Around the Clock.Scientists Want to Know How Living Cells Keep Time And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Circadian Clock in Cell Culture: II
The Journal of Neuroscience, January 1988, 8(i): 2230 Circadian Clock in Cell Culture: II. /n vitro Photic Entrainment of Melatonin Oscillation from Dissociated Chick Pineal Cells Linda M. Robertson and Joseph S. Takahashi Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60201 The avian pineal gland contains circadian oscillators that regulate the rhythmic synthesisof melatonin (Takahashi et al., regulate the rhythmic synthesis of melatonin. We have de- 1980; Menaker and Wisner, 1983; Takahashi and Menaker, veloped a flow-through cell culture system in order to begin 1984b). Previous work has shown that light exposure in vitro to study the cellular and molecular basis of this vertebrate can modulate N-acetyltransferase activity and melatonin pro- circadian oscillator. Pineal cell cultures express a circadian duction in chick pineal organ cultures (Deguchi, 1979a, 1981; oscillation of melatonin release for at least 5 cycles in con- Wainwright and Wainwright, 1980; Hamm et al., 1983; Taka- stant darkness with a period close to 24 hr. In all circadian hashi and Menaker, 1984b). Although acute exposure to light systems, light regulates the rhythm by the process of en- can suppressmelatonin synthesis, photic entrainment of cir- trainment that involves control of the phase and period of cadian rhythms in the pineal in vitro has not been definitively the circadian oscillator. In chick pineal cell cultures we have demonstrated. Preliminary work hassuggested that entrainment investigated the entraining effects of light in 2 ways: by shift- may occur; however, none of these studies demonstrated that ing the light-dark cycle in vitro and by measuring the phase- the steady-state phase of the oscillator was regulated by light shifting effects of single light pulses. -
Importance of Circadian Timing for Aging and Longevity
REVIEW ARTICLE https://doi.org/10.1038/s41467-021-22922-6 OPEN Importance of circadian timing for aging and longevity Victoria A. Acosta-Rodríguez 1, Filipa Rijo-Ferreira 1,2, Carla B. Green 1 & ✉ Joseph S. Takahashi 1,2 Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by 1234567890():,; adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. ging is a major risk factor for chronic diseases, including obesity, diabetes, cancer, Acardiovascular disease, and neurodegenerative disorders1. Improvements in healthcare have increased life expectancy worldwide, but as the aged population increases, frailty and morbidity have become a public health burden. Through the Healthy Life Expectancy (HALE) indicator, the World Health Organization estimates that worldwide humans spend >10% of our lives suffering from age-related diseases. Aging research currently focuses on closing the gap between lifespan (living longer) and healthspan (remaining healthier for longer). While lifespan can be easily determined with survival curves, healthspan is more complex to quantify. Several biomarkers of healthspan are used in animal models2,3 and humans4, ranging from levels of metabolites (glucose, cholesterol, fatty acids), biological processes (inflammation, autophagy, senescence, blood pressure) to biological functions (behavior, cognition, cardiovascular perfor- mance, fitness, and frailty). -
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical
CURRICULUM VITAE Joseph S. Takahashi Howard Hughes Medical Institute Department of Neuroscience University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA4.118 Dallas, Texas 75390-9111 (214) 648-1876, FAX (214) 648-1801 Email: [email protected] DATE OF BIRTH: December 16, 1951 NATIONALITY: U.S. Citizen by birth EDUCATION: 1981-1983 Pharmacology Research Associate Training Program, National Institute of General Medical Sciences, Laboratory of Clinical Sciences and Laboratory of Cell Biology, National Institutes of Health, Bethesda, MD 1979-1981 Ph.D., Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, Dr. Michael Menaker, Advisor. Summer 1977 Hopkins Marine Station, Stanford University, Pacific Grove, California 1975-1979 Department of Zoology, University of Texas, Austin, Texas 1970-1974 B.A. in Biology, Swarthmore College, Swarthmore, Pennsylvania PROFESSIONAL EXPERIENCE: 2013-present Principal Investigator, Satellite, International Institute for Integrative Sleep Medicine, World Premier International Research Center Initiative, University of Tsukuba, Japan 2009-present Professor and Chair, Department of Neuroscience, UT Southwestern Medical Center 2009-present Loyd B. Sands Distinguished Chair in Neuroscience, UT Southwestern 2009-present Investigator, Howard Hughes Medical Institute, UT Southwestern 2009-present Professor Emeritus of Neurobiology and Physiology, and Walter and Mary Elizabeth Glass Professor Emeritus in the Life Sciences, Northwestern University -
About the Fly Clock: Our Fortunate Paths As Post-Docs with 2017 Nobel Laureates Jeff Hall, Michael Rosbash, and Mike Young
Swarthmore College Works Biology Faculty Works Biology 6-1-2018 Reflections On Contributing oT “Big Discoveries” About The Fly Clock: Our Fortunate Paths As Post-Docs With 2017 Nobel Laureates Jeff Hall, Michael Rosbash, And Mike Young Kathleen King Siwicki Swarthmore College, [email protected] P. E. Hardin J. L. Price Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons, and the Neuroscience and Neurobiology Commons Let us know how access to these works benefits ouy Recommended Citation Kathleen King Siwicki, P. E. Hardin, and J. L. Price. (2018). "Reflections On Contributing oT “Big Discoveries” About The Fly Clock: Our Fortunate Paths As Post-Docs With 2017 Nobel Laureates Jeff Hall, Michael Rosbash, And Mike Young". Neurobiology Of Sleep And Circadian Rhythms. Volume 5, 58-67. DOI: 10.1016/j.nbscr.2018.02.004 https://works.swarthmore.edu/fac-biology/559 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Neurobiology of Sleep and Circadian Rhythms 5 (2018) 58–67 Contents lists available at ScienceDirect Neurobiology of Sleep and Circadian Rhythms journal homepage: www.elsevier.com/locate/nbscr Reflections on contributing to “big discoveries” about the fly clock: Our fortunate paths as post-docs with 2017 Nobel laureates Jeff Hall, Michael Rosbash, and Mike Young ⁎ Kathleen K. Siwickia, Paul E. -
A Calcium Flux Is Required for Circadian Rhythm Generation in Mammalian Pacemaker Neurons
7682 • The Journal of Neuroscience, August 17, 2005 • 25(33):7682–7686 Brief Communication A Calcium Flux Is Required for Circadian Rhythm Generation in Mammalian Pacemaker Neurons Gabriella B. Lundkvist,1 Yongho Kwak,1 Erin K. Davis,1 Hajime Tei,2 and Gene D. Block1 1Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville, Virginia 22903, and 2Research Group of Chronogenomics, Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan Generation of mammalian circadian rhythms involves molecular transcriptional and translational feedback loops. It is not clear how membrane events interact with the intracellular molecular clock or whether membrane activities are involved in the actual generation of the circadian rhythm. We examined the role of membrane potential and calcium (Ca 2ϩ) influx in the expression of the circadian rhythm of the clock gene Period 1 (Per1) within the rat suprachiasmatic nucleus (SCN), the master pacemaker controlling circadian rhythmicity. Membrane hyperpolarization, caused by lowering the extracellular concentration of potassium or blocking Ca 2ϩ influx in SCN cultures by lowering [Ca 2ϩ], reversibly abolished the rhythmic expression of Per1. In addition, the amplitude of Per1 expression was markedly decreased by voltage-gated Ca 2ϩ channel antagonists. A similar result was observed for mouse Per1 and PER2. Together, these results strongly suggest that a transmembrane Ca 2ϩ flux is necessary for sustained molecular rhythmicity in the SCN. We propose that periodic Ca 2ϩ influx, resulting from circadian variations in membrane potential, is a critical process for circadian pacemaker function. Key words: circadian rhythm; calcium; potassium; suprachiasmatic nucleus; Period 1; PERIOD 2 Introduction et al., 2002). -
Salt-Inducible Kinase 3 Regulates the Mammalian Circadian Clock By
RESEARCH ARTICLE Salt-inducible kinase 3 regulates the mammalian circadian clock by destabilizing PER2 protein Naoto Hayasaka1,2,3*, Arisa Hirano4, Yuka Miyoshi3, Isao T Tokuda5, Hikari Yoshitane4, Junichiro Matsuda6, Yoshitaka Fukada4 1Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; 2PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan; 3Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, Osaka, Japan; 4Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan; 5Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan; 6Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan Abstract Salt-inducible kinase 3 (SIK3) plays a crucial role in various aspects of metabolism. In -/- the course of investigating metabolic defects in Sik3-deficient mice (Sik3 ), we observed that -/- circadian rhythmicity of the metabolisms was phase-delayed. Sik3 mice also exhibited other circadian abnormalities, including lengthening of the period, impaired entrainment to the light-dark cycle, phase variation in locomotor activities, and aberrant physiological rhythms. Ex vivo -/- suprachiasmatic nucleus slices from Sik3 mice exhibited destabilized and desynchronized molecular rhythms among individual neurons. In cultured cells, Sik3-knockdown resulted in abnormal bioluminescence rhythms. Expression levels of PER2, a clock protein, were elevated in Sik3-knockdown cells but down-regulated in Sik3-overexpressing cells, which could be attributed to a phosphorylation-dependent decrease in PER2 protein stability. This was further confirmed by -/- PER2 accumulation in the Sik3 fibroblasts and liver. Collectively, SIK3 plays key roles in circadian *For correspondence: rhythms by facilitating phosphorylation-dependent PER2 destabilization, either directly or [email protected] indirectly. -
Regulation of Drosophila Rest: Activity Rhythms by a Microrna and Aging
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Regulation of Drosophila Rest: Activity Rhythms by a Microrna and Aging Wenyu Luo University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Family, Life Course, and Society Commons, Genetics Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Luo, Wenyu, "Regulation of Drosophila Rest: Activity Rhythms by a Microrna and Aging" (2012). Publicly Accessible Penn Dissertations. 540. https://repository.upenn.edu/edissertations/540 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/540 For more information, please contact [email protected]. Regulation of Drosophila Rest: Activity Rhythms by a Microrna and Aging Abstract Although there has been much progress in deciphering the molecular basis of the circadian clock, major questions remain about clock mechanisms and about the control of behavior and physiology by the clock. In particular, mechanisms that transmit time-of-day signals from the clock and produce rhythmic behaviors are poorly understood. Also, it is not known why rest:activity rhythms break down with age. In this thesis, we used a Drosophila model to address some of these questions. We identified a pathway that is required downstream of the clock for rhythmic rest:activity and also explored the mechanisms that account for deterioration of behavioral rhythms with age. By investigating candidate circadian mutants identified in a previous genetic screen in the laboratory, we discovered a circadian function of a microRNA gene, miR-279. We found that miR-279 acts through the JAK/STAT pathway to drive rest:activity rhythms. -
WCBR Program 04
Welcome to the Thirty-Seventh Annual Winter Conference on Brain Research The Winter Conference on Brain Research (WCBR) was founded in 1968 to promote free exchange of information and ideas within neuroscience. It was the intent of the founders that both formal and informal interactions would occur between clinical and laboratory-based neuroscientists. During the past thirty years neuroscience has grown and expanded to include many new fields and methodologies. This diversity is also reflected by WCBR participants and in our program. A primary goal of the WCBR is to enable participants to learn about the current status of areas of neuroscience other than their own. Another objective is to provide a vehicle for scientists with common interests to discuss current issues in an informal setting. On the other hand, WCBR is not designed for presentations limited to communicating the latest data to a small group of specialists; this is best done at national society meetings. The program includes panels (reviews for an audience not neces- sarily familiar with the area presented), workshops (informal discussions of current issues and data), and a number of posters. The annual conference lecture will be presented at the Sunday breakfast on January 25. Our guest speaker will be The Honorable John Edward Porter, former Congressman from Illinois and Chair of the House Appropriations Committee. The title of his talk will be What’s Going on in Washington: We Need to Talk! On Tuesday, January 27, a town meeting will be held for the Copper Mountain community, at which Dr. Michael Zigmond, Director of the Morris K. -
UTR and Microrna-24 Regulate Circadian Rhythms By
Period2 3′-UTR and microRNA-24 regulate circadian PNAS PLUS rhythms by repressing PERIOD2 protein accumulation Seung-Hee Yooa,b,1, Shihoko Kojimab,2, Kazuhiro Shimomurac,3, Nobuya Koikeb,d, Ethan D. Buhrc,4, Tadashi Furukawac,5, Caroline H. Koc,6, Gabrielle Glostona, Christopher Ayouba, Kazunari Noharaa, Bryan A. Reyese, Yoshiki Tsuchiyad, Ook-Joon Yoof, Kazuhiro Yagitad, Choogon Leeg, Zheng Chena, Shin Yamazaki (山崎 晋)e,7, Carla B. Greenb, and Joseph S. Takahashib,h,1 aDepartment of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030; bDepartment of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390; cDepartment of Neurobiology, Northwestern University, Evanston, IL 60208; dDepartment of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; eDepartment of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634; fGraduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea; gProgram in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306; and hHoward Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Contributed by Joseph S. Takahashi, September 7, 2017 (sent for review April 21, 2017; reviewed by Paul E. Hardin, Satchin Panda, and Hiroki R. Ueda) We previously created two PER2::LUCIFERASE (PER2::LUC) circadian for binding to the shared element RORE and thus play important reporter knockin mice that differ only in the Per2 3′-UTR region: Per2:: roles in circadian amplitude regulation (17). More recent studies Luc, which retains the endogenous Per2 3′-UTR and Per2::LucSV,where have also shown amplitude regulatory mechanisms distinct from the endogenous Per2 3′-UTR was replaced by an SV40 late poly(A) the competitive binding model (18, 19), suggesting an integrated signal. -
Finding New Clock Components: Past and Future
10.1177/0748730404269151JOURNALOFTakahashi / FINDING BIOLOGICALRHYTHMS NEW CLOCK COMPONENTS / October 2004 PERSPECTIVE Finding New Clock Components: Past and Future Joseph S. Takahashi1 Howard Hughes Medical Institute, Department of Neurobiology & Physiology, Northwestern University, Evanston, IL Abstract The molecular mechanism of circadian clocks has been unraveled pri- marily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. We are now in a position to consider what constitutes a clock component, whether we can establish criteria for clock components, and whether we have found most of the primary clock components. This perspective discusses clock genes and how genetics, molecular biology, and biochemistry have been used to find clock genes in the past and how they will be used in the future. Key words circadian clock components, clock genes, phenotype, forward genetics The modern era of “clock genetics” began in 1971 plete genome sequences for most of the important with the discovery by Ron Konopka and Seymour model organisms. Benzer (Fig. 1) of the period (per) locus in Drosophila In the circadian field, we have identified cell- (Konopka and Benzer, 1971). At the time, even the autonomous circadian pathways that share a con- existence of single-gene mutations affecting a process served transcriptional autoregulatory feedback mech- as complex as circadian rhythms was met with great anism across 2 domains of life (Dunlap, 1999; Young skepticism. The eminent phage geneticist, Max and Kay, 2001; Reppert and Weaver, 2002; Lowrey and Delbruck, is purported to have said, “No, no, no. It is Takahashi, 2004). And we can already anticipate that impossible,” when told of Konopka’s results. -
G1/S Cell Cycle Regulators Mediate Effects of Circadian Dysregulation on Tumor Growth and Provide Targets for Timed Anticancer Treatment
RESEARCH ARTICLE G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment 1 2 1 1 3 Yool Lee , Nicholas F. LahensID , Shirley ZhangID , Joseph Bedont , Jeffrey M. Field , 1 Amita SehgalID * 1 Penn Chronobiology, Howard Hughes Medical Institute, Department of Neuroscience, Perelman School of a1111111111 Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, a1111111111 Philadelphia, Pennsylvania, United States of America, 3 Department of Systems Pharmacology and a1111111111 Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, a1111111111 Pennsylvania, United States of America a1111111111 * [email protected] Abstract OPEN ACCESS Citation: Lee Y, Lahens NF, Zhang S, Bedont J, Circadian disruption has multiple pathological consequences, but the underlying mecha- Field JM, Sehgal A (2019) G1/S cell cycle nisms are largely unknown. To address such mechanisms, we subjected transformed cul- regulators mediate effects of circadian tured cells to chronic circadian desynchrony (CCD), mimicking a chronic jet-lag scheme, dysregulation on tumor growth and provide targets and assayed a range of cellular functions. The results indicated a specific circadian clock± for timed anticancer treatment. PLoS Biol 17(4): e3000228. https://doi.org/10.1371/journal. dependent increase in cell proliferation. Transcriptome analysis revealed up-regulation of pbio.3000228 G1/S phase transition genes (myelocytomatosis oncogene cellular homolog [Myc], cyclin Academic Editor: Achim Kramer, Charite - D1/3, chromatin licensing and DNA replication factor 1 [Cdt1]), concomitant with increased UniversitaÈtsmedizin Berlin, GERMANY phosphorylation of the retinoblastoma (RB) protein by cyclin-dependent kinase (CDK) 4/6 Received: September 20, 2018 and increased G1-S progression. -
Oncogenic Myc Disrupts the Molecular Clock and Metabolism in Cancer
ONCOGENIC MYC DISRUPTS THE MOLECULAR CLOCK AND METABOLISM IN CANCER CELLS AND DROSOPHILA by Annie Lee Hsieh A dissertation submitted to Johns Hopkins University in conformity with the requirement for the degree of Doctor of Philosophy Baltimore, Maryland March 2016 ©Annie Lee Hsieh 2016 All right reserved Abstract Circadian rhythm is a biological rhythm with a period about 24 hours, which coordinates the organismal biological processes with environmental day and night cycle. This 24-hour rhythm is exhibited in every cell in the organism and is generated by the molecular clock circuitry that comprises transcriptional and translational feedback loops. While loss of circadian rhythm or alteration of clock gene expression is broadly observed in human cancers, the molecular basis underlying these perturbations and their functional implications are poorly understood. MYC oncogene is amplified in more than half of the human cancers. Its encoded protein, MYC, is a transcription factor that binds to the E- box sequence (5’-CACGTG-3’), which is the identical binding site of the master circadian transcription factor CLOCK::BMAL1. Thereby we hypothesized that deregulated circadian rhythm in cancer cells is a consequence of perturbation of E-box- containing clock genes by ectopically overexpressed MYC. In this thesis, we provide evidence that MYC or N-MYC activation alters expression of E-box-containing clock genes including PER1, PER2, REV-ERBα, REV- ERBβ and CRY1 in cell lines derived from human Burkitts lymphoma, human osteosarcoma, mouse hepatocellular carcinoma and human neuroblastoma. MYC activation also significantly suppress the expression and oscillation of the circadian transcription factor BMAL1. Although public available MYC ChIP-seq data suggest that MYC directly binds to the promoter of PER1, PER2, REV-ERBα, REV-ERBβ and CRY1 in U2OS cells, only silencing of REV-ERBα and REV-ERBβ is able to rescue BMAL1 suppression by MYC.