Survey of Railway Embedded Network Solutions Towards the Use of Industrial Ethernet Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Ttethernet for Integrated Fault-Tolerant Spacecraft Networks
On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks Andrew Loveless∗ NASA Johnson Space Center, Houston, TX, 77058 There has recently been a push for adopting integrated modular avionics (IMA) princi- ples in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEther- net can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Ex- ploration Systems (AES) program. Nomenclature A&S = Avionics and Software Project AA2 = Ascent Abort 2 AES = Advanced Exploration Systems Program ANTARES = Advanced NASA Technology Architecture for Exploration Studies API = Application Program Interface ARM = Asteroid Redirect Mission -
Modbus TCP Master (OPC) User's Manual
Station Automation COM600 3.4 Modbus TCP Master (OPC) User's Manual 1MRS756445 Station Automation COM600 3.4 Issued: 21.12.2007 Version: D/06.11.2009 Modbus TCP Master (OPC) User's Manual Contents: 1. About this manual .................................................................................. 7 1.1. Copyrights ...................................................................................... 7 1.2. Trademarks .................................................................................... 7 1.3. General .......................................................................................... 7 1.4. Document conventions .................................................................. 8 1.5. Use of symbols .............................................................................. 9 1.6. Terminology .................................................................................... 9 1.7. Abbreviations ............................................................................... 11 1.8. Related documents ...................................................................... 12 1.9. Document revisions ..................................................................... 12 2. Introduction ........................................................................................... 13 2.1. Functional overview ..................................................................... 13 2.2. Modbus OPC Server features ...................................................... 14 3. Configuration ....................................................................................... -
Introduction to Real-Time Ethernet II
the EXTENSION JULY–AUGUST A Technical Supplement to Control Network Volume 5 Issue 4 © 2004 Contemporary Control Systems, Inc. Introduction to Real-Time Ethernet II By Paula Doyle, a doctoral researcher with the Circuits and Systems Research Centre at the University of Limerick in Ireland INTRODUCTION IEEE 1588 defines two separate types of clocks: In “Real-Time Ethernet I”, we introduced the basic ordinary and boundary. Boundary clocks (BC) are concepts of Ethernet’s capacity to deliver a real-time employed in devices such as hubs or switches—where (RT) communication system. “Real-Time Ethernet II” more than one PTP communication path (port) exists. introduces some of the RT solutions available to Ordinary clocks exist in devices having a single port— e.g., normal network devices. Each BC port can act as industry today*: PROFInet, EtherCAT and ETHERNET Powerlink. It also provides an introduction to a single a master or ordinary clock in its own segment. standard, IEEE 1588 that is growing in popularity PTP is for networks that support multicasting but amongst RT Ethernet developers to provide sub- keep multicasts within a subnet and where each local microsecond synchronization accuracy of distributed clock fulfills exacting requirements. The grandmaster clocks over Ethernet. clock (GMC) is the best clock in the system—with the best inherent stability, accuracy, resolution, etc. * EtherNet/IP is included in the full article available at defined by the standard [2]. The Best Master Clock http://www.ccontrols.com/pdf/volume5n4.pdf Algorithm (BMC), run by every live node, determines IEEE 1588 clock quality. Within each subnet, the BMC determines the master clock; in a single-subnet system the master IEEE 1588 [1] specifies “A protocol to synchronize is the GMC. -
Modbus Instruction Manual For
Instruction manual Modbus slave interface for digital Mass Flow / Pressure instruments Doc. no.: 9.17.035AC Date: 28-07-2021 ATTENTION Please read this instruction manual carefully before installing and operating the instrument. Not following the guidelines could result in personal injury and/or damage to the equipment. BRONKHORST® Disclaimer The information in this manual has been reviewed and is believed to be wholly reliable. No responsibility, however, is assumed for inaccuracies. The material in this manual is for information purposes only. Copyright All rights reserved. This documentation is protected by copyright. Subject to technical and optical changes as well as printing errors. The information contained in this document is subject to change at any time without prior notification. Bronkhorst High-Tech B.V. reserves the right to modify or improve its products and modify the contents without being obliged to inform any particular persons or organizations. The device specifications and the contents of the package may deviate from what is stated in this document. Symbols Important information. Discarding this information could cause injuries to people or damage to the Instrument or installation. Helpful information. This information will facilitate the use of this instrument. Additional info available on the internet or from your local sales representative. Warranty Bronkhorst® products are warranted against defects in material and workmanship for a period of three years from the date of shipment, provided they are used in accordance with the ordering specifications and the instructions in this manual and that they are not subjected to abuse, physical damage or contamination. Products that do not operate properly during this period may be repaired or replaced at no charge. -
PROFINET for Network Geeks
PROFINET for Network Geeks (and those who want to be) Introduction PROFINET is an open Industrial Ethernet standard. It is a communication protocol that exchanges data between automation controllers and devices. With over 25 million installed nodes (as of 2018), PROFINET is one of the most widely used Industrial Ethernet standards worldwide. But even though millions of users are familiar with PROFINET, not all users understand how it works. This white paper starts with a brief overview of Ethernet and the 7-layer ISO-OSI model. Then, it describes how PROFINET’s 3 communication channels fit in the model: TCP/IP and UDP/IP, Real-Time (RT), and Isochronous Real-Time (IRT). 1 Ethernet The transition from using 4-20 mA analog signals for I/O communication to digital fieldbuses provided the benefits of reduced wiring, access to network data, and robust diagnostics. The later transition from digital fieldbuses to Ethernet was also similarly a shift to a more modern technology. Ethernet incorporated and improved upon the benefits of fieldbuses. Ethernet is ubiquitous and PROFINET uses standard Ethernet. Ethernet gives PROFINET the ability to provide faster updates, more bandwidth, larger messages, an unlimited address space, and even more diagnostic capabilities. Also, as commercial Ethernet evolves, PROFINET can take advantage of these physical layer improvements. Figure 1 ISO-OSI Model The ISO-OSI Model Ethernet-based communications can be represented by a seven-layer model: the ISO/OSI Reference Model. The model generically describes the means and methods used to transmit data. Each layer has a specific name and function, as shown in Figure 1. -
Smartwire-DT Gateways – Canopen and PROFIBUS-DP
09/11 MN05013002Z-EN Manual replaces 06/09 AWB2723-1612en SmartWire-DT Gateways All brand and product names are trademarks or registered trademarks of the owner concerned. Emergency On Call Service Please call your local representative: http://www.eaton.com/moeller/aftersales or Hotline of the After Sales Service: +49 (0) 180 5 223822 (de, en) [email protected] Original Operating Instructions The German-language edition of this document is the original operating manual. Translation of the original operating manual ) All editions of this document other than those in German language are translations of 2 the original German manual. 1st edition 2009, edition date 02/09 2nd edition 2009, edition date 06/09 3rd edition 2010, edition date 03/10 4th edition 2010, edition date 06/10 5th edition 2011, edition date 03/11 6th edition 2011, edition date 09/11 See revision protocol in the “About this manual“ chapter © 2009 by Eaton Industries GmbH, 53105 Bonn Production: René Wiegand Translation: globaldocs GmbH All rights reserved, including those of the translation. Rückenbreite festlegen! (1 Blatt = 0,106 mm, gilt nur für XBS) g/m 80 bei Digitaldruck Eberwein für mm = 0,080 Blatt (1 No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without written permission of Eaton Industries GmbH, Bonn. Subject to alteration without notice. Danger! Dangerous electrical voltage! Before commencing the installation • Disconnect the power supply of the • Suitable safety hardware and device. software measures should be • Ensure that devices cannot be implemented for the I/O interface accidentally restarted. -
What's New from the OPC Foundation?
Interoperability on the Next Level: OPC-Unified Architecture JAI2010 18.11.2010 – Vigo Stefan Hoppe President OPC Europe [email protected] Agenda • Introduction OPC Foundation • OPC UA details • Advantages of Combined Standards • Demo OPC Foundation • International Industry Standard Organization • OPC Foundation • 407+ Member Companies / 80+ end-users Members • OPC Portfolio • 3500 + Total Companies Build OPC Products = 22000 + Products • OPC UA details • Millions & Millions of OPC Installations • Cooperation • The vision of OPC is secure reliable multi-vendor multi-platform interoperability • for moving information vertically from the data sources through the enterprise of multi-vendor systems (with stops in between…) • For moving information horizontally between data sources on different industrial networks from different vendors; • Not just data but information……. • Reliable, Secure Interoperability is not an option • Collaboration is key to incorporating many multiple “open” standards into an unified open platform architecture World Membership Demographics • OPC Foundation OPC Members By Region • OPC Portfolio • OPC UA details Rest of World , • Cooperation 41 China , 5 China Europe North America Europe , 216 Japan , 142 North America Rest of World Japan , 36 OPC Board of Directors • Reinhold Achatz, Siemens • OPC Foundation • OPC Portfolio Reinhold has been on the OPC Board of Directors longer • OPC UA details than any other board member, he is the founding member for Siemens on the Board of Directors (1997) • Cooperation -
Ethercat – Ultra-Fast Communication Standard
EtherCAT – ultra-fast communication standard In 2003, Beckhoff introduces its EtherCAT tech- In 2007, EtherCAT is adopted as an IEC standard, EtherCAT: nology into the market. The EtherCAT Technology underscoring how open the system is. To this Group (ETG) is formed, supported initially by day, the specification remains unchanged; it has global standard 33 founder members. The ETG goes on to stan- only been extended and compatibility has been dardize and maintain the technology. The group is retained. As a result, devices from the early years, the largest fieldbus user organization in the world, even from as far back as 2003, are still interopera- for real-time with more than 5000 members (as of 2019) cur- ble with today’s devices in the same networks. rently. In 2005, the Safety over EtherCAT protocol Another milestone is achieved in 2016 Ethernet from the is rolled out, expanding the EtherCAT specification with EtherCAT P, which introduces the ability to to enable safe transmission of safety-relevant carry power (2 x 24 V) on a standard Cat.5 cable field to the I/Os control data. The low-footprint protocol uses a alongside EtherCAT data. This paves the way for so-called Black Channel, making it completely machines without control cabinets. independent of the communication system used. The launch of EtherCAT G/G10 in 2018 in- How it works The key functional principle of EtherCAT lies in how its nodes process Ethernet frames: each node reads the data addressed to it and writes its data back to Flexible topology the frame all while the frame is An EtherCAT network can sup- moving downstream. -
Lonworks® Platform Revision 2
Introduction to the LonWorks® Platform revision 2 ® 078-0183-01B Echelon, LON, LonWorks, LonMark, NodeBuilder, , LonTalk, Neuron, 3120, 3150, LNS, i.LON, , ShortStack, LonMaker, the Echelon logo, and are trademarks of Echelon Corporation registered in the United States and other countries. LonSupport, , , OpenLDV, Pyxos, LonScanner, LonBridge, and Thinking Inside the Box are trademarks of Echelon Corporation. Other trademarks belong to their respective holders. Neuron Chips, Smart Transceivers, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Echelon assumes no responsibility or liability for use of the Neuron Chips in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright -
Configuring PROFINET
CHAPTER9 Configuring PROFINET This chapter describes how to configure the PROFINET feature on the Cisco IE 3000 switch. • Understanding PROFINET, page 9-1 • Configuring PROFINET, page 9-4 • Displaying the PROFINET Configuration, page 9-5 • Troubleshooting PROFINET, page 9-5 Understanding PROFINET PROFINET is the PROFIBUS International (PI) open Industrial Ethernet Standard that uses TCP/IP and IT standards for automation control. PROFINET is particularly useful for industrial automation systems and process control networks, in which motion control and precision control of instrumentation and test equipment are important. It emphasizes data exchange and defines communication paths to meet speed requirements. PROFINET communication is scalable on three levels: • Normal non-real-time communication uses TCP/IP and enables bus cycle times of approximately 100 ms. • Real-time communication enables cycle times of approximately 10 ms. • Isochronous real-time communication enables cycle times of approximately 1 ms. Note The switch does not support isochronous real-time communication channels. PROFINET IO is a modular communication framework for distributed automation applications. PROFINET IO uses cyclic data transfer to exchange data, alarms, and diagnostic information with programmable controllers, input/output (I/O) devices, and other automation controllers (for example, motion controllers). PROFINET IO recognizes three classes of devices: • IO devices • IO controllers • IO supervisors Cisco IE 3000 Switch Software Configuration Guide OL-27302-02 -
Xilinx Ethernet POWERLINK Solution Sell Sheet
Xilinx Ethernet POWERLINK Xilinx Ethernet POWERLINK Solution: Synchronizing High-Performance Control Systems The Challenges to Industrial Ethernet POWERLINK is an open, software-based Real Time Communication Network Design protocol compatible with standard Ethernet hardware. Both the Controlled Nodes (slaves) and the Managing Nodes (masters) can be built on standard Ethernet • Provide high performance, cost- components for 100 Mbits/s Ethernet. effective Ethernet-based communication technology for control applications Designed For Ultimate Flexibility POWERLINK's flexibility results is standardization, ease of service and maintenance • Integrate design changes to meet and reduced implementation and operating costs. POWERLINK is ideal for future specifications synchronization of high performance motion control systems. The POWERLINK IP developed by port GmbH adheres to Ethernet POWERLINK protocol. Its four variants • Bridge between multiple interface are designed for ultimate flexibility on Xilinx FPGAs. protocols and support various protocol technologies with a common hardware Integrates with All Standard Ethernet Protocols design POWERLINK can be implemented using any standard Ethernet hardware. While supporting all topologies, it offers complete operational conformance between systems that adhere to Ethernet communication systems. The Xilinx Ethernet POWERLINK Solution Performance Now and in the Long-Term POWERLINK meets the highest requirements of hard Real Time performance • Provide hardware necessary to achieve and determinism. POWERLINK is poised to support transmission rates 10x higher best Real Time behavior, short delays (1000 Mbits/s) than today with Gigabit Ethernet ported to FPGAs. and fast response times POWERLINKsafety and Security • Implement multiple design variants in POWERLINKsafety is an open real time safety protocol developed by Ethernet the FPGA POWERLINK Standardization Group (EPSG). -
L-IP User Manual 11 LOYTEC
L-IP CEA-709/IP Router User Manual LOYTEC electronics GmbH Contact LOYTEC electronics GmbH Blumengasse 35 1170 Vienna AUSTRIA/EUROPE [email protected] http://www.loytec.com Version 7.4 Document № 88065915 LOYTEC MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND LOYTEC SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THIS PRODUCT IS NOT DESIGNED OR INTENDED FOR USE IN EQUIPMENT INTENDED FOR SURGICAL IMPLANT INTO THE BODY OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, FOR USE IN FLIGHT CONTROL OR ENGINE CONTROL EQUIPMENT WITHIN AN AIRCRAFT, OR FOR ANY OTHER APPLICATION IN WHICH IN THE FAILURE OF SUCH PRODUCT COULD CREATE A SITUATION IN WHICH PERSONAL INJURY OR DEATH MAY OCCUR. LOYTEC MAKES NO REPRESENTATION AND OFFERS NO WARRANTY OF ANY KIND REGARDING OF ANY THIRDPARTY COMPONENTS MENTIONED IN THIS MANUAL. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LOYTEC. LC3020, L-Chip, L-Core, L-DALI, L-GATE, L-INX, L-IOB, LIOB-Connect, LIOB-FT, L-IP, LPA, L-Proxy, L-Switch XP, L- Term, L-VIS, L-WEB, L-ZIBI and ORION™ stack are trademarks of LOYTEC electronics GmbH. LonTalk®, LONWORKS®, Neuron®, LONMARK®, LonMaker®, i.LON®, and LNS® are trademarks of Echelon Corporation registered in the United States and other countries. L-IP CEA-709 User Manual 3 LOYTEC Contents 1 Introduction ...............................................................................................