Animal Coronaviruses and SARS-COV-2 in Animals, What Do We Actually Know?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(HPAI) A/Turkey/Turkey/1/2005 H5N1 in Pekin Ducks (Anas Platyrhynchos) Infected Experimentally Brandon Z
Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally Brandon Z. Löndt, Alejandro Nunez, Jill Banks, Hassan Nili, Linda K Johnson, Dennis Alexander To cite this version: Brandon Z. Löndt, Alejandro Nunez, Jill Banks, Hassan Nili, Linda K Johnson, et al.. Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally. Avian Pathology, Taylor & Francis, 2008, 37 (06), pp.619-627. 10.1080/03079450802499126. hal-00540137 HAL Id: hal-00540137 https://hal.archives-ouvertes.fr/hal-00540137 Submitted on 26 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Avian Pathology For Peer Review Only Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks ( Anas platyrhynchos ) infected experimentally Journal: Avian Pathology Manuscript ID: CAVP-2008-0107.R1 Manuscript Type: Original Research Paper Date Submitted by the 01-Sep-2008 Author: Complete -
Trunkloads of Viruses
COMMENTARY Trunkloads of Viruses Philip E. Pellett Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ϳ20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae. lephant endotheliotropic herpesvirus 1 (EEHV1) causes a rap- the Herpesviridae (the current complete list of approved virus tax- Downloaded from Eidly progressing and usually fatal hemorrhagic disease that ons is available at http://ictvonline.org/). In addition, approxi- occurs in the wild in Asia and affects ϳ20% of Asian elephant mately 200 additional viruses detected using methods such as (Elephas maximus) calves born in zoos in the United States and those described above await formal consideration (V. Lacoste, Europe (1). About 60% of juvenile deaths of captive elephants are personal communication). With very few exceptions, the amino attributed to such infections. Development of control measures acid sequence of a small conserved segment of the viral DNA poly- has been hampered by the lack of systems for culture of the virus in merase (ϳ150 amino acids) is sufficient to not only reliably iden- laboratories. Its genetic study has been restricted to analysis of tify a virus as belonging to the evolutionary lineage represented by blood, trunk wash fluid, and tissue samples collected during nec- the Herpesviridae, but also their subfamily, and in most cases a http://jvi.asm.org/ ropsies. -
Killed Whole-Genome Reduced-Bacteria Surface-Expressed Coronavirus Fusion Peptide Vaccines Protect Against Disease in a Porcine Model
Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model Denicar Lina Nascimento Fabris Maedaa,b,c,1, Debin Tiand,e,1, Hanna Yua,b,c, Nakul Dara,b,c, Vignesh Rajasekarana,b,c, Sarah Menga,b,c, Hassan M. Mahsoubd,e, Harini Sooryanaraind,e, Bo Wangd,e, C. Lynn Heffrond,e, Anna Hassebroekd,e, Tanya LeRoithd,e, Xiang-Jin Mengd,e,2, and Steven L. Zeichnera,b,c,f,2 aDepartment of Pediatrics, University of Virginia, Charlottesville, VA 22908-0386; bPendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908-0386; cChild Health Research Center, University of Virginia, Charlottesville, VA 22908-0386; dDepartment of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913; eCenter for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913; and fDepartment of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0386 Contributed by Xiang-Jin Meng, February 14, 2021 (sent for review December 13, 2020; reviewed by Diego Diel and Qiuhong Wang) As the coronavirus disease 2019 (COVID-19) pandemic rages on, it Vaccination specifically with conserved E. coli antigens did not is important to explore new evolution-resistant vaccine antigens alter the gastrointestinal (GI) microbiome (6, 9). In human stud- and new vaccine platforms that can produce readily scalable, in- ies, volunteers were immunized orally with a KWCV against expensive vaccines with easier storage and transport. We report ETEC (10) with no adverse effects. An ETEC oral KWCV along here a synthetic biology-based vaccine platform that employs an with a cholera B toxin subunit adjuvant was studied in children expression vector with an inducible gram-negative autotransporter and found to be safe (11). -
Genome Organization of Canada Goose Coronavirus, a Novel
www.nature.com/scientificreports OPEN Genome Organization of Canada Goose Coronavirus, A Novel Species Identifed in a Mass Die-of of Received: 14 January 2019 Accepted: 25 March 2019 Canada Geese Published: xx xx xxxx Amber Papineau1,2, Yohannes Berhane1, Todd N. Wylie3,4, Kristine M. Wylie3,4, Samuel Sharpe5 & Oliver Lung 1,2 The complete genome of a novel coronavirus was sequenced directly from the cloacal swab of a Canada goose that perished in a die-of of Canada and Snow geese in Cambridge Bay, Nunavut, Canada. Comparative genomics and phylogenetic analysis indicate it is a new species of Gammacoronavirus, as it falls below the threshold of 90% amino acid similarity in the protein domains used to demarcate Coronaviridae. Additional features that distinguish the genome of Canada goose coronavirus include 6 novel ORFs, a partial duplication of the 4 gene and a presumptive change in the proteolytic processing of polyproteins 1a and 1ab. Viruses belonging to the Coronaviridae family have a single stranded positive sense RNA genome of 26–31 kb. Members of this family include both human pathogens, such as severe acute respiratory syn- drome virus (SARS-CoV)1, and animal pathogens, such as porcine epidemic diarrhea virus2. Currently, the International Committee on the Taxonomy of Viruses (ICTV) recognizes four genera in the Coronaviridae family: Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. While the reser- voirs of the Alphacoronavirus and Betacoronavirus genera are believed to be bats, the Gammacoronavirus and Deltacoronavirus genera have been shown to spread primarily through birds3. Te frst three species of the Deltacoronavirus genus were discovered in 20094 and recent work has vastly expanded the Deltacoronavirus genus, adding seven additional species3. -
Broad Receptor Engagement of an Emerging Global Coronavirus May Potentiate Its Diverse Cross-Species Transmissibility
Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility Wentao Lia,1, Ruben J. G. Hulswita,1, Scott P. Kenneyb,1, Ivy Widjajaa, Kwonil Jungb, Moyasar A. Alhamob, Brenda van Dierena, Frank J. M. van Kuppevelda, Linda J. Saifb,2, and Berend-Jan Boscha,2 aVirology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; and bDepartment of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691 Contributed by Linda J. Saif, April 12, 2018 (sent for review February 15, 2018; reviewed by Tom Gallagher and Stefan Pöhlmann) Porcine deltacoronavirus (PDCoV), identified in 2012, is a common greatly increase the potential for successful adaptation to a new enteropathogen of swine with worldwide distribution. The source host (6, 12). A pivotal criterion of cross-species transmission and evolutionary history of this virus is, however, unknown. concerns the ability of a virus to engage a receptor within the PDCoV belongs to the Deltacoronavirus genus that comprises pre- novel host, which for CoVs, is determined by the receptor dominantly avian CoV. Phylogenetic analysis suggests that PDCoV specificity of the viral spike (S) entry protein. originated relatively recently from a host-switching event be- The porcine deltacoronavirus (PDCoV) is a recently discov- tween birds and mammals. Insight into receptor engagement by ered CoV of unknown origin. PDCoV (species name coronavirus PDCoV may shed light into such an exceptional phenomenon. Here HKU15) was identified in Hong Kong in pigs in the late 2000s we report that PDCoV employs host aminopeptidase N (APN) as an (13) and has since been detected in swine populations in various entry receptor and interacts with APN via domain B of its spike (S) countries worldwide (14–24). -
Downloaded from the Genbank Database As of July 2020
viruses Article Modular Evolution of Coronavirus Genomes Yulia Vakulenko 1,2 , Andrei Deviatkin 3 , Jan Felix Drexler 1,4,5 and Alexander Lukashev 1,3,* 1 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; [email protected] (Y.V.); [email protected] (J.F.D.) 2 Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia 3 Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; [email protected] 4 Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany 5 German Centre for Infection Research (DZIF), Associated Partner Site Charité, 10117 Berlin, Germany * Correspondence: [email protected] Abstract: The viral family Coronaviridae comprises four genera, termed Alpha-, Beta-, Gamma-, and Deltacoronavirus. Recombination events have been described in many coronaviruses infecting humans and other animals. However, formal analysis of the recombination patterns, both in terms of the involved genome regions and the extent of genetic divergence between partners, are scarce. Common methods of recombination detection based on phylogenetic incongruences (e.g., a phylogenetic com- patibility matrix) may fail in cases where too many events diminish the phylogenetic signal. Thus, an approach comparing genetic distances in distinct genome regions (pairwise distance deviation matrix) was set up. In alpha, beta, and delta-coronaviruses, a low incidence of recombination between closely related viruses was evident in all genome regions, but it was more extensive between the spike gene and other genome regions. -
Canine Coronaviruses: Emerging and Re-Emerging Pathogens of Dogs
1 Berliner und Münchener Tierärztliche Wochenschrift 2021 (134) Institute of Animal Hygiene and Veterinary Public Health, University Leipzig, Open Access Leipzig, Germany Berl Münch Tierärztl Wochenschr (134) 1–6 (2021) Canine coronaviruses: emerging and DOI 10.2376/1439-0299-2021-1 re-emerging pathogens of dogs © 2021 Schlütersche Fachmedien GmbH Ein Unternehmen der Schlüterschen Canine Coronaviren: Neu und erneut auftretende Pathogene Mediengruppe des Hundes ISSN 1439-0299 Korrespondenzadresse: Ahmed Abd El Wahed, Uwe Truyen [email protected] Eingegangen: 08.01.2021 Angenommen: 01.04.2021 Veröffentlicht: 29.04.2021 https://www.vetline.de/berliner-und- muenchener-tieraerztliche-wochenschrift- open-access Summary Canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) are highly infectious viruses of dogs classified as Alphacoronavirus and Betacoronavirus, respectively. Both are examples for viruses causing emerging diseases since CCoV originated from a Feline coronavirus-like Alphacoronavirus and CRCoV from a Bovine coronavirus-like Betacoronavirus. In this review article, differences in the genetic organization of CCoV and CRCoV as well as their relation to other coronaviruses are discussed. Clinical pictures varying from an asymptomatic or mild unspecific disease, to respiratory or even an acute generalized illness are reported. The possible role of dogs in the spread of the Betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to study as ani- mal always played the role of establishing zoonotic diseases in the community. Keywords: canine coronavirus, canine respiratory coronavirus, SARS-CoV-2, genetics, infectious diseases Zusammenfassung Das canine Coronavirus (CCoV) und das canine respiratorische Coronavirus (CRCoV) sind hochinfektiöse Viren von Hunden, die als Alphacoronavirus bzw. -
Exposure of Humans Or Animals to Sars-Cov-2 from Wild, Livestock, Companion and Aquatic Animals Qualitative Exposure Assessment
ISSN 0254-6019 Exposure of humans or animals to SARS-CoV-2 from wild, livestock, companion and aquatic animals Qualitative exposure assessment FAO ANIMAL PRODUCTION AND HEALTH / PAPER 181 FAO ANIMAL PRODUCTION AND HEALTH / PAPER 181 Exposure of humans or animals to SARS-CoV-2 from wild, livestock, companion and aquatic animals Qualitative exposure assessment Authors Ihab El Masry, Sophie von Dobschuetz, Ludovic Plee, Fairouz Larfaoui, Zhen Yang, Junxia Song, Wantanee Kalpravidh, Keith Sumption Food and Agriculture Organization for the United Nations (FAO), Rome, Italy Dirk Pfeiffer City University of Hong Kong, Hong Kong SAR, China Sharon Calvin Canadian Food Inspection Agency (CFIA), Science Branch, Animal Health Risk Assessment Unit, Ottawa, Canada Helen Roberts Department for Environment, Food and Rural Affairs (Defra), Equines, Pets and New and Emerging Diseases, Exotic Disease Control Team, London, United Kingdom of Great Britain and Northern Ireland Alessio Lorusso Istituto Zooprofilattico dell’Abruzzo e Molise, Teramo, Italy Casey Barton-Behravesh Centers for Disease Control and Prevention (CDC), One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, United States of America Zengren Zheng China Animal Health and Epidemiology Centre (CAHEC), China Animal Health Risk Analysis Commission, Qingdao City, China Food and Agriculture Organization of the United Nations Rome, 2020 Required citation: El Masry, I., von Dobschuetz, S., Plee, L., Larfaoui, F., Yang, Z., Song, J., Pfeiffer, D., Calvin, S., Roberts, H., Lorusso, A., Barton-Behravesh, C., Zheng, Z., Kalpravidh, W. & Sumption, K. 2020. Exposure of humans or animals to SARS-CoV-2 from wild, livestock, companion and aquatic animals: Qualitative exposure assessment. FAO animal production and health, Paper 181. -
Virulence During Newcastle Disease Viruses Cross Species Adaptation
viruses Review Virulence during Newcastle Disease Viruses Cross Species Adaptation Claudio L. Afonso Base2bio, LLC, Oshkosh, WI 54905, USA; [email protected]; Tel.: +1-800-817-7160 Abstract: The hypothesis that host adaptation in virulent Newcastle disease viruses (NDV) has been accompanied by virulence modulation is reviewed here. Historical records, experimental data, and phylogenetic analyses from available GenBank sequences suggest that currently circulating NDVs emerged in the 1920–19400s from low virulence viruses by mutation at the fusion protein cleavage site. These viruses later gave rise to multiple virulent genotypes by modulating virulence in opposite directions. Phylogenetic and pathotyping studies demonstrate that older virulent NDVs further evolved into chicken-adapted genotypes by increasing virulence (velogenic-viscerotropic pathotypes with intracerebral pathogenicity indexes [ICPIs] of 1.6 to 2), or into cormorant-adapted NDVs by moderating virulence (velogenic–neurotropic pathotypes with ICPIs of 1.4 to 1.6), or into pigeon-adapted viruses by further attenuating virulence (mesogenic pathotypes with ICPIs of 0.9 to 1.4). Pathogenesis and transmission experiments on adult chickens demonstrate that chicken-adapted velogenic-viscerotropic viruses are more capable of causing disease than older velogenic-neurotropic viruses. Currently circulating velogenic–viscerotropic viruses are also more capable of replicating and of being transmitted in naïve chickens than viruses from cormorants and pigeons. These evolutionary virulence changes are consistent with theories that predict that virulence may evolve in many directions in order to achieve maximum fitness, as determined by genetic and ecologic constraints. Keywords: NDV; evolution; virulence; host adaptation Citation: Afonso, C.L. Virulence during Newcastle Disease Viruses Cross Species Adaptation. -
The Characterization of Chifitms in Avian Coronavirus Infection in Vivo, Ex Vivo and in Vitro
G C A T T A C G G C A T genes Article The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro Angela Steyn 1,*, Sarah Keep 1, Erica Bickerton 1 and Mark Fife 1,2 1 The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; [email protected] (S.K.); [email protected] (E.B); mfi[email protected] (M.F.) 2 AVIAGEN UK, Ltd. Newbridge, Midlothian EH28 8SZ, Scotland, UK * Correspondence: [email protected]; Tel.: +44-(0)148-323-4762 Received: 20 July 2020; Accepted: 7 August 2020; Published: 10 August 2020 Abstract: The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. -
Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates. -
Coronaviruses: a Review of Their Properties and Diversity
Properties and diversity of coronaviruses Afr. J. Clin. Exper. Microbiol. 2020; 21 (4): 258-271 Joseph and Fagbami. Afr. J. Clin. Exper. Microbiol. 2020; 21 (4): 258 - 271 https://www.afrjcem.org African Journal of Clinical and Experimental Microbiology. ISSN 1595-689X Oct 2020; Vol.21 No.4 AJCEM/2038. https://www.ajol.info/index.php/ajcem Copyright AJCEM 2020: https://doi.org/10.4314/ajcem.v21i4.2 Review Article Open Access Coronaviruses: a review of their properties and diversity Joseph, A. A., and *Fagbami, A. H. Department of Microbial Pathology, Faculty of Basic Clinical Sciences, University of Medical Sciences, Ondo, Nigeria *Correspondence to: [email protected] Abstract: Human coronaviruses, which hitherto were causative agents of mild respiratory diseases of man, have recently become one of the most important groups of pathogens of humans the world over. In less than two decades, three members of the group, severe acute respiratory syndrome (SARS) coronavirus (CoV), Middle East respiratory syndrome (MERS)-CoV, and SARS-COV-2, have emerged causing disease outbreaks that affected millions and claimed the lives of thousands of people. In 2017, another coronavirus, the swine acute diarrhea syndrome (SADS) coronavirus (SADS-CoV) emerged in animals killing over 24,000 piglets in China. Because of the medical and veterinary importance of coronaviruses, we carried out a review of available literature and summarized the current information on their properties and diversity. Coronaviruses are single-stranded RNA viruses with some unique characteristics such as the possession of a very large nucleic acid, high infidelity of the RNA-dependent polymerase, and high rate of mutation and recombination in the genome.