Detailed Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 4D Nucleome Project
The 4D nucleome project The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Dekker, Job et al. “The 4D Nucleome Project.” Nature 549, no. 7671 (September 2017): 219–226 © 2017 Macmillan Publishers Limited, part of Springer Nature As Published http://dx.doi.org/10.1038/NATURE23884 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114838 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 September 27. Published in final edited form as: Nature. 2017 September 13; 549(7671): 219–226. doi:10.1038/nature23884. The 4D Nucleome Project Job Dekker1, Andrew S. Belmont2, Mitchell Guttman3, Victor O. Leshyk4, John T. Lis5, Stavros Lomvardas6, Leonid A. Mirny7, Clodagh C. O’Shea8, Peter J. Park9, Bing Ren10, Joan C. Ritland Politz11, Jay Shendure12, Sheng Zhong4, and the 4D Nucleome Network13 1Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Howard Hughes Medical Institute, Worcester, MA 01605 2Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 3Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 4Department -
The International Human Epigenome Consortium (IHEC): a Blueprint for Scientific Collaboration and Discovery
The International Human Epigenome Consortium (IHEC): A Blueprint for Scientific Collaboration and Discovery Hendrik G. Stunnenberg1#, Martin Hirst2,3,# 1Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen, The Netherlands 2Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4. 3Canada’s Michael Smith Genome Science Center, BC Cancer Agency, Vancouver, BC, Canada V5Z 4S6 #Corresponding authors [email protected] [email protected] Abstract The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalogue of high-resolution reference epigenomes of major primary human cell types. The studies now presented (cell.com/XXXXXXX) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic data sets to gain insights in the epigenetic control of cell states relevant for human health and disease. One of the great mysteries in developmental biology is how the same genome can be read by cellular machinery to generate the plethora of different cell types required for eukaryotic life. As appreciation grew for the central roles of transcriptional and epigenetic mechanisms in specification of cellular fates and functions, researchers around the world encouraged scientific funding agencies to develop an organized and standardized effort to exploit epigenomic assays to shed additional light on this process (Beck, Olek et al. 1999, Jones and Martienssen 2005, American Association for Cancer Research Human Epigenome Task and European Union 2008). In March 2009, leading scientists and international health research funding agency representatives were invited to a meeting in Bethesda (MD, USA) to gauge the level of interest in an international epigenomics project and to identify potential areas of focus. -
A Machine Learning Framework for Precise 3D Domain Boundary Prediction at Base-Level Resolution
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282186; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. preciseTAD: A machine learning framework for precise 3D domain boundary prediction at base-level resolution Spiro C. Stilianoudakis1 ([email protected]), Mikhail G. Dozmorov1* (mikhail.dozmorov@ vcuhealth.org) 1 Dept. of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA * To whom correspondence should be addressed Abstract The low resolution of high-throughput chromatin conformation capture data limits the precise mapping of boundaries of topologically associating domains and chromatin loops. We developed preciseTAD, an optimized random forest model trained on high-resolution genome annotation data (e.g., CTCF ChIP- seq) to predict the location of domain boundaries at base-level resolution. Distance between boundaries and annotations, random under-sampling, and transcription factor binding sites resulted in best model performance. preciseTAD boundaries were more enriched for CTCF, RAD21, SMC3, and ZNF143, and conserved across cell lines. Using genome annotations, pre-trained models can detect boundaries in cells without Hi-C data. preciseTAD is available at https://bioconductor.org/packages/preciseTAD Keywords Hi-C, TAD, machine learning, random forest, DBSCAN Background The advent of chromosome conformation capture (3C) sequencing technologies, and its successor Hi-C, have revealed a hierarchy of the 3-dimensional (3D) structure of the human genome such as chromatin loops [1], Topologically Associating Domains (TADs) [2,3], and A/B compartments [4]. -
Pharmacogene Regulatory Elements: from Discovery to Applications
Smith et al. Genome Medicine 2012, 4:45 http://genomemedicine.com/content/4/5/45 REVIEW Pharmacogene regulatory elements: from discovery to applications Robin P Smith1,2†, Ernest T Lam2,3†, Svetlana Markova1, Sook Wah Yee1* and Nadav Ahituv1,2* Pharmacogenomics and gene regulatory elements: Abstract an emerging picture Regulatory elements play an important role in the Most pharmacogenomics studies to date have focused on variability of individual responses to drug treatment. coding variants of pharmacologically important proteins. This has been established through studies on three However, well-supported examples of variants in regu la- classes of elements that regulate RNA and protein tory elements of genes involved in drug response, such as abundance: promoters, enhancers and microRNAs. drug metabolizing enzymes and transporters (see review Each of these elements, and genetic variants within by Georgitsi et al. [1]), show that variants in noncoding them, are being characterized at an exponential pace regulatory sequences are also likely to be important by next-generation sequencing (NGS) technologies. In (Table 1). Th ree classes of regulatory elements have been this review, we outline examples of how each class of studied in this context: promoters, enhancers and element aff ects drug response via regulation of drug microRNAs (miRNAs). Each of these has a direct impact targets, transporters and enzymes. We also discuss on the abundance of messenger RNA (mRNA) (in the case the impact of NGS technologies such as chromatin of promoters and enhancers) and protein (in the case of immunoprecipitation sequencing (ChIP-Seq) and RNA miRNAs). Genetic variation within each of these elements sequencing (RNA-Seq), and the ramifi cations of new has been linked to human disease as well as interindividual techniques such as high-throughput chromosome diff erences in drug response. -
Integrative Functional Genomics Identifies an Enhancer Looping to the SOX9 Gene Disrupted by the 17Q24.3 Prostate Cancer Risk Locus
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus Xiaoyang Zhang,1,4 Richard Cowper-SalÁlari,1,2,4 Swneke D. Bailey,3 Jason H. Moore,1,2 and Mathieu Lupien1,3,5 1Department of Genetics and Institute for Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA; 2Computational Genetics Laboratory and Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA; 3Ontario Cancer Institute, Princess Margaret Hospital– University Health Network, and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada Genome-wide association studies (GWAS) are identifying genetic predisposition to various diseases. The 17q24.3 locus harbors the single nucleotide polymorphism (SNP) rs1859962 that is statistically associated with prostate cancer (PCa). It defines a 130-kb linkage disequilibrium (LD) block that lies in an ~2-Mb gene desert area. The functional biology driving the risk associated with this LD block is unknown. Here, we integrate genome-wide chromatin landscape data sets, namely, epigenomes and chromatin openness from diverse cell types. This identifies a PCa-specific enhancer within the rs1859962 risk LD block that establishes a 1-Mb chromatin loop with the SOX9 gene. The rs8072254 and rs1859961 SNPs mapping to this enhancer impose allele-specific gene expression. The variant allele of rs8072254 facilitates androgen receptor (AR) binding driving increased enhancer activity. The variant allele of rs1859961 decreases FOXA1 binding while increasing AP-1 binding. -
Generative Modeling of Multi-Mapping Reads with Mhi-C Advances Analysis of Hi-C Studies Ye Zheng1, Ferhat Ay2,3, Sunduz Keles1,4*
TOOLS AND RESOURCES Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies Ye Zheng1, Ferhat Ay2,3, Sunduz Keles1,4* 1Department of Statistics, University of Wisconsin-Madison, Madison, United States; 2La Jolla Institute for Allergy and Immunology, La Jolla, United States; 3School of Medicine, University of California, San Diego, La Jolla, United States; 4Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, United States Abstract Current Hi-C analysis approaches are unable to account for reads that align to multiple locations, and hence underestimate biological signal from repetitive regions of genomes. We developed and validated mHi-C, a multi-read mapping strategy to probabilistically allocate Hi-C multi-reads. mHi-C exhibited superior performance over utilizing only uni-reads and heuristic approaches aimed at rescuing multi-reads on benchmarks. Specifically, mHi-C increased the sequencing depth by an average of 20% resulting in higher reproducibility of contact matrices and detected interactions across biological replicates. The impact of the multi-reads on the detection of significant interactions is influenced marginally by the relative contribution of multi-reads to the sequencing depth compared to uni-reads, cis-to-trans ratio of contacts, and the broad data quality as reflected by the proportion of mappable reads of datasets. Computational experiments highlighted that in Hi-C studies with short read lengths, mHi-C rescued multi-reads can emulate the effect of longer reads. mHi-C also revealed biologically supported bona fide promoter-enhancer interactions and topologically associating domains involving repetitive genomic regions, thereby *For correspondence: unlocking a previously masked portion of the genome for conformation capture studies. -
Next Generation Sequencing: Advances in Characterizing the Methylome
Genes 2010, 1, 143-165; doi:10.3390/genes1020143 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Next Generation Sequencing: Advances in Characterizing the Methylome Kristen H. Taylor 1, Huidong Shi 2 and Charles W. Caldwell 1,* 1 University of Missouri-Columbia School of Medicine, Ellis Fischel Cancer Center, Columbia, MO 65212, USA; E-Mail: [email protected] 2 Medical College of Georgia, Augusta, GA 30912, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-573-882-1283; Fax: +1-573-884-4612. Received: 3 May 2010; in revised form: 22 June 2010 / Accepted: 28 June 2010 / Published: 1 July 2010 Abstract: Epigenetic modifications play an important role in lymphoid malignancies. This has been evidenced by the large body of work published using microarray technologies to generate methylation profiles for numerous types and subtypes of lymphoma and leukemia. These studies have shown the importance of defining the epigenome so that we can better understand the biology of lymphoma. Recent advances in DNA sequencing technology have transformed the landscape of epigenomic analysis as we now have the ability to characterize the genome-wide distribution of chromatin modifications and DNA methylation using next-generation sequencing. To take full advantage of the throughput of next-generation sequencing, there are many methodologies that have been developed and many more that are currently being developed. Choosing the appropriate methodology is fundamental to the outcome of next-generation sequencing studies. In this review, published technologies and methodologies applicable to studying the methylome are presented. -
Comprehensive Epigenome Characterization Reveals Diverse Transcriptional Regulation Across Human Vascular Endothelial Cells
Nakato et al. Epigenetics & Chromatin (2019) 12:77 https://doi.org/10.1186/s13072-019-0319-0 Epigenetics & Chromatin RESEARCH Open Access Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells Ryuichiro Nakato1,2† , Youichiro Wada2,3*†, Ryo Nakaki4, Genta Nagae2,4, Yuki Katou5, Shuichi Tsutsumi4, Natsu Nakajima1, Hiroshi Fukuhara6, Atsushi Iguchi7, Takahide Kohro8, Yasuharu Kanki2,3, Yutaka Saito2,9,10, Mika Kobayashi3, Akashi Izumi‑Taguchi3, Naoki Osato2,4, Kenji Tatsuno4, Asuka Kamio4, Yoko Hayashi‑Takanaka2,11, Hiromi Wada3,12, Shinzo Ohta12, Masanori Aikawa13, Hiroyuki Nakajima7, Masaki Nakamura6, Rebecca C. McGee14, Kyle W. Heppner14, Tatsuo Kawakatsu15, Michiru Genno15, Hiroshi Yanase15, Haruki Kume6, Takaaki Senbonmatsu16, Yukio Homma6, Shigeyuki Nishimura16, Toutai Mitsuyama2,9, Hiroyuki Aburatani2,4, Hiroshi Kimura2,11,17* and Katsuhiko Shirahige2,5* Abstract Background: Endothelial cells (ECs) make up the innermost layer throughout the entire vasculature. Their phe‑ notypes and physiological functions are initially regulated by developmental signals and extracellular stimuli. The underlying molecular mechanisms responsible for the diverse phenotypes of ECs from diferent organs are not well understood. Results: To characterize the transcriptomic and epigenomic landscape in the vascular system, we cataloged gene expression and active histone marks in nine types of human ECs (generating 148 genome‑wide datasets) and carried out a comprehensive analysis with chromatin interaction data. We developed a robust procedure for comparative epigenome analysis that circumvents variations at the level of the individual and technical noise derived from sample preparation under various conditions. Through this approach, we identifed 3765 EC‑specifc enhancers, some of which were associated with disease‑associated genetic variations. -
'Omics' Approaches to Assess the Effects of Phytochemicals in Human
Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2008), 99, E-Suppl. 1, ES127–ES134 doi:10.1017/S0007114508965818 q The Authors 2008 High throughput ‘omics’ approaches to assess the effects of phytochemicals . IP address: in human health studies 170.106.40.219 Jaroslava Ovesna´1*, Ondrˇej Slaby´2, Olivier Toussaint3, Milan Kodı´cˇek4, Petr Marsˇ´ık5, Vladimı´ra Pouchova´1 and Toma´sˇ Vaneˇk5 1Crop Research Institute, Drnovska´ 507, 161 06 Prague 6, Ruzyne, Czech Republic , on 2Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic 01 Oct 2021 at 22:26:40 3Department of Biology, Unit of Cellular Biochemistry and Biology, University of Namur (FUNDP), 5000 Namur, Belgium 4Institute of Chemical Technology, Technicka´ 3, Praha 6, 160 00 Prague 6, Czech Republic 5Institute of Experimental Botany, Suchodol, 161 06 Prague 6, Czech Republic , subject to the Cambridge Core terms of use, available at Human health is affected by many factors. Diet and inherited genes play an important role. Food constituents, including secondary metabolites of fruits and vegetables, may interact directly with DNA via methylation and changes in expression profiles (mRNA, proteins) which results in metabolite content changes. Many studies have shown that food constituents may affect human health and the exact knowledge of genotypes and food constituent interactions with both genes and proteins may delay or prevent the onset of diseases. Many high throughput methods have been employed to get some insight into the whole process and several examples of successful research, namely in the field of genomics and transcriptomics, exist. Studies on epigenetics and RNome significance have been launched. -
Haemophilus Influenzae Genome Evolution During Persistence in The
Haemophilus influenzae genome evolution during PNAS PLUS persistence in the human airways in chronic obstructive pulmonary disease Melinda M. Pettigrewa, Christian P. Ahearnb,c, Janneane F. Gentd, Yong Konge,f,g, Mary C. Gallob,c, James B. Munroh,i, Adonis D’Melloh,i, Sanjay Sethic,j,k, Hervé Tettelinh,i,1, and Timothy F. Murphyb,c,l,1,2 aDepartment of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510; bDepartment of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203; cClinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203; dDepartment of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510; eDepartment of Biostatistics, Yale School of Public Health, New Haven, CT 06510; fDepartment of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510; gW.M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510; hInstitute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201; iDepartment of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; jDivision of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203; kDepartment of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215; and lDivision of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203 Edited by Rino Rappuoli, GSK Vaccines, Siena, Italy, and approved February 27, 2018 (received for review November 10, 2017) Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and adaptation cannot be accurately studied in vitro or in animal infect humans and are critical to the pathogenesis of chronic obstruc- models as a result of the unique physiological and immunological tive pulmonary disease (COPD). -
Survey of Epigenomic Landscapes in ES Cells and Differentiated Cells
The NIH Roadmap Epigenomics Program: Sequencing Human Epigenomes from Head to Toe Joseph F. Costello UCSF Funded by NIH Common Fund NIH Roadmap Epigenomics Program Program Goal: Understand how epigenetic mechanisms contribute to disease NIEHS: Lisa Chadwick, Fred Tyson NIDA:, Joni Rutter, John Satterlee NIH Roadmap Epigenomics Program Novel Marks UCSF UCSD Mapping Broad Centers UW New Health and Technologies Disease EDACC Baylor NCBI Reference Epigenome Mapping Centers Goal: Create high quality epigenome maps of human cells and tissues Matching maps to diseases Reference Map Complex Disease Immune system Asthma Airway cells Autoimmune disease Monocytes Atheroslerosis Breast Breast Cancer Muscle, smooth, skeletal Cardiopulmonary disease Pancreatic islets, Adipocytes Diabetes, Obesity Liver Schizophrenia Brain regions Autism Neural progenitors Dementia Human Epigenome Assays DNA methylation (shotgun bisulfite, RRBS, MeDIP/MRE) HistoneStatus modifications on November by ChIP8, 2012-seq: (6 core marks, plus others) H3K4me1 334 Tissues/Cell types H3K4me3 Chromatin2092 Epigenome accessibility/Transcriptome by DNAseI assays hypersensitivity H3K9me3 H3K27me3 RNA by ssRNA-seq H3K36me3 miRNA by miRNA-seqH3K27Ac* BE Bernstein et al, Nat Biotech 2010; Zhou, Nature Methods, 2011 Sequencing Epigenomes from Head to Toe Oocyte Fertilized egg Morula Sperm Blastocyst Trophoblast Development of specialized cells S. Yamanaka cells Panceatic islets Intestinal cells Epigenomic analysis of multi-lineage differentiation of hESCs Mapping of DNA methylation -
The Promise of Omics Studies in Pediatric Exercise Research
Bridging the Gaps: The Promise of Omics Studies in Pediatric Exercise Research Shlomit Radom-Aizik and Dan M. Cooper University of California, Irvine In this review, we highlight promising new discoveries that may generate useful and clinically relevant insights into the mechanisms that link exercise with growth during critical periods of development. Growth in childhood and adolescence is unique among mammals and is a dynamic process regulated by an evolution of hormonal and inflammatory mediators, age-dependent progression of gene expression, and environmentally modulated epigenetic mechanisms. Many of these same processes likely affect molecular transducers of physical activity. How the molecular signaling associated with growth is synchronized with signaling associated with exercise is poorly understood. Recent advances in “omics”—namely genomics and epigenetics, metabolomics, and proteomics—now provide exciting approaches and tools that can be used for the first time to address this gap. A biologic definition of “healthy” exercise that links the metabolic transducers of physical activity with parallel processes that regulate growth will transform health policy and guidelines that promote optimal use of physical activity. Keywords: physical activity, genomics, epigenetics, proteomics, metabolomics Children, like most mammals during growth and Growth and Exercise: Finding development, are naturally physically active. Develop- mental biologists, pediatricians, and other child health Biomarker Clues in Circulating care specialists have