BR9736398 Instituto de Fisica Teorica IFT Universidade Estadual Paulista Aiigust/9f) IFT -P.025/96 Projective Fourier duality and Weyl quantization R. Aldrovandi and L. A. Saeger Instituto de Fisica Teorica Universidade Estadual Paulista Rua Pamplona 145 01405-900 - Sao Paulo, S.P. Brazil "Snlmutf'l to Internal.J.Tiieor.I'hvs. Instituto de Fisica Teorica Universidade Estadual Paulista Rua Pamplona, 145 01405-900 - Sao Paulo, S.P. Brazil Telephone: 55 (11) 251.5155 Telefax: 55(11) 288.8224 Telex: 55 (11) 31870 UJMFBR Electronic Address:
[email protected] 47857::LIBRARY Projective Fourier Duality and Weyl Quantization1" R. Aldrovandi* and L.A. Saeger* Instituto de Fisica Teorica - UNESP Rua Pamplona 145 01405-900 - Sao Paulo, SP Brazil The Weyl-Wigner correspondence prescription, which makes large use of Fourier duality, is reexamined from the point of view of Kac algebras, the most general background for non- commutative Fourier analysis allowing for that property. It is shown how the standard Kac structure has to be extended in order to accommodate the physical requirements. An abelian and a symmetric projective Kac algebras are shown to provide, in close parallel to the standard case, a new dual framework and a well-defined notion of projective Fourier duality for the group of translations on the plane. The Weyl formula arises naturally as an irreducible component of the duality mapping between these projective algebras. Keywords: Weyl Quantization, Weyl-Wigner Correspondence, Projective Group Duality, Projective Kac Algebras,