Global Mineral Distributions on Mars Joshua L

Total Page:16

File Type:pdf, Size:1020Kb

Global Mineral Distributions on Mars Joshua L JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E6, 5042, 10.1029/2001JE001510, 2002 Global mineral distributions on Mars Joshua L. Bandfield NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Received 27 April 2001; revised 29 January 2002; accepted 26 March 2002; published 27 June 2002. [ 1 ] Determining the mineralogy of Mars is an essential part of revealing the conditions of the surface and subsurface. A deconvolution method was used to remove atmospheric components and determine surface mineralogy from Thermal Emission Spectrometer data at 1 pixel per degree (ppd). Minerals are grouped into categories on the basis of compositional and spectral similarity, and global concentration maps are produced. All binned pixels are fit well with RMS 0.005 errors in ofemissivit y. Higher RMS errors are attributed to short wavelength particle size effects on dust-covered surfaces. Significant concentrations (>0.10) of plagioclase, high-Ca pyroxene, sheet silicates/high-Si glass, and hematite are detected and display distributions consistent with previous studies. Elevated concentrations of plagioclase and high-Ca pyroxene are consistent with basaltic surfaces and are located in low-albedo highlands regions 45 °north S. Significant of concentrations of plagioclase and sheet silicates/high-Si glass and low concentrations of high-Ca pyroxenes are consistent with andesitic surfaces and are concentrated in both southern and northern high-latitude, low-albedo regions. Andesitic surfaces in the southern hemisphere have a lower spectral contrast than northern surfaces. An isolated surface located in Solis Planum is spectrally distinct but compositionally similar to other surfaces interpreted to be andesitic in composition. Concentrations of olivine below the detection limit correctly identify its presence in two of three locations. Potassium feldspar, low-Ca pyroxene, basaltic glass, olivine, sulfate, carbonate, quartz, and amphibole are not detected with confidence at 1 ppd. The results presented here indicate a predominance of volcanic compositions within Martian dust-free INDEXsurfaces. T ERM S: 5410 Planetology: Solid Surface Planets: Composition; 5464 Planetology: Solid Surface Planets: Remote sensing; 5470 Planetology: Solid Surface Planets: Surface materials and properties; 5494 Planetology: Solid Surface Planets: Instruments and techniques;KEYWORD S: Mars, infrared spectroscopy, surface mineralogy, remote sensing 1. Introduction maps presented here allo w for recove ry of compositional di st ribut ions. This is di st inct from previ ous efforts that [ 2] An essential part of revealing the presentdetermined and past surface unit distributions, which had spectral conditions of the surface and the subsurface ofsign Marsatu re is s defined before distributio ns were determined determining its mineralogy. Igneous compositions can[ Bandfield pro- et , al.2000a]. The compositions and distributions vide insight into mechanisms such as crustal formatiof on,ma theat er ia ls o n t he su r f ac e hig hli gh t u niq ue as w el l as loss processes, and magma differenti ation. Knowledgefamiliar ofcond itions and processes that have occurred during t hes e com pos it ions ca n al so be use Mars’d t historo co y.nstr It aiis n hopedoth erthat future studies will use the data parameters such as bulk composition and source setmat displayed erials here to help determine this history. for the Marti an soil and dust. Evaporit e, clay, and other sedimentary compositions can provide confirmation 1.1.of pastPrevious Spectroscopi c Mineralogical Work liquid wate r environments on or near the surface. These 1.1.1. Low-albedo regions material s may provide an idea of the temporal and spati al [ 4 ] Low-albedo regions on Mars (lambert albedo of less ex te nt of t he Ma r ti an wea t her ing reg i me. Hyd rot he rm al than 0.20 based on albedo histogramsMellon of et al. alteratio n can al so produce mineral signatures that indicate [2000]) have been known to contain distinct spectral ab- a past water-rich environment. Metamorp hic compo sitions sorptions near 1 andm m 2as well as the 10m m and 20 can be used to constrain the extent to which burial and wavelength regions [Adams, 1968, 1974; Adams and Mc- deformation al mechanis ms have occurred in the Martian Cord, 1969; Singer, 1980; Singer et al., 1979; Christensen, past. 1982; Singer and McSween, 1993; Mustard et al., 1993, [ 3] The purpose of this study is to provide global distri- 1997; Christensen, 1998]. Laboratory and telescopic and b ut i on s o f M ar t i an su r f a ce ma t e r i al s. T he mi ne r al o gi ca l Phobos-2 Infrared Spectrometer for Mars (ISM) data have This paper is not subject to U.S. copyright. been used to determine the presence of Ca-rich pyroxenes Published in 2002 by the American Geophysical Union. and to conclude that olivine is not a dominant mineral phase Paper number 2001JE001510 [Singer, 1980; Singer et al., 1979; McCord et al., 1982; 9 - 1 9 - 2 BANDFIELD: GLOBAL MINERAL DISTRIBUTIONS ON MARS Mustard et al., 1993]. Mustard et al. [1997] investigated the et al., 1973; Aronson and Emslie, 1975; Toon et al., 1977; 1 mm and the 2.2 mm absorptions in ISM data and Clancy et al., 1995]. While the results have demonstrated that argued for the coexistence of variable relative abundances the Martian dust may be composed of materials similar to of both low-Ca and high-Ca pyroxenes within several montmorillonite and palagonite, there are clear discrepancies equatorial dark regions. The presence of these pyroxenes between the Martian spectra and those approximated using is consistent with the compositions of a variety of igneous the optical constants of these materials. compositions, including the olivine-poor SNC meteorites, basalts, andesites, and komatiites. 1.2. Previous Thermal Emission Spectrometer Results [5] Distinct absorptions in the 9 and 20 mmspectral [9] The Thermal Emission Spectrometer (TES) on board regions were observed in Viking Infrared Thermal Mapper the MGS spacecraft has returned data in the 200–1650 cmÀ1 (IRTM) data [Christensen, 1982, 1998]. The shape and (6–50 mm) portion of the spectrum (see a brief instrument depth of the absorptions correlate well with dark regions description below as well as thorough descriptions of the and are consistent with basalt-like sand surfaces. However, TES instrument and operations by Christensen et al. [1992] the coarse spectral resolution makes unique compositional and Christensen et al. [2001a]). A number of studies have determination impossible and atmospheric removal difficult been used to determine the spectral properties and compo- [Christensen, 1998]. sition of the surface of Mars. 1.1.2. High-albedo regions [10] TES aerobraking data from the Sinus Meridiani [6] A great deal of past spectroscopic work has focused region of Mars contain prominent absorptions at 300, on the composition of Martian high-albedo regions (lambert 450, and >525 cmÀ1, which closely match the absorptions albedo of greater than 0.20 based on albedo histograms of coarse-grained, gray hematite [Christensen et al., 2000a]. of Mellon et al. [2000]). Investigations in the visible and Subsequent investigation of the global data set discovered near-infrared (VNIR) portions of the spectrum have been additional concentrations of hematite within Aram Chaos extensive with respect to Martian high-albedo, low thermal and within the Ophir/Candor regions of Valles Marineris inertia (and presumably dusty) surfaces (see review by Bell [Christensen et al., 2001b]. Spectroscopic evidence indi- [1996]) [Bell et al., 2000; Morris et al., 2000]. While the cates that these materials were most likely formed from details of this work are considerable, these surfaces may be precipitation from aqueous fluids, and morphologic features partially characterized by poorly crystalline iron oxides. In such as layered, friable units of these localities suggest a addition, minor absorptions in the spectral shape strongly sedimentary environment [Christensen et al., 2000a, suggest a small amount of crystalline iron oxide (2–4 2001b]. The hematite is distinct from the nanophase and wt%) [Bell et al., 1990; Morris et al., 1997]. red hematite detected in high-albedo regions that form [7] The high-albedo regions of Mars display subtle under weathering and alteration processes. spectral differences as seen by Viking and Phobos-2 orbiter, [11] Inspection of atmospherically corrected [Bandfield Pathfinder lander, and telescopic observations [Soderblom et al., 2000b; Smith et al., 2000] TES data reveals distinct et al., 1978; McCord et al., 1982; Murchie et al., 1993; 400 and 1000 cmÀ1 absorptions in low-albedo regions, Geissler et al., 1993; Merenyi et al., 1996; Bell and Morris, consistent with earlier studies [Christensen, 1982]. An 1999; Bell et al., 2000; Morris et al., 2000]. These results initial study of atmospherically corrected spectra acquired indicate spatial variations in the abundance and, possibly, of Cimmeria Terra revealed a surface composed primarily of the composition of well-crystallized iron oxide materials. plagioclase feldspar and high-Ca pyroxene that closely Spectral detection of sulfate and other evaporite materials in matches the spectral signature of typical terrestrial basaltic the Martian soil and dust remains elusive despite abundant sands [Christensen et al., 2000b]. Global mapping revealed chemical evidence for oxidized sulfur [Toulmin et al., 1977; two major distinct spectral units within Martian low-albedo Clark et al., 1982; Morris et al., 2000] as well as evidence regions [Bandfield et al., 2000a]. Average spectra of these for duricrust material at the Viking and Pathfinder landing two spectral units were isolated and, using both direct sites and from Mars Global Surveyor (MGS) Mars Orbiter comparison with terrestrial samples and deconvolution Camera (MOC) images [Malin et al., 1998]. techniques, were found to match basaltic and andesitic 1.1.3. Atmospheric dust compositions. The basaltic mineralogy was found to be [8] A number of studies have investigated the Martian similar to that of Christensen et al.
Recommended publications
  • Mount Apatite Park, Auburn, Maine
    Mount Apatite Park is a 325-acre wooded park located in the western portion of the city. The park offers a wide variety of recreational opportunities not often found in municipal park settings. Rock hounds have known about this area for over 150 years, when the first discoveries of gem-quality tourmaline were found there. Since then, the area has experienced a great deal of mineral exploration, both commercial and amateur. Today amateurs may still search the mine tailings for apatite, tourmaline, and quartz specimens (special rules apply). The park features approximately four miles of trails for non-motorized uses such as hiking, mountain biking, cross-country skiing, and snowshoeing. The Andy Valley Sno Gypsies also maintain a snowmobile trailhead within the park, which links to miles of regional snowmobile trails.The park is open from dawn until dusk year-round. As with all municipal parks, hunting is not allowed within park boundaries. Park brochures, which include a trail map, park rules, and other park information, are available at the Auburn Parks & Recreation Department office, Monday through Friday, 8a.m.-4:30p.m. Mount Apatite Park, Auburn, Maine Significance The Mt. Apatite quarries were important producers of commercial feldspar in the early 1900's. They played a prominent part in Maine's mining history. During the course of this mining activity, rare minerals and colorful crystals of green and pink tourmaline were found in both the Greenlaw and Maine Feldspar Quarries. These quarries also produced many large crystals of transparent smoky quartz. The complexity of the mineral assemblage at Mt.
    [Show full text]
  • Exobiology at Sinus Meridiani – 2003 and Beyond
    First Landing Site Workshop for MER 2003 9006.pdf EXOBIOLOGY AT SINUS MERIDIANI – 2003 AND BEYOND. Carlton C. Allen1 , Frances Westall2, and Rachel T. Schelble3, 1NASA Johnson Space Center, Houston TX 77058 ([email protected]), 2Lunar and Planetary Institute, Houston TX 77058 ([email protected]), 3Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque NM 87131 ([email protected]). Introduction: Science objectives for the 2003 Mars These authors “prefer precipitation from Fe-rich water, Exploration Rovers (MERs) relate to definition of the history on the basis of the probable association with secondary of water and climate on Mars in locations where conditions materials, large geographic size, distance from a regional may have been favorable for life. Specifically, the goal of heat source, and lack of evidence for extensive groundwater each rover is to determine the aqueous, climatic, and processes elsewhere on Mars.” [1] Alternative scenarios geologic history of a site on Mars where conditions may have infer a volcanic origin [2], or ferricrete formation. been favorable to the preservation of evidence of possible pre-biotic or biotic processes. Of the many potential landing Landing Sites: The initial list of potentially acceptable sites permitted by engineering constraints, sites displaying landing sites compiled by Golombek and Parker includes 35 what are believed to be significant concentrations of the locations within Terra Meridiani. Of these sites, five mineral hematite (alpha-Fe2O3) clearly have a high potential (including landing ellipses) lie completely within for satisfying the mission science objectives for the following geomorphic unit sm (smooth surface) outlined by reasons: 1) hematite is the only mineral yet identified on Chirstensen et al.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Crystallization History of Gabbroic Shergottite Nwa 6963 As Revealed by Pyroxene Zoning
    Lunar and Planetary Science XLVIII (2017) 1504.pdf CRYSTALLIZATION HISTORY OF GABBROIC SHERGOTTITE NWA 6963 AS REVEALED BY PYROXENE ZONING. A. L. Meado1, S. P. Schwenzer2, S. J. Hammond2, and J. Filiberto1,2, 1Southern Illinois University, Department of Geology, Carbondale IL 62901, USA. [email protected], 2School of Enviroment, Earth, and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK. Introduction: NorthWest Africa (NWA) 6963 is an comprised of 40 to 120 measured points depending on intriguing new coarse grained Martian meteorite that grain size. This method produced precise zoing profiles further extends our sample collection both composition- used to interpret NWA 6963 petrogenetic history. Meas- ally and texturally [1]. It was originally documented as urements too close to the edge of grains, melt inclusions, a basaltic shergottite because the pyroxene composi- sulfides, fractures, or alteration were removed from zon- tions [2, 3] and modal abundances are similar to Sher- ing profiles. Outliers were identified by obvious gotty. However, recent work reclassified NWA 6963 as changes in bulk chemisty, poor oxide weight totals, and an intrusive, gabbroic Martian meteorite because of the visual inspection of back scatter electron (BSE) images. large oriented pyroxene crystals [1]. This investigation Element maps of three pyroxene grains were produced will focus on NWA 6963 pyroxene zoning profiles and to better interpret zoning profiles. interpreting igneous processes related to its crystalliza- Trace elements have recently been analyzed by laser tion history. ablation-ICPMS at the Open University, UK. The data Compositional zoning of pyroxene crystals in basal- is currently being reduced to further interpret pyroxene tic shergottites have previously been interpreted for pe- zoning profiles in NWA 6963.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • The Distribution of Crystalline Hematite on Mars from the Thermal Emission Spectrometer: Evidence for Liquid Water
    Lunar and Planetary Science XXXI 1627.pdf THE DISTRIBUTION OF CRYSTALLINE HEMATITE ON MARS FROM THE THERMAL EMISSION SPECTROMETER: EVIDENCE FOR LIQUID WATER. P.R.Christensen1, M. Malin3, D. Morris5, J. Band- field1, M. Lane1, K. Edgett3 1Dept. of Geology, Campus Box 871404, Arizona State University, Tempe, AZ 85287- 1404, 2U.S.Geological Survey, Denver, CO; 3Malin Space Science Systems, CA; 4U. S. Geological Survey, Flag- staff, AZ, 5Johnson Space Center, TX; 6Ames Research Center, Moffet Field, CA, 7Goddard Space Flight Center, MD. One of the primary objectives of the Thermal mentary in origin [3, 9]. This material may be the Emission Spectrometer (TES) instrument on the uppermost surface in the region, indicating that it Mars Global Surveyor (MGS) spacecraft is to might be a later-stage sedimentary unit, or alterna- determine and map the mineralogic composition of tively a layered portion of the heavily cratered the Martian surface. Of particular interest is the plains units. search for minerals formed through interaction with A second accumulation of hematite approxi- water, either by low-temperature precipitation or mately 60 x 60 km in size is observed in Aram weathering, or by hydrothermal mineralization. Chaos (2° N, 21° W). This site is also associated Over 50 x106 spectra have been observed to date with layered materials and a water-rich environ- from the MGS mapping orbit. These spectra ment. observed from orbit are a complex combination of We consider five possible mechanisms for the surface and atmospheric emitted and transmitted formation of coarse-grained, crystalline hematite. energy. The spectral features resulting from These processes fall into two classes depending on atmospheric CO2, dust, and water ice have been whether they require a significant amount of near- removed using a radiative transfer model [1, 2].
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Wang Et Al., 2001
    American Mineralogist, Volume 86, pages 790–806, 2001 Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy ALIAN WANG,* BRAD L. JOLLIFF, LARRY A. HASKIN, KARLA E. KUEBLER, AND KAREN M. VISKUPIC Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, U.S.A. ABSTRACT This study reports the use of Raman spectral features to characterize the structural and composi- tional characteristics of different types of pyroxene from rocks as might be carried out using a por- table field spectrometer or by planetary on-surface exploration. Samples studied include lunar rocks, martian meteorites, and terrestrial rocks. The major structural types of quadrilateral pyroxene can be identified using their Raman spectral pattern and peak positions. Values of Mg/(Mg + Fe + Ca) of pyroxene in the (Mg, Fe, Ca) quadrilateral can be determined within an accuracy of ±0.1. The preci- sion for Ca/(Mg + Fe + Ca) values derived from Raman data is about the same, except that correc- tions must be made for very low-Ca and very high-Ca samples. Pyroxenes from basalts can be distinguished from those in plutonic equivalents from the distribution of their Mg′ [Mg/(Mg + Fe)] and Wo values, and this can be readily done using point-counting Raman measurements on unpre- pared rock samples. The correlation of Raman peak positions and spectral pattern provides criteria to distinguish pyroxenes with high proportions of non-quadrilateral components from (Mg, Fe, Ca) quadrilateral pyroxenes. INTRODUCTION pyroxene group of minerals is amenable to such identification Laser Raman spectroscopy is well suited for characteriza- and characterization.
    [Show full text]
  • Reflective Index Reference Chart
    REFLECTIVE INDEX REFERENCE CHART FOR PRESIDIUM DUO TESTER (PDT) Reflective Index Refractive Reflective Index Refractive Reflective Index Refractive Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Fluorite 16 - 18 1.434 - 1.434 Emerald 26 - 29 1.580 - 1.580 Corundum 34 - 43 1.762 - 1.770 Opal 17 - 19 1.450 - 1.450 Verdite 26 - 29 1.580 - 1.580 Idocrase 35 - 39 1.713 - 1.718 ? Glass 17 - 54 1.440 - 1.900 Brazilianite 27 - 32 1.602 - 1.621 Spinel 36 - 39 1.718 - 1.718 How does your Presidium tester Plastic 18 - 38 1.460 - 1.700 Rhodochrosite 27 - 48 1.597 - 1.817 TL Grossularite Garnet 36 - 40 1.720 - 1.720 Sodalite 19 - 21 1.483 - 1.483 Actinolite 28 - 33 1.614 - 1.642 Kyanite 36 - 41 1.716 - 1.731 work to get R.I. values? Lapis-lazuli 20 - 23 1.500 - 1.500 Nephrite 28 - 33 1.606 - 1.632 Rhodonite 37 - 41 1.730 - 1.740 Reflective indices developed by Presidium can Moldavite 20 - 23 1.500 - 1.500 Turquoise 28 - 34 1.610 - 1.650 TP Grossularite Garnet (Hessonite) 37 - 41 1.740 - 1.740 be matched in this table to the corresponding Obsidian 20 - 23 1.500 - 1.500 Topaz (Blue, White) 29 - 32 1.619 - 1.627 Chrysoberyl (Alexandrite) 38 - 42 1.746 - 1.755 common Refractive Index values to get the Calcite 20 - 35 1.486 - 1.658 Danburite 29 - 33 1.630 - 1.636 Pyrope Garnet 38 - 42 1.746 - 1.746 R.I value of the gemstone.
    [Show full text]
  • Determining Mineralogy on Mars with the Chemin X-Ray Diffractometer the Chemin Team Logo Illustrating the Diffraction of Minerals on Mars
    Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer The CheMin team logo illustrating the diffraction of minerals on Mars. Robert T. Downs1 and the MSL Science Team 1811-5209/15/0011-0045$2.50 DOI: 10.2113/gselements.11.1.45 he rover Curiosity is conducting X-ray diffraction experiments on the The mineralogy of the Martian surface of Mars using the CheMin instrument. The analyses enable surface is dominated by the phases found in basalt and its ubiquitous Tidentifi cation of the major and minor minerals, providing insight into weathering products. To date, the the conditions under which the samples were formed or altered and, in turn, major basaltic minerals identi- into past habitable environments on Mars. The CheMin instrument was devel- fied by CheMin include Mg– Fe-olivines, Mg–Fe–Ca-pyroxenes, oped over a twenty-year period, mainly through the efforts of scientists and and Na–Ca–K-feldspars, while engineers from NASA and DOE. Results from the fi rst four experiments, at the minor primary minerals include Rocknest, John Klein, Cumberland, and Windjana sites, have been received magnetite and ilmenite. CheMin and interpreted. The observed mineral assemblages are consistent with an also identifi ed secondary minerals formed during alteration of the environment hospitable to Earth-like life, if it existed on Mars. basalts, such as calcium sulfates KEYWORDS: X-ray diffraction, Mars, Gale Crater, habitable environment, CheMin, (anhydrite and bassanite), iron Curiosity rover oxides (hematite and akaganeite), pyrrhotite, clays, and quartz. These secondary minerals form and INTRODUCTION persist only in limited ranges of temperature, pressure, and The Mars rover Curiosity landed in Gale Crater on August ambient chemical conditions (i.e.
    [Show full text]
  • Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota
    Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-A This report concerns work done partly on behalj of the U. S. Atomic Energy Commission and is published with the permission of the , » Commission Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota By DOUGLAS M. SHERllDAN, HAL G. STEPHENS, MORTIMER H. STAATZ and JAMES J. NORTON PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-A This report concerns work done partly on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.50 (paper cover) CONTENTS Page Page Abstract.__________________________________________ 1 Geology Continued Introduction _______________________________________ 1 Peerless pegmatite Continued Location_____________________________________ 1 Chemical composition......____________ 17 History and production________________________ 2 Origin________ ____________________ _. 18 Past and present investigations.__________________ 3 Mineral deposits_____________________________ 21 Acknowledgments__________________________ 4 Mica__ _________ _________________________ 21 Mine workings _____________________________________
    [Show full text]