Long-Term Actuarial Mathematics Study Note
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACTS 4304 FORMULA SUMMARY Lesson 1: Basic Probability Summary of Probability Concepts Probability Functions
ACTS 4304 FORMULA SUMMARY Lesson 1: Basic Probability Summary of Probability Concepts Probability Functions F (x) = P r(X ≤ x) S(x) = 1 − F (x) dF (x) f(x) = dx H(x) = − ln S(x) dH(x) f(x) h(x) = = dx S(x) Functions of random variables Z 1 Expected Value E[g(x)] = g(x)f(x)dx −∞ 0 n n-th raw moment µn = E[X ] n n-th central moment µn = E[(X − µ) ] Variance σ2 = E[(X − µ)2] = E[X2] − µ2 µ µ0 − 3µ0 µ + 2µ3 Skewness γ = 3 = 3 2 1 σ3 σ3 µ µ0 − 4µ0 µ + 6µ0 µ2 − 3µ4 Kurtosis γ = 4 = 4 3 2 2 σ4 σ4 Moment generating function M(t) = E[etX ] Probability generating function P (z) = E[zX ] More concepts • Standard deviation (σ) is positive square root of variance • Coefficient of variation is CV = σ/µ • 100p-th percentile π is any point satisfying F (π−) ≤ p and F (π) ≥ p. If F is continuous, it is the unique point satisfying F (π) = p • Median is 50-th percentile; n-th quartile is 25n-th percentile • Mode is x which maximizes f(x) (n) n (n) • MX (0) = E[X ], where M is the n-th derivative (n) PX (0) • n! = P r(X = n) (n) • PX (1) is the n-th factorial moment of X. Bayes' Theorem P r(BjA)P r(A) P r(AjB) = P r(B) fY (yjx)fX (x) fX (xjy) = fY (y) Law of total probability 2 If Bi is a set of exhaustive (in other words, P r([iBi) = 1) and mutually exclusive (in other words P r(Bi \ Bj) = 0 for i 6= j) events, then for any event A, X X P r(A) = P r(A \ Bi) = P r(Bi)P r(AjBi) i i Correspondingly, for continuous distributions, Z P r(A) = P r(Ajx)f(x)dx Conditional Expectation Formula EX [X] = EY [EX [XjY ]] 3 Lesson 2: Parametric Distributions Forms of probability -
STAT 830 the Basics of Nonparametric Models The
STAT 830 The basics of nonparametric models The Empirical Distribution Function { EDF The most common interpretation of probability is that the probability of an event is the long run relative frequency of that event when the basic experiment is repeated over and over independently. So, for instance, if X is a random variable then P (X ≤ x) should be the fraction of X values which turn out to be no more than x in a long sequence of trials. In general an empirical probability or expected value is just such a fraction or average computed from the data. To make this precise, suppose we have a sample X1;:::;Xn of iid real valued random variables. Then we make the following definitions: Definition: The empirical distribution function, or EDF, is n 1 X F^ (x) = 1(X ≤ x): n n i i=1 This is a cumulative distribution function. It is an estimate of F , the cdf of the Xs. People also speak of the empirical distribution of the sample: n 1 X P^(A) = 1(X 2 A) n i i=1 ^ This is the probability distribution whose cdf is Fn. ^ Now we consider the qualities of Fn as an estimate, the standard error of the estimate, the estimated standard error, confidence intervals, simultaneous confidence intervals and so on. To begin with we describe the best known summaries of the quality of an estimator: bias, variance, mean squared error and root mean squared error. Bias, variance, MSE and RMSE There are many ways to judge the quality of estimates of a parameter φ; all of them focus on the distribution of the estimation error φ^−φ. -
Bayesian Methods for Function Estimation
hs25 v.2005/04/21 Prn:19/05/2005; 15:11 F:hs25013.tex; VTEX/VJ p. 1 aid: 25013 pii: S0169-7161(05)25013-7 docsubty: REV Handbook of Statistics, Vol. 25 ISSN: 0169-7161 13 © 2005 Elsevier B.V. All rights reserved. 1 1 DOI 10.1016/S0169-7161(05)25013-7 2 2 3 3 4 4 5 5 6 Bayesian Methods for Function Estimation 6 7 7 8 8 9 9 10 Nidhan Choudhuri, Subhashis Ghosal and Anindya Roy 10 11 11 12 12 Abstract 13 13 14 14 15 Keywords: consistency; convergence rate; Dirichlet process; density estimation; 15 16 Markov chain Monte Carlo; posterior distribution; regression function; spectral den- 16 17 sity; transition density 17 18 18 19 19 20 20 21 1. Introduction 21 22 22 23 Nonparametric and semiparametric statistical models are increasingly replacing para- 23 24 metric models, for the latter’s lack of sufficient flexibility to address a wide vari- 24 25 ety of data. A nonparametric or semiparametric model involves at least one infinite- 25 26 dimensional parameter, usually a function, and hence may also be referred to as an 26 27 infinite-dimensional model. Functions of common interest, among many others, include 27 28 the cumulative distribution function, density function, regression function, hazard rate, 28 29 transition density of a Markov process, and spectral density of a time series. While fre- 29 30 quentist methods for nonparametric estimation have been flourishing for many of these 30 31 problems, nonparametric Bayesian estimation methods had been relatively less devel- 31 32 oped. -
Estimation of Rate of Rare Occurrence of Events with Empirical Bayes
Estimating Rate of Occurrence of Rare Events with Empirical Bayes: A Railway Application John Quigley (Corresponding author), Tim Bedford and Lesley Walls Department of Management Science University of Strathclyde, Glasgow, G1 1QE, SCOTLAND [email protected] Tel +44 141 548 3152 Fax +44 141 552 6686 Abstract Classical approaches to estimating the rate of occurrence of events perform poorly when data are few. Maximum Likelihood Estimators result in overly optimistic point estimates of zero for situations where there have been no events. Alternative empirical based approaches have been proposed based on median estimators or non- informative prior distributions. While these alternatives offer an improvement over point estimates of zero, they can be overly conservative. Empirical Bayes procedures offer an unbiased approach through pooling data across different hazards to support stronger statistical inference. This paper considers the application of Empirical Bayes to high consequence low frequency events, where estimates are required for risk mitigation decision support such as As Low As Reasonably Possible (ALARP). A summary of Empirical Bayes methods is given and the choices of estimation procedures to obtain interval estimates are discussed. The approaches illustrated within the case study are based on the estimation of the rate of occurrence of train derailments within the UK. The usefulness of Empirical Bayes within this context is discussed. 1 Key words: Empirical Bayes, Credibility Theory, Zero-failure, Estimation, Homogeneous Poisson Process 1. Introduction The Safety Risk Model (SRM) is a large scale Fault and Event Tree model used to assess risk on the UK Railways. The objectives of the SRM (see Risk Profile Bulletin [1]) are to provide an understanding of the nature of the current risk on the mainline railway and risk information and profiles relating to the mainline railway. -
Empirical Information Metrics for Prediction Power and Experiment Planning
Information 2011, 2, 17-40; doi:10.3390/info2010017 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Article Empirical Information Metrics for Prediction Power and Experiment Planning Christopher Lee 1;2;3 1 Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095, USA 2 Department of Computer Science, University of California, Los Angeles, CA 90095, USA 3 Institute for Genomics & Proteomics, University of California, Los Angeles, CA 90095, USA; E-Mail: [email protected]; Tel: 310-825-7374; Fax: 310-206-7286 Received: 8 October 2010; in revised form: 30 November 2010 / Accepted: 21 December 2010 / Published: 11 January 2011 Abstract: In principle, information theory could provide useful metrics for statistical inference. In practice this is impeded by divergent assumptions: Information theory assumes the joint distribution of variables of interest is known, whereas in statistical inference it is hidden and is the goal of inference. To integrate these approaches we note a common theme they share, namely the measurement of prediction power. We generalize this concept as an information metric, subject to several requirements: Calculation of the metric must be objective or model-free; unbiased; convergent; probabilistically bounded; and low in computational complexity. Unfortunately, widely used model selection metrics such as Maximum Likelihood, the Akaike Information Criterion and Bayesian Information Criterion do not necessarily meet all these requirements. We define four distinct empirical information metrics measured via sampling, with explicit Law of Large Numbers convergence guarantees, which meet these requirements: Ie, the empirical information, a measure of average prediction power; Ib, the overfitting bias information, which measures selection bias in the modeling procedure; Ip, the potential information, which measures the total remaining information in the observations not yet discovered by the model; and Im, the model information, which measures the model’s extrapolation prediction power.