Evaluation of the Antifungal and Antiyeast Activities from Recently

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of the Antifungal and Antiyeast Activities from Recently RESEARCH Evaluation of the Antifungal ISSN No 2230-7885 CODEN JPBSCT and Antiyeast Activities NLM Title J Pharm Biomed Sci from Recently Isolated Erika Teresa Quintana1*, Diana Andrea Gil-Rivera1, Streptomycetes Amanda Alejo-Viderique1, Oliver López-Villegas1, ABSTRACT Luis Ángel Maldonado2,3 The indisputable role of Actinobacteria (aka “actinomycetes”) in the pharmaceutical 1 Escuela Nacional de Ciencias Biológicas industry is represented by its innate capability to produce antibiotics, but little is known (ENCB), Instituto Politécnico Nacional (IPN), about the antifungal compounds they could also be producing. Among the Actinobacteria, México DF, México the genus Streptomyces produces antagonistic molecules against several pathogenic fungi and search/discovery programs should be revisited due to novel and/or poorly 2 Facultad de Química, Universidad Nacional studied fungal emerging diseases in humans and plants. In humans, this is certainly Autónoma de México (UNAM), México DF, important because novel antifungal therapies are among the most challenging problems México in intensive care medicine. The present study focused on the isolation and identification of 3 Rectoría – Secretaría General, Universidad novel organisms of the genus Streptomyces and their evaluation for antifungal activities. One hundred actinomycetes were isolated from Mexican soil samples and identified by Autónoma Metropolitana (UAM), México using two pairs of specific primers: (a) a pair of primers for the class Actinobacteria and DF, México (b) for the family ; all the isolates selected were found to contain LL- Streptomycetaceae Address reprint requests to A pm in their cell walls, a -wall chemical marker for . The isolates were then 2 Streptomyces *E. T. Quintana, Escuela Nacional de Cien- assigned to 38 multimembered groups on the basis of their morphological properties cias Biológicas (ENCB), Instituto Politécnico and one representative of each subgroup tested on antibiosis methods for in vitro Nacional (IPN), México DF, México antifungal–antiyeast activities. 97.4% and 81.6% of the isolates showed activity against E-mail: [email protected], the type strains of Aspergillus niger and Candida albicans, respectively. 16S rRNA gene sequencing of five isolates showed that they are closely related among each other and [email protected] felt in the subclade which is highly heterogeneous; the isolates Streptomyces griseus Article citation: Quintana ET, Gil-Rivera may well represent novel species showing both antifungal and antiyeast activities, a DA, Alejo-Viderique A, López-Villegas O, property not fully explored for members of that 16S rRNA gene subclade. Streptomycetes Maldonado LA. Evaluation of the antifungal and antiyeast activities from recently KEYWORDS Actinomycetes, Streptomyces, antifungal activities, Aspergillus niger, isolated Streptomycetes. J Pharm Biomed Candida albicans Sci 2015;05(11):867–876. Available at www.jpbms.info Statement of originality of work: The INTRODUCTION manuscript has been read and approved by all the authors, the requirements for authorship have 1 The genus Streptomyces was proposed by Waksman and Henrici in 1943 on been met, and that each author believes that the the basis of morphological and cell-wall composition. Members of this manuscript represents honest and original work. genus are aerobic, gram-positive bacteria that have a high DNA G+C content Source of funding: ETQ CONACyT Jóvenes (%mol), contain LL-A2pm in their cell wall and lack characteristic sugars Talentos SIP-2015-RE/057-CONACYT (cell-wall type I) according to Lechevalier and colleagues2. Streptomycetes C110/2015 and SIP20150292. produce substrate mycelium, an extensively branched aerial hyphae with Competing interest / Conflict of interest: characteristic long chains of arthrospores that are formed in the aerial myce- The author(s) have no competing interests for 3–4 lia . The genus Streptomyces currently includes almost 600 validly described financial support, publication of this research, species and it is the foremost genera among the class Actinobacteria5. A patents, and royalties through this collaborative 16S rRNA gene sequences phylogenetic Streptomyces tree results in unique research. All authors were equally involved in clades that corresponds well with previous numerical taxonomy studies3,6. discussed research work. There is no financial Phylogenetic relationships are important to establish because of the innate conflict with the subject matter discussed in the ability of Streptomyces to produce either antibacterial compounds7,8 or anti- manuscript. fungal–antiyeast molecules9–11. Members of the genus Streptomyces have the Disclaimer: Any views expressed in this unique capacity to produce many natural compounds with a wide range paper are those of the authors and do not of biological activities such as antimicrobials, antitumor agents, antiviral reflect the official policy or position of the Department of Defense. compounds, enzymes, enzyme inhibitors, growth promoters of animals and plants, immunomodulator agents and toxins12–15. Although the range of biological activity by the molecules they produce is extremely vast, the Streptomycetes have also shown to be antagonistic to different genera of patho- genic fungi but this area has received little or no attention when compared against the search for antibacterial compounds16–18. Copyright © 2015 Received Date: 08 September 2015 – Accepted Date: 06 November 2015 – Published Online: 16 November 2015 868 E. T. Quintana Since the discovery of actinomycin, Streptomycetes have malt extract agar (GYM27) plates until pure cultures were provided many significant biocompounds of high com- obtained; the plates incubated for 7 days at the condi- mercial value and continue to be routinely screened for tions mentioned above. Spore suspensions and microbial new bioactive substances, notably antimicrobial agents. biomass were cryo-preserved at −20°C in 20% glycerol Approximately two-thirds of all the naturally occurring (w/v) for long-term maintenance. antibiotics have been isolated from Actinobacteria and 13 about 75% are solely produced by Streptomycetes . Sadly, Colour grouping little is known about the ability of the Streptomycetes on the production of antifungal compounds. This is import- Putative Streptomycetes were subcultured onto GYM plates ant because of the significantly increasing number of incubated for 7 days at 30°C and checked for purity by opportunistic fungal infections in the past decades19. microscopic examination. Groups based on the mor- Nowadays, it is well documented that invasive fungal phology of the organisms were formed on the basis infections are among the most challenging problems of colour of the colony, colour of the spore mass and in intensive care medicine20,21.The most predominant absence/presence of diffusible pigment(s). fungi pathogens are the yeast Candida albicans and the fil- 22 amentous fungi of the genera Aspergillus and Fusarium . Determination of the diaminopimelic Furthermore, the increase in resistance of human–patho- acid (A pm) gen populations to known antimicrobials or antigungals 2 is a primary concern to the medical community and Extraction of the A2pm from whole-organism hydroly- pharmaceutical industry. Original sources and strategies sates of the isolates was performed following the pro- are urgently required to selectively find novel antimicro- cedure previously described by Staneck and Roberts28 bials or antifungals agents from putative new Streptomycetes albeit slight modifications. Briefly, two loops of fresh because recent reports suggest that they still remain an biomass (10 days growth) were suspended in 500 µL important source of bioactive compounds with antimi- of HCl 6N containing 100 µg of glass beads (<106 µm crobial activitiesthat could also be used in applied to agri- diameter; Sigma-Aldrich, Toluca, Mexico). The suspen- cultural, medicinal and veterinarian sciences. sions were then homogenised in a vortex for 5 min- utes and heated in an oven at 100°C for 4 hours. After MATERIALS AND METHODS centrifugation (5000 rpm, 5 minutes), the supernatant was transferred to a new clean Eppendorf tube and let Isolation of microorganisms to dryness in a multiblock heater at 100°C (Barnstead International, Dubuque IO USA). One millilitre of dis- Actinobacteria were isolated from five different arid soil tilled water was added (twice) to reconstitute each of the samples collected in Fresnillo, Zacatecas, Mexico; full hydrolysates. The final volume was 100 µL and 3–4 µL of details of the soil samples have been mentioned previ- each sample was used for a thin-layer chromatography ously23. The samples were coded as MX-1, MX-2, MX-3 (TLC) analysis. A TLC plate was developed in a saturated and MX-4. One gram of each soil was dried at room glass tank containing a methanol:water:6N:pyridine temperature. Each gram was added separately to 9 mL of (80:26:4:10, v/v) mixture for 4 hours or until the sol- isotonic solution (0.85% NaCl, w/v). The resultant dilu- vent reached ~2 cm before the top of the plate. The plate tion (10−1) was shaken for 30 minutes in a tube rotator was air-dried, sprayed with freshly prepared ninhydrin model SB2 at fixed speed (Fischer Scientific, Pittsburgh (0.2%, w/v dissolved in acetone; both Sigma-Aldrich, PA USA) and subsequently heated at 55°C for 5 min- Toluca Mexico) and heated at 100°C for 3 minutes. utes in a water bath (Grant Instruments, Cambridge Ltd Shepreth Cambridgeshire United Kingdom). Serial Evaluation of
Recommended publications
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
    Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr.
    [Show full text]
  • Actinobacteria and Myxobacteria Isolated from Freshwater Snails and Other Uncommon Iranian Habitats, Their Taxonomy and Secondary Metabolism
    Actinobacteria and Myxobacteria isolated from freshwater snails and other uncommon Iranian habitats, their taxonomy and secondary metabolism Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Nasim Safaei aus Teheran / Iran 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 24.02.2021 mündliche Prüfung (Disputation) am: 20.04.2021 Druckjahr 2021 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Safaei, N. Mast, Y. Steinert, M. Huber, K. Bunk, B. Wink, J. (2020). Angucycline-like aromatic polyketide from a novel Streptomyces species reveals freshwater snail Physa acuta as underexplored reservoir for antibiotic-producing actinomycetes. J Antibiotics. DOI: 10.3390/ antibiotics10010022 Safaei, N. Nouioui, I. Mast, Y. Zaburannyi, N. Rohde, M. Schumann, P. Müller, R. Wink.J (2021) Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran. Int J Syst Evol Microbiol (IJSEM). DOI: 10.1099/ijsem.0.004625 Tagungsbeiträge Actinobacteria and myxobacteria isolated from freshwater snails (Talk in 11th Annual Retreat, HZI, 2020) Posterbeiträge Myxobacteria and Actinomycetes isolated from freshwater snails and
    [Show full text]
  • Induction of Secondary Metabolism Across Actinobacterial Genera
    Induction of secondary metabolism across actinobacterial genera A thesis submitted for the award Doctor of Philosophy at Flinders University of South Australia Rio Risandiansyah Department of Medical Biotechnology Faculty of Medicine, Nursing and Health Sciences Flinders University 2016 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................ ii TABLE OF FIGURES ............................................................................................. viii LIST OF TABLES .................................................................................................... xii SUMMARY ......................................................................................................... xiii DECLARATION ...................................................................................................... xv ACKNOWLEDGEMENTS ...................................................................................... xvi Chapter 1. Literature review ................................................................................. 1 1.1 Actinobacteria as a source of novel bioactive compounds ......................... 1 1.1.1 Natural product discovery from actinobacteria .................................... 1 1.1.2 The need for new antibiotics ............................................................... 3 1.1.3 Secondary metabolite biosynthetic pathways in actinobacteria ........... 4 1.1.4 Streptomyces genetic potential: cryptic/silent genes ..........................
    [Show full text]
  • Isolation and Characterization of a New Streptomyces Strain LG10 from an Unexploited Algerian Saharan Atlas
    ADVANCED RESEARCH IN LIFE SCIENCES 5, 2021, 36-42 www.degruyter.com/view/j/arls DOI:10.2478/arls-2021-0027 Research Article Isolation and Characterization of a New Streptomyces strain LG10 from an Unexploited Algerian Saharan Atlas Saïd Belghit1,2, Omrane Toumatia2,3, Mahfoud Bakli4 , Boubekeur Badji2 , Abdelghani Zitouni2 , Florence Mathieu5 , Laura Smuleac6 , Noureddine Bouras1,2* 1Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, Ghardaïa, Algeria 2Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria 3Agro Pastoralism Research Center (APRC) Djelfa, Algeria 4Département des Sciences de la Nature et de la Vie, Faculté des Sciences et Technologie, Université Belhadj Bouchaib d’Ain Temouchent, Ain Temouchent, Algeria 5Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France 6Banat’s University of Agriculture Science and Veterinary Medicine “King Michael I of Romania”, Faculty of Agriculture,119 Calea Aradului, 300645, Timisoara, Romania Received March, 2021; Revised May, 2021; Accepted June, 2021 Abstract An actinobacterial strain named LG10 was isolated from a Saharan Atlas soil (Laghouat, Algeria). The aerial hyphae were yellowish-white on all culture media with rectiflexibiles spore chains, suggested that this bacterium attached to Streptomyces. Furthermore, LG10 contained chemical characteristics that were diagnostic for the genus Streptomyces, such as the presence of LL-diaminopimelic acid isomer (LL-DAP) and glycine amino acid. The hydrolysates of whole-cell included non-characteristic sugars. Comparative analysis of the 16S rDNA sequence displayed a similarity level of 100% with Streptomyces puniceus NRRL ISP-5058T. The antimicrobial activity of the LG10 strain was better in the culture medium MB5.
    [Show full text]
  • INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
    INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively.
    [Show full text]
  • Cutinase: Characteristics, Preparation, and Application
    Biotechnology Advances 31 (2013) 1754–1767 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Cutinase: Characteristics, preparation, and application Sheng Chen, Lingqia Su, Jian Chen, Jing Wu ⁎ State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu 214122, China article info abstract Article history: Cutinases (E.C. 3.1.1.74) belong to the α/β-hydrolase superfamily. They were initially discovered because they Received 15 May 2013 are secreted by fungi to hydrolyze the ester bonds of the plant polymer cutin. Since then, they have been Received in revised form 4 August 2013 shown to catalyze the hydrolysis of a variety of polymers, insoluble triacylglycerols, and low-molecular-weight Accepted 11 September 2013 soluble esters. Cutinases are also capable of catalyzing esterification and transesterification reactions. These Available online 19 September 2013 relatively small, versatile, secreted catalysts have shown promise in a number of industrial applications. This re- view begins by describing the characteristics of cutinases, pointing out key differences among cutinases, esterases Keywords: Cutinase and lipases, and reviewing recent progress in engineering improved cutinases. It continues with a review of the Identification methods used to produce cutinases, with the goal of obtaining sufficient quantities of material for use in indus- Crystal structure trial processes. Finally, the uses of cutinases in the textile industry are described. The studies presented here dem- Molecular modification onstrate that the cutinases are poised to become important industrial catalysts, replacing older technologies with Preparation more environmentally friendly processes.
    [Show full text]
  • Streptomyces As a Source of Geosmin and 2-Methylisoborneol Associated Taste and Odour Episodes in Drinking Water Reservoirs
    Streptomyces as a Source of Geosmin and 2-methylisoborneol Associated Taste and Odour Episodes in Drinking Water Reservoirs Elise Anne Asquith BEnvScMgt (Hons) A thesis submitted to the University of Newcastle, Australia, in fulfilment of requirements for admission to the degree of Doctor of Philosophy February 2015 1 DECLARATION The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968. ………………………………….. Elise Anne Asquith I ACKNOWLEDGEMENTS There are a number of individuals who have been of immense support during my PhD candidature who I wish to acknowledge. It has been a challenging and enduring experience, but the end result has to be recognised as a great sense of academic achievement and personal gratification. I would like to express my deep appreciation and gratitude to my supervisors. Dr Craig Evans has undoubtedly been the most important person guiding my research over the past three years and has been a tremendous mentor for me. I am truly grateful for his advice, patience and support. In particular, I wish to thank him for accompanying me on all of my visits to Grahamstown and Chichester Reservoirs and generously dedicating much time to reviewing my thesis.
    [Show full text]
  • Does Atmospheric No3 Deposition Alter Actinobacterial Abundance and Community Composition in a Northern Hardwood Forest Ecosystem?
    - DOES ATMOSPHERIC NO3 DEPOSITION ALTER ACTINOBACTERIAL ABUNDANCE AND COMMUNITY COMPOSITION IN A NORTHERN HARDWOOD FOREST ECOSYSTEM? By Sarah D. Eisenlord A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) at the University of Michigan August 2008 Thesis Committee: Professor Donald R. Zak, Chair Associate Professor Jeremy D. Semrau TABLE OF CONTENTS PAGE Abstract…………………………………………………………………………….…...iii List of Tables ……………………………………………………………………….….iv List of Figures…………………………………………………………………….….….v Acknowledgements……………………………………………………………..............vi Introduction…………………………………………………………………..................1 Materials and Methods………………………………………………………………….7 Results……………………………………………………………………….…….…...15 Discussion……………………………………………………………………...………19 Literature Cited…………………………………………………………….………..…33 ii ABSTRACT Atmospheric nitrogen deposition can alter the cycling of carbon in forest ecosystems by slowing the microbially mediated decay of plant detritus, leading to the accumulation of organic matter in surface soil and the greater leaching of dissolved organic carbon (DOC) to ground and surface waters. However, we presently do not understand the microbial mechanisms affected by atmospheric nitrogen deposition that regulate these biogeochemical responses. Actinobacteria are one of the few groups of saprotrophic soil microorganisms which degrade lignin, uniquely producing soluble polyphenolics which can accumulate in the soil. The overall objective of this study was
    [Show full text]
  • Thèse De DOCTORAT En SCIENCES Option : BIOTECHNOLOGIE
    REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE D’ORAN 1 AHMED BEN BELLA FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE DEPARTEMENT DE BIOTECHNOLOGIE N° d’ordre : Thèse de DOCTORAT en SCIENCES Option : BIOTECHNOLOGIE Spécialité : Intérêt des microorganismes en Agriculture et en Agroalimentaire Caractérisation des molécules bioactives produites par des souches d’actinobactériés isolées des sols arides et semi arides d’Algérie. Présentée par Mr. Mohamed HARIR Soutenue le 09/04/2018 Devant le Jury composé de : Présidente Pr. Fortas Zohra Université d’Oran 1 Examinateur Pr. Aoues Abdelkader Université d’Oran 1 Examinateur Dr. Dib Soulef Université d’Oran 1 Examinateur Pr. Setti Benali Université de Chlef Examinateur Pr. Djibaoui Rachid Université de Mostaganem Directeur de thèse Pr. Bellahcene Miloud CU d’Ain Témouchent Invité 2017/2018 Dédicace A ma Mère A mon Père A mes frères et mes sœurs A mes nièces et mes neveux A tous mes chers Collègues et ami (e) s A la mémoire de ma collègue Madame Tlemcani Mokhtaria ALLAH yarhamha HARIR Mohamed I Remerciement Merci au Bon dieu de m’avoir aidé à réaliser ce travail Je tiens à remercier particulièrement mon directeur de thèse, Pr. BELLAHCENE Miloud qui m’a aidé à faire mon chemin du Magister à la thèse. Son rôle dans ma formation, sa patience, ses précieux conseils, sa confiance et l’autonomie qu’il m’a accordée ont été autant d’éléments qui ont contribués au bon déroulement de ce travail de thèse. Je voudrais également remercier Professeur FORTAS Zohra, pour son soutien, ses conseils et son aide.
    [Show full text]
  • Actinomycetes: Role in Biotechnology and Medicine
    BioMed Research International Actinomycetes: Role in Biotechnology and Medicine Guest Editors: Neelu Nawani, Bertrand Aigle, Abul Mandal, Manish Bodas, Sofiane Ghorbel, and Divya Prakash Actinomycetes: Role in Biotechnology and Medicine BioMed Research International Actinomycetes: Role in Biotechnology and Medicine Guest Editors: Neelu Nawani, Bertrand Aigle, Abul Mandal, Manish Bodas, Sofiane Ghorbel, and Divya Prakash Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Actinomycetes: Role in Biotechnology and Medicine, Neelu Nawani, Bertrand Aigle, Abul Mandal, Manish Bodas, Sofiane Ghorbel, and Divya Prakash Volume 2013, Article ID 687190, 1 page Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource, Divya Prakash, Neelu Nawani, Mansi Prakash, Manish Bodas, Abul Mandal, Madhukar Khetmalas, and Balasaheb Kapadnis Volume 2013, Article ID 264020, 8 pages Streptomyces misionensis PESB-25 Produces a Thermoacidophilic Endoglucanase Using Sugarcane Bagasse and Corn Steep Liquor as the Sole Organic Substrates, Marcella Novaes Franco-Cirigliano, Raquel de Carvalho Rezende, Monicaˆ Pires Gravina-Oliveira, Pedro Henrique Freitas Pereira, Rodrigo Pires do Nascimento, Elba Pinto da Silva Bon, Andrew Macrae, and
    [Show full text]
  • Antibiotic Resistance Genes in the Actinobacteria Phylum
    European Journal of Clinical Microbiology & Infectious Diseases (2019) 38:1599–1624 https://doi.org/10.1007/s10096-019-03580-5 REVIEW Antibiotic resistance genes in the Actinobacteria phylum Mehdi Fatahi-Bafghi1 Received: 4 March 2019 /Accepted: 1 May 2019 /Published online: 27 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum. Keywords Actinobacteria . Antibiotics . Antibiotics resistance . Antibiotic resistance genes . Phylum Brief introduction about the taxonomy chemical taxonomy: in this method, analysis of cell wall and of Actinobacteria whole cell compositions such as various sugars, amino acids, lipids, menaquinones, proteins, and etc., are studied [5]. (ii) One of the oldest phyla in the bacteria domain that have a Phenotypic classification: there are various phenotypic tests significant role in medicine and biotechnology is the phylum such as the use of conventional and specific staining such as Actinobacteria [1, 2]. In this phylum, DNA contains G + C Gram stain, partially acid-fast, acid-fast (Ziehl-Neelsen stain rich about 50–70%, non-motile (Actinosynnema pretiosum or Kinyoun stain), and methenamine silver staining; morphol- subsp.
    [Show full text]