OCEAN ACIDIFICATION IMPACTS on CORAL REEFS “From Sciences to Solutions”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catherine Kim Curriculum Vitae School of Biological Sciences | the University of Queensland Level 7 Gehrmann Laboratory, St
Catherine Kim Curriculum Vitae School of Biological Sciences | The University of Queensland Level 7 Gehrmann Laboratory, St. Lucia, QLD 4072 [email protected] | www.catherinejkim.com | SeaCatKim | +617 3365 2118 EDUCATION 2021 Ph.D. The University of Queensland Australia School of Biological Sciences, St. Lucia, Queensland, Australia Thesis Title: Drivers of benthic composition, cryptic marine biodiversity, and coral health in Timor-Leste. Advisors: Prof. Ove Hoegh-Guldberg, Assoc. Prof. Sophie Dove, Dr. Chris Roelfsema Awards: XL Catlin Oceans Scholar, Faculty of Science Awards 2020 Finalist 2012 B.S. Cornell University – Science of Earth Systems (Oceanography concentration) College of Agriculture and Life Sciences, Ithaca, New York, USA Advisor: Prof. Chuck Greene Awards: Cum Laude, Dean’s List six semesters, Michael Mitchell Award EXPERTISE Discipline Knowledge Coral Reef Ecology, Fieldwork, and Data Skills Working knowledge of impacts from local and global stressors on coral reef ecosystems Execution of field work campaigns in remote areas including Timor-Leste, Australia, and Hawai‘i Experience with coral reef underwater monitoring protocols and working with field teams Knowledge of citizen science methods such as Reef Check and Coral Watch Implementation and validation of automated image analysis pipelines using machine learning Familiarity with remote sensing, GIS, and data visualization Experience managing complex datasets and summarizing data in R Diving Experience and Certifications Australian Divers Accreditation Scheme -
The Journal of the American School of Classical Studies at Athens
dining in the sanctuary of demeter and kore 1 Hesperia The Journal of the American School of Classical Studies at Athens Volume 78 2009 This article is © The American School of Classical Studies at Athens and was originally published in Hesperia 78 (2009), pp. 269–305. This offprint is supplied for personal, non-commercial use only. The definitive electronic version of the article can be found at <http://dx.doi.org/10.2972/hesp.78.2.269>. hesperia Tracey Cullen, Editor Editorial Advisory Board Carla M. Antonaccio, Duke University Angelos Chaniotis, Oxford University Jack L. Davis, American School of Classical Studies at Athens A. A. Donohue, Bryn Mawr College Jan Driessen, Université Catholique de Louvain Marian H. Feldman, University of California, Berkeley Gloria Ferrari Pinney, Harvard University Sherry C. Fox, American School of Classical Studies at Athens Thomas W. Gallant, University of California, San Diego Sharon E. J. Gerstel, University of California, Los Angeles Guy M. Hedreen, Williams College Carol C. Mattusch, George Mason University Alexander Mazarakis Ainian, University of Thessaly at Volos Lisa C. Nevett, University of Michigan Josiah Ober, Stanford University John K. Papadopoulos, University of California, Los Angeles Jeremy B. Rutter, Dartmouth College A. J. S. Spawforth, Newcastle University Monika Trümper, University of North Carolina at Chapel Hill Hesperia is published quarterly by the American School of Classical Studies at Athens. Founded in 1932 to publish the work of the American School, the jour- nal now welcomes submissions from all scholars working in the fields of Greek archaeology, art, epigraphy, history, materials science, ethnography, and literature, from earliest prehistoric times onward. -
Make an Edible Coral Reef
Science | Service | STEWARDSHIP PROTECT THE EARTH MakeMake anan EdibleEdible CoralCoral ReefReef Spanish hogfi sh at reef. Courtesy Florida Keys National Marine Sanctuary You have probably seen pictures of coral reefs before—lots of colors, fi sh- dollars. Local economies receive billions of dollars from visitors to reefs es, and weird looking shapes! Coral reefs are not only beautiful to look through diving tours, recreational fi shing trips, hotels, restaurants, and at; they are also home to thousands of other species. In fact, scientists other businesses based near reef ecosystems. Coral reefs protect shore- estimate that there may be another one to eight million undiscovered lines against waves, storms and fl oods, and help prevent loss of life, species living in and around reefs! Coral reefs support more species per property damage and erosion. square foot than any other marine environment. This abundance of living organisms is key to fi nding new medicines for the 21st century. Many Despite their importance, many of Earth’s coral reefs are in trouble. Se- drugs are now being developed from coral reef animals and plants as vere storms, water pollution, overfi shing, disease, global climate change, possible cures for cancer, arthritis, human bacterial infections, viruses, and ships running aground are some of the things that have destroyed or and other diseases. badly damaged many reefs. Because of these threats, coral reefs and all of the creatures that call them home may be in danger of disappearing if Coral reefs are important for other reasons as well. Coral reefs are a something isn’t done to protect them. -
Slow-Onset Processes and Resulting Loss and Damage
Publication Series ADDRESSING LOSS AND DAMAGE FROM SLOW-ONSET PROCESSES Slow-onset Processes and Resulting Loss and Damage – An introduction Table of contents L 4 22 ist of a bbre Summary of Loss and damage via tio key facts and due to slow-onset ns definitions processes AR4 IPCC Fourth Assessment Report 6 22 What is loss and damage? Introduction AR5 IPCC Fifth Assessment Report COP Conference of the Parties to the 23 United Nations Framework Convention on 9 What losses and damages IMPRINT Climate Change can result from slow-onset Slow-onset ENDA Environment Development Action Energy, processes? Authors Environment and Development Programme processes and their Laura Schäfer, Pia Jorks, Emmanuel Seck, Energy key characteristics 26 Oumou Koulibaly, Aliou Diouf ESL Extreme Sea Level What losses and damages Contributors GDP Gross Domestic Product 9 can result from sea level rise? Idy Niang, Bounama Dieye, Omar Sow, Vera GMSL Global mean sea level What is a slow-onset process? Künzel, Rixa Schwarz, Erin Roberts, Roxana 31 Baldrich, Nathalie Koffi Nguessan GMSLR Global mean sea level rise 10 IOM International Organization on Migration What are key characteristics Loss and damage Editing Adam Goulston – Scize Group LLC of slow-onset processes? in Senegal due to IPCC Intergovernmental Panel on Climate Change sea level rise Layout and graphics LECZ Low-elevation coastal zone 14 Karin Roth – Wissen in Worten OCHA Office for the Coordination of Humanitarian Affairs What are other relevant January 2021 terms for the terminology on 35 RCP Representative -
Reef Restoration Concepts & Guidelines: Making Sensible Management Choices in the Face of Uncertainty
Reef Restoration Concepts & Guidelines: Making sensible management choices in the face of uncertainty. by Alasdair Edwards and Edgardo Gomez www.gefcoral.org Alasdair J. Edwards1 and Edgardo D. Gomez2 1 Division of Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom 2 Marine Science Institute, University of the Philippines, 1101 Quezon City, Philippines The views are those of the authors who acknowledge their debt to other members of the Restoration and Remediation Working Group (RRWG) of the Coral Reef Targeted Research & Capacity Building for Management project for ideas, information and lively discussion of reef restoration concepts, issues and techniques. We thank Richard Dodge, Andrew Heyward, Tadashi Kimura, Chou Loke Ming, Aileen Morse, Makoto Omori, and Buki Rinkevich for their free exchange of views. We thank Marea Hatziolos, Andy Hooten, James Guest and Chris Muhando for valuable comments on the text. Finally, we thank the Coral Reef Initiative for the South Pacific (CRISP), Eric Clua, Sandrine Job and Michel Porcher for providing details of restoration projects for the section on “Learning lessons from restoration projects”. Publication data: Edwards, A.J., Gomez, E.D. (2007). Reef Restoration Concepts and Guidelines: making sensible management choices in the face of uncertainty. Coral Reef Targeted Research & Capacity Building for Management Programme: St Lucia, Australia. iv + 38 pp. Published by: The Coral Reef Targeted Research & Capacity Building for Management Program Postal address: Project Executing Agency Centre for Marine Studies Level 7 Gerhmann Building The University of Queensland St Lucia QLD 4072 Australia Telephone: +61 7 3346 9942 Facsimile: +61 7 3346 9987 E-mail: [email protected] Internet: www.gefcoral.org The Coral Reef Targeted Research & Capacity Building for Management (CRTR) Program is a leading international coral reef research initiative that provides a coordinated approach to credible, factual and scientifically-proven knowledge for improved coral reef management. -
A Bayesian Latent Allocation Model for Clustering Compositional Data with Application to the Great Barrier Reef
A Bayesian latent allocation model for clustering compositional data with application to the Great Barrier Reef Luiza S.C. Piancastelli1,∗ Nial Friel1;2†, Julie Vercelloni3‡, Kerrie Mengersen3§ and Antonietta Mira4¶ 1School of Mathematics and Statistics, University College Dublin, Dublin, Ireland 2Insight Centre for Data Analytics 3School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia 4Data Science Lab, Università della Svizzera italiana, Lugano, Switzerland Abstract Relative abundance is a common metric to estimate the composition of species in ecological sur- veys reflecting patterns of commonness and rarity of biological assemblages. Measurements of coral reef compositions formed by four communities along Australia’s Great Barrier Reef (GBR) gathered between 2012 and 2017 are the focus of this paper. We undertake the task of finding clusters of tran- sect locations with similar community composition and investigate changes in clustering dynamics over time. During these years, an unprecedented sequence of extreme weather events (two cyclones and two coral bleaching events) impacted the 58 surveyed locations. The dependence between constituent parts of a composition presents a challenge for existing multivariate clustering approaches. In this arXiv:2105.02140v1 [stat.AP] 5 May 2021 paper, we introduce a new model that is a finite mixture of Dirichlet distributions with group-specific parameters, where cluster memberships are dictated by unobserved latent variables. The inference is carried in a Bayesian framework, where Markov Chain Monte Carlo strategies are outlined to sample from the posterior model. Simulation studies are presented to illustrate the performance of the model in a controlled setting. The application of the model to the 2012 coral reef data reveals that clusters ∗Corresponding author. -
What Is the Role of Zooxanthellae During Coral Bleaching?
What is the role of zooxanthellae during coral AUTHOR: Anuschka Curran1 bleaching? Review of zooxanthellae and their Sandra Barnard1 response to environmental stress AFFILIATION: 1Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa Coral reefs are diverse and productive but sensitive ecosystems. Due to the impact of climate change, these organisms are in danger of dying out, mainly through the process of coral bleaching, which is the CORRESPONDENCE TO: Sandra Barnard process by which zooxanthellae (algal endosymbionts) are expelled from their respective coral hosts, causing the coral to lose colour and become white. Coral bleaching has been linked to increases in sea EMAIL: surface temperatures as well as an increase in light intensity. We reviewed the different zooxanthellae [email protected] taxa and their ecological traits, as well as the information available on the protective mechanisms present DATES: in zooxanthellae cells when they experience environmental stress conditions, such as temperature Received: 22 May 2020 fluctuations, specifically concentrating on heat shock proteins and their response to antioxidant stress. Revised: 23 Nov. 2020 The eight clades (A–H) previously recognised were reorganised into seven existing genera. Different Accepted: 12 Feb. 2021 Published: 29 July 2021 zooxanthellae taxa exhibit different ecological traits such as their photosynthetic stress responses to light and temperature. Zooxanthellae have the ability to regulate the number and type of heat shock HOW TO CITE: proteins (Hsps) they produce during a heat response. They can also regulate the host’s respective Hsps. Curran A, Barnard S. What is the role of zooxanthellae during coral Antioxidant responses that can prevent coral hosts from expelling the zooxanthellae, can be found both bleaching? Review of zooxanthellae within exposed coral tissue and the zooxanthellae cells. -
Impacts of Climate Change on World Heritage Coral Reefs a First Global Scientific Assessment Coordinating Lead Authors: Scott F
NIO M O UN IM D R T IA A L • P • W L O A I R D L D N H O E M R I E TA IN G O E • PATRIM United Nations World Educational, Scientific and Heritage Cultural Organization Convention Impacts of Climate Change on World Heritage Coral Reefs A First Global Scientific Assessment Coordinating Lead Authors: Scott F. Heron1,2, C. Mark Eakin1, Fanny Douvere3 Contributing Authors*: Kristen Anderson4, Jon C. Day4, Erick Geiger1,2, Ove Hoegh-Guldberg5, Ruben van Hooidonk6,7, Terry Hughes4, Paul Marshall8,9, David Obura10 *listed in alphabetical order Suggested citation: Heron et al. 2017. Impacts of Climate Change on World Heritage Coral Reefs : A First Global Scientific Assessment. Paris, UNESCO World Heritage Centre. © UNESCO, 2017. CLT-2017/WS/12 All pictures in this assessment may not be used or reproduced without the prior permission of the copyright holders. This assessment aims to make available the most current knowledge regarding the impacts of climate change on World Heritage properties as requested by the World Heritage Committee Decision 40 COM 7 (Istanbul/UNESCO, 2016). Photo cover: © The Ocean Agency, XL Catlin Seaview Survey, Christophe Bailhache Great Barrier Reef, Lizard Island © The Ocean Agency, XL Catlin Seaview Survey, Richard Vevers Great Barrier Reef © NOAA An artist’s rendering of America’s next-generation geostationary weather satellite 1Coral Reef Watch, U.S. National Oceanic and Atmospheric Administration, USA 2Global Science & Technology, Inc., USA 3World Heritage Centre, Marine Programme, UNESCO, Paris, France 4Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia 5Global Change Institute, University of Queensland, Australia 6NOAA Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, 4301 Rickenbacker Causeway, Miami, USA. -
Forecasting Intensifying Disturbance Effects on Coral Reefs
Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/GCB.15059 This article is protected by copyright. All rights reserved Forecasting intensifying disturbance effects on coral reefs Julie Vercelloni∗1, 2, 3, 4, Benoit Liquet3, 5, Emma V. Kennedy†2, Manuel Gonzalez-Rivero´ ‡1, 2, M. Julian Caley3, 4, Erin E. Peterson3, 6, Marji Puotinen7, Ove Hoegh-Guldberg1, 2, and Kerrie Mengersen3, 4, 6 1ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia 2The Global Change Institute, The University of Queensland, St Lucia, QLD 4072, Australia 3ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, QLD 4000, Australia 4School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia 5Universite´ de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau, France 6Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 Australia 7Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australia 1 Running title Modelling the structure of reef communities ∗Corresponding author - Electronic address: [email protected]; Phone number: +61731389817; ORCiD: 0000-0001-5227-014X †PresentAuthor Manuscript affiliation: School of Earth and Environmental Sciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia ‡Present affiliation: Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia 1 This article is protected by copyright. -
Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure
EPA/600/R-10/054 | July 2010 | www.epa.gov/ord Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure Offi ce of Research and Development | National Health and Environmental Effects Research Laboratory EPA/600/R-10/054 July 2010 www.epa.gov/ord Coral Reef Biological Criteria Using the Clean Water Act to Protect a National Treasure by Patricia Bradley Leska S. Fore Atlantic Ecology Division Statistical Design NHEERL, ORD 136 NW 40th St. 33 East Quay Road Seattle, WA 98107 Key West, FL 33040 William Fisher Wayne Davis Gulf Ecology Division Environmental Analysis Division NHEERL, ORD Offi ce of Environmental Information 1 Sabine Island Drive 701 Mapes Road Gulf Breeze, FL 32561 Fort Meade, MD 20755 Contract No. EP-C-06-033 Work Assignment 3-11 Great Lakes Environmental Center, Inc Project Officer: Work Assignment Manager: Susan K. Jackson Wayne Davis Offi ce of Water Offi ce of Environmental Information Washington, DC 20460 Fort Meade, MD 20755 National Health and Environmental Effects Research Laboratory Offi ce of Research and Development Washington, DC 20460 Printed on chlorine free 100% recycled paper with 100% post-consumer fiber using vegetable-based ink. Notice and Disclaimer The U.S. Environmental Protection Agency through its Offi ce of Research and Development, Offi ce of Environmental Information, and Offi ce of Water funded and collaborated in the research described here under Contract EP-C-06-033, Work Assignment 3-11, to Great Lakes Environmental Center, Inc. It has been subject to the Agency’s peer and administrative review and has been approved for publication as an EPA document. -
Ocean Acidification in Washington State
University of Washington • Washington Sea Grant Ocean Acidification in Washington State What is Ocean Acidification? OA in Washington State cean Acidification (or ‘OA’) is a long-term decrease ur region is experiencing ocean acidification sooner Oin seawater pH that is primarily caused by the Oand more severely than expected, due to a combina- ocean’s uptake of carbon dioxide (CO2 ) from the atmo- tion of human and natural causes. In the spring and sum- sphere. CO2 generated by humans’ use of fossil fuels and mer, acidification along our coast is compounded by up- deforestation has been accumulating in the atmosphere welling, which mixes deep, naturally low-pH seawater into since the industrial revolution. About one quarter of this the already acidified surface layer. In Puget Sound, nutri- CO2 is absorbed by the oceans, pH describes the acidity of a liquid ents generated by human activities (mostly where it reacts with water to form nitrogen and phosphorus from sewage, carbonic acid. As a result, the aver- fertilizers and manure) fuel processes that age pH of seawater at the ocean add even more CO2 to this ‘doubly-acidified’ surface has already dropped by ~0.1 seawater. The combination can be deadly units, a 30% increase in acidity. If to vulnerable organisms. pH levels as low atmospheric CO2 levels continue as 7.4 have been recorded in Hood Canal, to climb at the present rate, ocean an important shellfish-growing region. acidity will double by the end of this State and federal agencies, scientists, tribes, century. shellfish growers and NGOs are working together to address OA in our region. -
Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans