

Claudin-2–Deficient Mice Are Defective in the Leaky and Cation-Selective Claudin-2–deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules Shigeaki Mutoa,1,2, Masaki Hatab,1, Junichi Taniguchic, Shuichi Tsuruokad, Kazumasa Moriwakie, Mitinori Saitouf, Kyoko Furuseb, Hiroyuki Sasakib, Akio Fujimurad, Masashi Imaic, Eiji Kusanoa, Shoichiro Tsukitaf,3, and Mikio Furuseg Departments of aNephrology, cPharmacology, and dClinical Pharmacology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; bKAN Research Institute, Inc., Kobe MI R&D Center, Kobe, Hyogo 650-0047, Japan; Divisions of eVascular Biology and gCell Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan; and fDepartment of Cell Biology, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan Edited* by Gerhard Giebisch, Yale University School of Medicine, New Haven, CT, and approved March 18, 2010 (received for review November 10, 2009) Claudin-2 is highly expressed in tight junctions of mouse renal prox- RT was attributed to an increase in the cation-selective permeability imal tubules, which possess a leaky epithelium whose unique perme- of TJs (10). Furthermore, the overexpression of human claudin-4 in ability properties underlie their high rate of NaCl reabsorption. To MDCK II cells increased RT by selectively decreasing the para- – investigate the role of claudin-2 in paracellular NaCl transport in this cellular permeability for Na+ without affecting that for Cl or an nephron segment, we generated knockout mice lacking claudin-2 uncharged solute (11). Similarly, overexpression of claudin-8 in −/− −/− (Cldn2 ).TheCldn2 mice displayed normal appearance, activity, MDCK II cells decreased paracellular permeability to cations but growth, and behavior. Light microscopy revealed no gross histolog- not to anions or neutral solutes (12). The combination and ratios of −/− ical abnormalitiesin the Cldn2 kidney. Ultrathin sectionand freeze- claudins may determine the tightness and charge selectivity of indi- fracture replica electron microscopy revealed that, similar to those of −/− vidual TJ strands, and some claudin species may constitute charge- wild types, the proximal tubules of Cldn2 mice were characterized selective paracellular channels within TJ strands (9, 11, 12). This by poorly developed tight junctions with one or two continuous tight hypothesis was also proposed through analysis of human hereditary junction strands. In contrast, studiesin isolated, perfused S2 segments hypomagnesemia caused by mutations in claudin-16 (13). However, of proximal tubules showed that net transepithelial reabsorption of the results obtained from exogenous expression of claudins in cul- + – fi Cldn2−/− Na ,Cl, and water was signi cantly decreased in mice and tured epithelial cells are unclear: claudin function must be inves- that there was an increase in paracellular shunt resistance without tigated without knowing the exact combination and ratios of en- affecting the apical or basolateral membrane resistances. Moreover, dogenous claudins, and it is not assured whether exogenous claudins deletion of claudin-2 caused a loss of cation (Na+) selectivity and – form TJ strands correctly without affecting endogenous claudins. therefore relative anion (Cl ) selectivity in the proximal tubule para- Mouse lines lacking the expression of several claudin species have cellular pathway. With free access to water and food, fractional Na+ – −/− been generated (14–17), but the barrier functions of their TJs have and Cl excretions in Cldn2 mice were similar to those in wild types, Cldn2−/− not always been evaluated by electrophysiology. but both were greater in mice after i.v. administration of We focused on the function of claudin-2 in the kidney. Claudin-2 2% NaCl. We conclude that claudin-2 constitutes leaky and cation + – is highly expressed, together with other claudin isoforms such as (Na ) selective paracellular channels within tight junctions of mouse claudin-10, in the proximal tubule of the kidney (18, 19), which is proximal tubules. composed of a leaky epithelium (20). In the proximal tubule, approximately one-third of the NaCl reabsorption is passive via mouse proximal tubule | tight junction | paracellular transport | Na/Cl the paracellular pathway; the remainder is active via the trans- transport | water transport cellular pathway. The movement of NaCl therefore results in passive water reabsorption. In this tubule, the molecular mecha- ight junctions (TJs) are circumferential seals around cells that nisms behind the transcellular transport of NaCl and water have Tselectively modulate paracellular permeability between extrac- been extensively evaluated, but it remains totally elusive how these – ellular compartments (1 3). On ultrathin-section electron micro- molecules are transported across TJs. In this study, we generated scopy, TJs appear as foci where the plasma membranes of neighboring claudin-2–deficient mice and examined whether claudin-2 is cells make complete contact (4). On freeze-fracture electron micro- involved in the paracellular transport of NaCl and water in vivo. scopy, TJs appear as a continuous and anastomosing network of intramembranous particle strands (TJ strands) (5). These strands are Results and Discussion mainly composed of linearly polymerized integral membrane proteins We produced mice unable to express claudin-2. Nucleotide called claudins with molecular masses of ∼23 kDa (2, 3, 6). The sequencing and restriction mapping identified one exon that cov- claudin gene family contains more than 20 members in humans and in ers the whole ORF of claudin-2. We constructed a targeting vector mice (2, 3, 7). The expression pattern of claudins varies considerably; to disrupt the claudin-2 gene by replacing part of the ORF (a.a. 1– most cell types express more than two claudins in various combina- tions to constitute mosaic TJ strands. Through the formation of TJ strands, claudins are directly Author contributions: S.M., S. Tsukita, and M.F. designed research; S.M., M.H., J.T., involved in creating a primary barrier to the paracellular diffusion of S. Tsuruoka, K.M., M.S., K.F., H.S., and M.F. performed research; S.M., A.F., M.I., E.K., solutes and water across epithelia (8). However, TJs are not a simple S. Tsukita, and M.F. analyzed data; and S.M., S. Tsukita, and M.F. wrote the paper. barrier: the barrier varies in tightness, measured by the trans- The authors declare no conflict of interest. epithelial electrical resistance (RT), and charge selectivity. Furuse *This Direct Submission article had a prearranged editor. et al. (9) reported that, when canine claudin-2 cDNA was transfected 1S.M. and M.H. contributed equally to this work. into high-resistance Madin-Darby canine kidney (MDCK) I cells 2To whom correspondence should be addressed. E-mail: [email protected]. primarily expressing claudins-1 and -4, the RT decreased to a level 3Deceased December 11th, 2005. PHYSIOLOGY similar to that of low-resistance MDCK II cells expressing endoge- This article contains supporting information online at www.pnas.org/cgi/content/full/ nous claudins-1, -2, and -4. A similar claudin-2–induced decrease in 0912901107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.0912901107 PNAS | April 27, 2010 | vol. 107 | no. 17 | 8011–8016 Downloaded by guest on September 25, 2021 − − 111) of claudin-2 with the neomycin resistance gene (Fig. S1A). proximal tubules in Cldn2 / kidneys, but the distribution of clau- Two lines of mice were generated from distinct ES cell clones in din-10 was not significantly altered (Fig. 2A). To investigate whether which the claudin-2 gene was disrupted by homologous recombi- other claudins were up-regulated to compensate for the lack of − − nation. Southern blotting confirmed the expected disruption of the claudin-2 in Cldn2 / proximal tubules, we performed quantitative claudin-2 gene (Fig. S1B). real-time PCR using mRNA from isolated proximal tubules. The − − Claudin-2 null [Cldn2 / ] mice were born in the expected amount of claudin-10a and -10b mRNA was not statistically dif- − − Mendelian ratios. Their growth rate, appearance, activity, and ferent between the two groups (Fig. 2B). In Cldn2 / proximal behavior were normal. This enabled an examination of the struc- tubules, we did not find any significant mRNA up-regulation of any − − ture and function of proximal tubules using male adult Cldn2 / claudin expressed in nephron segments apart from the proximal mice and their wild-type littermates [Cldn2+/+]. The two lines of tubule, including -4,-8, and -16 (Fig. 2B). Furthermore, by immu- − − − − Cldn2 / mice showed the same phenotype, so we will present data nofluorescence in Cldn2 / kidneys, the claudins that were report- obtained from one line of the two. edly expressed in other nephron segments, including claudins-4, -8, We first compared light microscopic images of H&E-stained and -16, were still undetectable at TJs of their proximal tubules (Fig. sections of paraffin-embedded kidneys from 8-week-old Cldn2+/+ S4). In addition, ZO-1 and cingulin, proteins localized in the cyto- and Cldn2−/− mice (Fig. S2). No gross morphological malformations plasmic region of TJs, colocalized with Lotus tetragonolobus agglu- − − − − were observed in the Cldn2 / kidney. Ultrathin section electron tinin (LTA), a proximal tubule marker (19, 22), in Cldn2 / kidneys microscopy also identified no significant differences between (Fig. S5). Therefore, claudin-2 appeared to be simply absent from − − − − − − Cldn2+/+
Recommended publications
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptNat Genet Author Manuscript. Author manuscript; Author Manuscript available in PMC 2013 June 01. Published in final edited form as: Nat Genet. 2012 December ; 44(12): 1349–1354. doi:10.1038/ng.2466. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis A full list of authors and affiliations appears at the end of the article. Abstract Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol- related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07. The exocrine pancreas is a simple digestive gland of only two primary cell types, each with a single function (Supplementary Figure 1). Recurrent acute pancreatic inflammation can, but does not always, progress to irreversible damage of the gland, including fibrosis, atrophy, pain, and exocrine and endocrine insufficiency,1-3 known as chronic pancreatitis Different genetic and environmental factors produce the same clinical phenotype4.
    [Show full text]
  • Age-Associated DNA Methylation Changes in Immune Genes, Histone Modifiers and Chromatin Remodeling Factors Within 5 Years After Birth in Human Blood Leukocytes
    Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes Acevedo, Nathalie; Reinius, Lovisa E; Vitezic, Morana; Fortino, Vittorio; Söderhäll, Cilla; Honkanen, Hanna; Veijola, Riitta; Simell, Olli; Toppari, Jorma; Ilonen, Jorma; Knip, Mikael; Scheynius, Annika; Hyöty, Heikki; Greco, Dario; Kere, Juha Published in: Clinical Epigenetics DOI: 10.1186/s13148-015-0064-6 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Acevedo, N., Reinius, L. E., Vitezic, M., Fortino, V., Söderhäll, C., Honkanen, H., Veijola, R., Simell, O., Toppari, J., Ilonen, J., Knip, M., Scheynius, A., Hyöty, H., Greco, D., & Kere, J. (2015). Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes. Clinical Epigenetics, 7, [34]. https://doi.org/10.1186/s13148-015-0064-6 Download date: 30. Sep. 2021 Acevedo et al. Clinical Epigenetics (2015) 7:34 DOI 10.1186/s13148-015-0064-6 RESEARCH Open Access Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes Nathalie Acevedo1,2, Lovisa E Reinius2, Morana Vitezic3, Vittorio Fortino4, Cilla Söderhäll2, Hanna Honkanen5, Riitta Veijola6, Olli Simell7, Jorma Toppari8, Jorma Ilonen9, Mikael Knip10,11,13, Annika Scheynius1, Heikki Hyöty5,12, Dario Greco4 and Juha Kere2,13* Abstract Background: Age-related changes in DNA methylation occurring in blood leukocytes during early childhood may reflect epigenetic maturation. We hypothesized that some of these changes involve gene networks of critical relevance in leukocyte biology and conducted a prospective study to elucidate the dynamics of DNA methylation.
    [Show full text]
  • Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer
    ORIGINAL RESEARCH published: 15 April 2021 doi: 10.3389/fonc.2021.566539 Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer Qinglian He 1, Ziqi Li 1, Jinbao Yin 1, Yuling Li 2, Yuting Yin 1, Xue Lei 1 and Wei Zhu 1* 1 Department of Pathology, Guangdong Medical University, Dongguan, China, 2 Department of Pathology, Dongguan People’s Hospital, Southern Medical University, Dongguan, China Background: Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. Edited by: This work screens autophagy-related markers and signaling pathways that may Fenglin Liu, Fudan University, China participate in the development of CRC, and establishes a prognostic model of CRC Reviewed by: based on autophagy-associated genes. Brian M. Olson, Emory University, United States Methods: Gene transcripts from the TCGA database and autophagy-associated gene Zhengzhi Zou, data from the GeneCards database were used to obtain expression levels of autophagy- South China Normal University, China associated genes, followed by Wilcox tests to screen for autophagy-related differentially Faqing Tian, Longgang District People's expressed genes. Then, 11 key autophagy-associated genes were identified through Hospital of Shenzhen, China univariate and multivariate Cox proportional hazard regression analysis and used to Yibing Chen, Zhengzhou University, China establish prognostic models. Additionally, immunohistochemical and CRC cell line data Jian Tu, were used to evaluate the results of our three autophagy-associated genes EPHB2, University of South China, China NOL3, and SNAI1 in TCGA.
    [Show full text]
  • A Cell Junctional Protein Network Associated with Connexin-26
    International Journal of Molecular Sciences Communication A Cell Junctional Protein Network Associated with Connexin-26 Ana C. Batissoco 1,2,* ID , Rodrigo Salazar-Silva 1, Jeanne Oiticica 2, Ricardo F. Bento 2 ID , Regina C. Mingroni-Netto 1 and Luciana A. Haddad 1 1 Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil; [email protected] (R.S.-S.); [email protected] (R.C.M.-N.); [email protected] (L.A.H.) 2 Laboratório de Otorrinolaringologia/LIM32, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, 01246-903 São Paulo, Brazil; [email protected] (J.O.); [email protected] (R.F.B.) * Correspondence: [email protected]; Tel.: +55-11-30617166 Received: 17 July 2018; Accepted: 21 August 2018; Published: 27 August 2018 Abstract: GJB2 mutations are the leading cause of non-syndromic inherited hearing loss. GJB2 encodes connexin-26 (CX26), which is a connexin (CX) family protein expressed in cochlea, skin, liver, and brain, displaying short cytoplasmic N-termini and C-termini. We searched for CX26 C-terminus binding partners by affinity capture and identified 12 unique proteins associated with cell junctions or cytoskeleton (CGN, DAAM1, FLNB, GAPDH, HOMER2, MAP7, MAPRE2 (EB2), JUP, PTK2B, RAI14, TJP1, and VCL) by using mass spectrometry. We show that, similar to other CX family members, CX26 co-fractionates with TJP1, VCL, and EB2 (EB1 paralogue) as well as the membrane-associated protein ASS1. The adaptor protein CGN (cingulin) co-immuno-precipitates with CX26, ASS1, and TJP1.
    [Show full text]
  • Regulation of Claudin-3 Expression in Kidney Tubular Epithelial Cells
    Regulation of Claudin-3 Expression in Kidney Tubular Epithelial Cells by Shaista Anwer A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Shaista Anwer 2020 Regulation of Claudin-3 Expression in Kidney Tubular Epithelial Cells Shaista Anwer Master of Science Institute of Medical Science University of Toronto 2020 Abstract The overall objective of my studies was to gain insight into the regulation of the tight junction protein, claudin-3, upon inflammatory stimuli in kidney tubular epithelial cells. Claudins mediate paracellular transport and modulate key cellular events like proliferation, migration and differentiation. The inflammatory cytokine Tumor Necrosis Factor-α (TNFα) is a pathogenic factor in kidney disease and alters epithelial permeability. However, the effect of TNFα on claudin-3 expression in the tubules and the mechanisms are not defined. My studies showed that TNFα elevated claudin-3 expression in kidney tubular cells. This effect was due to increased claudin-3 synthesis and mediated by two signaling pathways: extracellular signal regulated kinase- dependent activation of NFκB and protein kinase A-induced CREB1 activation. Claudin-3 overexpression elevated transepithelial resistance in tubular cells and it may play a role in regulating tubular epithelial permeability. Claudin-3 downregulation also affected cell cycle proteins; thus, claudin-3 may also affect cell proliferation. ii Acknowledgements I would like to dedicate this thesis to two important people in my life: my mother, Tahniyat Anwer and my supervisor, Dr. Katalin Szászi. My mom has been a great source of inspiration and a pillar of strength in my life and has always supported me in my endeavours.
    [Show full text]
  • Downloaded 18 July 2014 with a 1% False Discovery Rate (FDR)
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer Permalink https://escholarship.org/uc/item/0t47b9ws Author Spiciarich, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Professor Matthew B. Francis Professor Amy E. Herr Fall 2017 Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer © 2017 by David Spiciarich Abstract Chemical glycoproteomics for identification and discovery of glycoprotein alterations in human cancer by David Spiciarich Doctor of Philosophy in Chemistry University of California, Berkeley Professor Carolyn R. Bertozzi, Co-Chair Professor David E. Wemmer, Co-Chair Changes in glycosylation have long been appreciated to be part of the cancer phenotype; sialylated glycans are found at elevated levels on many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to cell surface sialylation are not well characterized, specifically in bona fide human cancer. Metabolic and bioorthogonal labeling methods have previously enabled enrichment and identification of sialoglycoproteins from cultured cells and model organisms. The goal of this work was to develop technologies that can be used for detecting changes in glycoproteins in clinical models of human cancer.
    [Show full text]
  • Fine Mapping of Genes on Sheep Chromosome 1 and Their Association with Milk Traits
    doi:10.1111/j.1365-2052.2006.01412.x Fine mapping of genes on sheep chromosome 1 and their association with milk traits J. H. Calvo*, A. Martı´nez-Royo*, A. E. Beattie†, K. G. Dodds†, A. Marcos-Carcavilla‡ and M. Serrano‡ *Unidad de Tecnologia en Produccion Animal, CITA-Gobierno de Aragon, Zaragoza, Spain. †AgResearch, Invermay Research Centre, Private Bag 50034, Mosgiel, New Zealand. ‡Departamento de Mejora Gene´ tica Animal, INIA, Madrid, Spain Summary On the basis of comparative mapping between cattle/sheep and human for milk trait quantitative trait loci (QTL) on BTA3/OAR1, annexin A9 (ANXA9) and solute carrier family 27 (fatty acid transporter), member 3 (SLC27A3) were selected as candidate genes for fat content (FC) in sheep milk. Two other genes in the same region, cingulin (CGN) and acid phosphatase 6, lysophosphatidic (ACP6), were also considered. DNA fragments of 1931 and 2790 bp corresponding to ANXA9 and SLC27A3 respectively were isolated, and 14 and 6 single nucleotide polymorphisms (SNPs) respectively were found in each gene. ANXA9, SLC27A3, CGN and ACP6 were localized to chromosome 1 between INRA006 and AE57 by linkage mapping using the International Mapping Flock. Across-family analyses of a daughter design comprising 13 sire families revealed significant sire and SLC27A3 geno- type-nested-within-sire effects for FC. Within-family analyses indicated significant regres- sion coefficients for FC in four of six heterozygous sires. These results could reflect the existence of a QTL for FC linked to SLC27A3 in sheep. Keywords dairy, quantitative trait loci, ovine chromosome 1, SLC27A3, ANXA9, CGN, ACP6. family of Manchega sheep (Calvo et al.
    [Show full text]
  • Claudin 2 and Hypercalciuria—Of Mice And
    RESEARCH HIGHLIGHTS Credit: Image courtesy of A. Yu and J. Curry, University of Kansas Medical Center, USA STONES Claudin 2 and hyper calciuria — of mice and men Claudin 2 is a regulator of calcium and glomerular calcium filtration with kidney stones and 187,639 excretion and could be a treatment were comparable between Cldn2–/y controls and identifying 9 SNPs that They began target for patients with urolithiasis, mice and wild-type littermates, were significantly associated with by studying according to new data published in suggesting that this difference is risk of nephrocalcinosis (P < 0.05). the Journal of Clinical Investigation. due to a decrease in renal calcium These data were further supported by claudin Hypercalciuria is integral to the reabsorption in Cldn2–/y mice as a genome analysis of an Iranian family, 2- knockout pathogenesis of stone formation, result of impaired proximal tubule who had previously been shown to (Cldn2–/y) which is likely to arise via calcium paracellular calcium transport. harbour a rare missense mutation mice deposition in the renal papilla. The Leading on from the observation in CLDN2 that led to obstructive … aetiology of hypercalciuria is somewhat of hypercalciuria, the team then azoospermia. Both male and female confirming uncertain but is thought to include investigated whether Cldn2–/y mice members of this family also had that they increased bone resorption, calcium were prone to nephrocalcinosis. marked hypercalciuria. are indeed hyperabsorption in the intestine and Accordingly, they observed abundant “Our premise — that defects in hypercalciuric reduced renal reabsorption. Calcium mineral deposits in the renal papillae proximal tubule calcium handling reabsorption occurs largely in the of 6- month- old and 1- year- old lead to papillary calcification and, proximal tubule, where ~60% of Cldn2–/y mice.
    [Show full text]
  • Tight Junctions in Cell Proliferation
    International Journal of Molecular Sciences Review Tight Junctions in Cell Proliferation Mónica Díaz-Coránguez , Xuwen Liu and David A. Antonetti * Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA; [email protected] (M.D.-C.); [email protected] (X.L.) * Correspondence: [email protected]; Tel.: +(734)-232-8230; Fax: +(734)-232-8030 Received: 1 November 2019; Accepted: 22 November 2019; Published: 27 November 2019 Abstract: Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.
    [Show full text]
  • Downloaded from NCBI's GEO Under the Series Accession Number: GSE7745
    BMC Gastroenterology BioMed Central Research article Open Access Mapping of HNF4α target genes in intestinal epithelial cells Mette Boyd, Simon Bressendorff, Jette Møller, Jørgen Olsen and Jesper T Troelsen* Address: Department of Cellular and Molecular Medicine. Panum Institute, Building 6.4. University of Copenhagen. Blegdamsvej 3B 2200 Copenhagen N, Denmark Email: Mette Boyd - [email protected]; Simon Bressendorff - [email protected]; Jette Møller - [email protected]; Jørgen Olsen - [email protected]; Jesper T Troelsen* - [email protected] * Corresponding author Published: 17 September 2009 Received: 30 January 2009 Accepted: 17 September 2009 BMC Gastroenterology 2009, 9:68 doi:10.1186/1471-230X-9-68 This article is available from: http://www.biomedcentral.com/1471-230X/9/68 © 2009 Boyd et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The role of HNF4α has been extensively studied in hepatocytes and pancreatic β- cells, and HNF4α is also regarded as a key regulator of intestinal epithelial cell differentiation. The aim of the present work is to identify novel HNF4α target genes in the human intestinal epithelial cells in order to elucidate the role of HNF4α in the intestinal differentiation progress. Methods: We have performed a ChIP-chip analysis of the human intestinal cell line Caco-2 in order to make a genome-wide identification of HNF4α binding to promoter regions. The HNF4α ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4α binding to actively transcribed genes with an open chromatin structure.
    [Show full text]
  • Expression of Periaxin (PRX) Specifically in the Human
    www.nature.com/scientificreports OPEN Expression of periaxin (PRX) specifcally in the human cerebrovascular system: PDZ Received: 6 November 2017 Accepted: 13 June 2018 domain-mediated strengthening Published: xx xx xxxx of endothelial barrier function Michael M. Wang1,2,3,4, Xiaojie Zhang1,2, Soo Jung Lee1,2, Snehaa Maripudi1,3, Richard F. Keep2,4,5, Allison M. Johnson4,6,7, Svetlana M. Stamatovic6,7 & Anuska V. Andjelkovic4,6,7 Regulation of cerebral endothelial cell function plays an essential role in changes in blood-brain barrier permeability. Proteins that are important for establishment of endothelial tight junctions have emerged as critical molecules, and PDZ domain containing-molecules are among the most important. We have discovered that the PDZ-domain containing protein periaxin (PRX) is expressed in human cerebral endothelial cells. Surprisingly, PRX protein is not detected in brain endothelium in other mammalian species, suggesting that it could confer human-specifc vascular properties. In endothelial cells, PRX is predominantly localized to the nucleus and not tight junctions. Transcriptome analysis shows that PRX expression suppresses, by at least 50%, a panel of infammatory markers, of which 70% are Type I interferon response genes; only four genes were signifcantly activated by PRX expression. When expressed in mouse endothelial cells, PRX strengthens barrier function, signifcantly increases transendothelial electrical resistance (~35%; p < 0.05), and reduces the permeability of a wide range of molecules. The PDZ domain of PRX is necessary and sufcient for its barrier enhancing properties, since a splice variant (S-PRX) that contains only the PDZ domain, also increases barrier function. PRX also attenuates the permeability enhancing efects of lipopolysaccharide.
    [Show full text]
  • Spinal Neural Tube Closure Depends on Regulation of Surface Ectoderm Identity and Biomechanics by Grhl2
    ARTICLE https://doi.org/10.1038/s41467-019-10164-6 OPEN Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2 Evanthia Nikolopoulou1, Caroline S. Hirst1,3, Gabriel Galea 1, Christina Venturini2, Dale Moulding 1, Abigail R. Marshall1, Ana Rolo1,4, Sandra C.P. De Castro1, Andrew J. Copp 1 & Nicholas D.E. Greene 1 1234567890():,; Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up- regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation. 1 Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom. 2 UCL Infection and Immunity Division, UCL Pathogen Genomic Unit, UCL Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom.
    [Show full text]