C,-C,O-Dicarboxylic Aciduria: Investigations of a Patient with Riboflavin Responsive Multiple Acyl- Coa Dehydrogenation Defects

Total Page:16

File Type:pdf, Size:1020Kb

C,-C,O-Dicarboxylic Aciduria: Investigations of a Patient with Riboflavin Responsive Multiple Acyl- Coa Dehydrogenation Defects Pediatr. Res. 16: 861-868 (1982) C,-C,o-Dicarboxylic Aciduria: Investigations of a Patient with Riboflavin Responsive Multiple Acyl- CoA Dehydrogenation Defects N. GREGERSEN,'~'' H. WINTZENSEN, S. KBLVRAA E. CHRISTENSEN, M. F. CHRISTENSEN, N. J. BRANDT, AND K. RASMUSSEN Research Laboratory for Metabolic Disorders, University Department of Clinical Chemistry, Aarhus Kommunehospital, Aarhus; Department of Pediatrics, Herning Hospital, Herning; Institute of Human Genetics, University of Aarhus, Aarhus; and Section of Clinical Genetics, University Department of Pediatrics and of Gynaecology and Obstetrics, Rigshospitalet, Copenhagen, Denmark. Summary one or more acute attacks, most frequently characterized by a Reye-like syndrome (37) with vomitGg and increasing lethargy The abnormal metabolites-adipic, suberic, and sebacic acids- that eventually leads to coma. Biochemical characteristics includes were detected in large amounts in the urine of a boy during a metabolic acihosis, hypoglycemia, fatty infiltration of the liver, Reye's syndrome-like crisis. Substantial amounts of 5-OH-caproic and large amounts of the Cs-CIO-dicarboxylicacids, i.e., adipic, acid, caproylglycine, glutaric acid, and 3- OH-butyric acid and suberic, and sebacic acids in the urine. In spite of the similarities moderately elevated amounts of ethylmalonic acid, methylsuccinic between the clinical pictures during the acute attacks in these acid, 3-OH-isovaleric acid, and isovalerylglycine were also found. patients, the biochemical presentation exhibited a high degree of These metabolites were consistently present in urine samples heterogeneity within the group. The precise location of the enzyme collected in the boy's habitual condition after the attack. 1-[14C]- defect has not been found in any of the patients, but preliminary Palmitic acid was oxidized at a normal rate, whereas U-[14C]- enzyme studies and the excretion pattern of organic acids suggest Palmitic acid was oxidized at a reduced rate in cultured skin that the defect in the patients described by us (15), by Truscott fibroblasts from the patient, thus indicating a defect at the level of and coworkers (36) and by Naylor and coworkers (27) is localized medium- and/or short-chain fatty acid oxidation. Riboflavin med- to the dehydrogenation of medium-chain fatty acids, whereas the ication (100 mg three times a day) significantly reduced the defect in the patient reported by Mantagos et al. (25) is restricted excreted amounts of pathologic metabolites, suggesting a flavi- predominantly to the dehydrogenation of the short-chain fatty neadeninedinucleotide-related acyl-CoA dehydrogenation defect acids. During the attack the case described here exhibited clinical as the cause of the disease. symptoms very similar to the above-mentioned cases including Carnitine in plasma was low in the patient (6 pmole/liter, large amounts of Cs-Clo-dicarboxylic acids in the urine. Unlike controls 26-74 pmole/liter), suggesting carnitine deficiency as a the other cases, this patient excreted substantial amounts of these secondary effect of the acyl-CoA dehydrogenation deficiency. metabolites together with 3-OH-butyric acid in the habitual con- dition. We are, therefore, possibly dealing with a new inborn error Speculation of the /?-oxidation of fatty acids. The aim of the present report is The present patient, who presented with a Reye's syndrome-like to characterize the disease clinically and biochemically and to attack, suffers from impaired dehydrogenation of acyl-CoA result- describe the first successful attempt to treat one of these diseases ing in accumulation of acyl-CoA in the cells. Attacks with similar with vitamins. Both clinically and biochemically he responded symptoms are seen in other acyl-CoA dehydrogenation deficien- positively to riboflavin treatment, and as a result the boy is now cies, such as glutaric aciduria types I and 11, other types of Ce-ClO- receiving permanent riboflavin medication. dicarboxylic acidurias and isovaleric acidemia. Reduced flow through the acyl-CoA dehydrogenation steps may therefore be an MATERIALS AND METHODS ethiologic factor in Reve's" svndrome." Several of the accumulated ~C~I-C~A'sare toxic and may be responsible for some of the Family history. The patient (P.J.) is a male, now aged 5 years symptoms. The low carnitine level in plasma and the elevated and 6 months. A brother, (J.J.), who is 10 years older had an esterified carnitine excretion in the present patient indicate that attack of Reye's syndrome, versed by liver biopsy, when he was acyl-CoA accumulation may cause a functional carnitine deficiency 2 years old. He suffered from a slight hypotonia during the by sequestration of carnitine as acyl-carnitines. As the inborn following 2 years, but since then he has been clinically normal. In defect, systemic carnitine deficiency may exhibit symptoms like the routine screening of the family members, a slight organic those of Reye's syndrome, it may be speculated whether functional aciduria was found in J.J. (Table 1) indicating a /?-oxidation defect carnitine deficiency in patients with accumulated acyl-CoA is (see below). another causal factor in the development of the symptoms during The patient (P.J.) has another older healthy brother (B.J.) and attacks. a twin sister (S.J.) with prurigo besnier, who is otherwise clinically healthy. The mother suffer from rheumatoid arthritis. The father is healthy. Since the first report of patients with saturated CsClo-dicar- Case history. The patient (P.J.) was born 2 wk before term after boxylic aciduria due to possible /?-oxidation defect (13), several an uncomplicated pregnancy. Birthweight was 2050 g. In the patients with similar clinical and biochemical characteristics have neonatal period, he was once admitted to a hospital with pneu- been described (15,25,27,36). All the patients reported have had monia and slight icterus. During early childhood, he suffered from 86 DICARBOXYLIC ACIDURIA frequent upper respiratory tract infections. One year before the present admission he had an episode of vomiting, lethargy, and fever. He recovered without treatment. Physically he was less developed than his twin sister. He suffered from a slight reduction in muscle strength and muscle tonus and he was 16 months old when he first walked alone. At the age of 2 years and 8 months he was admitted to, the hospital after 2 wk of weariness, loss of appetite, and occassional vomiting. The last 3 days before admis- sion his clinical condition deteriorated with frequent attacks of vomiting. His temperature was 38°C. At admission (August 22, 1979), he was drowsy, with normal respiration and lightly infected in the respiratory tract. Hepatomegaly was not present. Plasma glucose and pH were normal (Table 2). He was treated with i.v. glucose and electrolytes. The following day his condition deteri- orated. He became more drowsy and developed Cheyne-Stokes respiration. His temperature was normal. Blood glucose was de- creasing and a metabolic acidosis developed. Spinal glucose was low. The liver was not enlarged but the activity of liver enzymes in serum was very high (Table 2). Two days after admission (August 24, 1979) he was very lethargic and difficult to contact. Hepatomegaly was now pronounced with 100-fold increased liver enzymes. Consent for liver biopsy was not given by the parents. He suffered now from hypoglycemia and the metabolic acidosis was not fully compensated. Plasma ammonia concentration was just below the upper control limit (Table 2), and he was still undergoing treatment with glucose and electrolytes. The following day (August 25, 1979), his condition improved (Table 2). The hepatomegaly gradually decreased, but 4 wk later when he was discharged, the liver could still be palpated 7 cm below the right curvature. As before admission he suffered from a slight to mod- erate muscle hypotonia, but creatine kinase was within control limits, as it was during the crisis. Liver enzymes were normalized. One wk after the crisis the ammonia level was 37 pmole/liter. One month after discharge, the clinical condition was satisfactory, although he had reduced mus- cle strength, was slightly hypotonic and had slight hepatomegaly. Before the trials with riboflavin (100 mg 3 times a day) thorough clinical investigations secured the fact that the patient was in his habitual condition. At the time of the first trial the habitual condition was characterized by a slight hypotonia, but no hepa- tomegaly. The level of aminotransferases were slightly above controls and a slight metabolic acidosis existed (February 28, 1980 in Table 2). After both trials, the riboflavin treatment was termi- nated. The patient had a second attack of drowsiness and vomiting (July, 28, 1980). On admission, he was not hypoglycemic and metabolic acidosis was not present, but the liver was enlarged (4 cm below the curvature) and liver enzymes concentration were increased (Table 2). Riboflavin treatment was instituted at once. Within 1 wk, the patient was in a satisfactory condition again (Table 2), without having gone through lethargic and hypogly- cemic stages. One and one-half months later i.e., after 1% month of riboflavin treatment, he was in a very good condition (Table 2). Since this last attack, the patient has been treated with 100 mg riboflavin 3 times a day, except for a short period in January 198 1. After 1 wk without riboflavin the patient started vomiting, whereafter riboflavin treatment was instituted again. A few days later he was free of symptoms. During the riboflavin treatment the patient has been in a satisfactory clinical condition and is now developing normally; however, occassionally he has been fatigued and has lost his appetite. The hypotonia has decreased and the hepatomegaly has not been present since the second attack. Biochemical methods. Blood glucose, standard bicarbonate, pH, base-excess, serum aspartate aminotransferase (ASAT) and serum alanine aminotransferase (ALAT) were analysed by means of standard methods. Amino acids in serum and urine were measured with an automatic amino acid analyzer (6). Free and esterified carnitines were determined by the carnitine acetyltransferase method described by McGarry and Foster (10).
Recommended publications
  • Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida Viswanathii
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Chemical Engineering Graduate Theses Summer 8-2018 Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii Jennifer Ann Mobley Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/ chemical_engineering_grad_theses Recommended Citation Mobley, Jennifer Ann, "Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii" (2018). Graduate Theses - Chemical Engineering. 11. https://scholar.rose-hulman.edu/chemical_engineering_grad_theses/11 This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate Theses - Chemical Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose- hulman.edu. Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii A Thesis Submitted to the Faculty of Rose-Hulman Institute of Technology by Jennifer Ann Mobley In Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering August 2018 © 2018 Jennifer Ann Mobley ABSTRACT Mobley, Jennifer Ann M.S.Ch.E. Rose-Hulman Institute of Technology August 2018 Optimization of the Production of Long-Chain Dicarboxylic Acids from Distillers Corn Oil Using Candida viswanathii Thesis Advisor: Dr. Irene Reizman
    [Show full text]
  • Synthesis and Characterization of New Polyesters Based on Renewable Resources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/23262 Official URL: https://doi.org/10.1016/j.indcrop.2012.07.027 To cite this version: Waig Fang, Sandrine and Satgé-De Caro, Pascale and Pennarun, Pierre- Yves and Vaca-Garcia, Carlos and Thiebaud-Roux, Sophie Synthesis and characterization of new polyesters based on renewable resources. (2013) Industrial Crops and Products, 43. 398-404. ISSN 0926-6690 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Synthesis and characterization of new polyesters based on renewable resources Sandrine Waig Fang a , b , Pascale De Caro a , b, Pierre-Yves Pennarun c, Carlos Vaca-Garcia a , b, Sophie Thiebaud-Roux a ,b,* a Universitéde Toulouse, !NP, LCA(Laboratoire de Chimie Agro-Industrielle),4 allée Emile Monso, F 31432 Toulouse, France b UMR1010 INRA/INP-ENSIACET, Toulouse, France c 915, Route de Moundas, FR-31600 Lamasquère, France ARTICLE INFO ABSTRACT A series ofnon-crosslinked biobased polyesters were prepared from pentaerythritol and aliphatic dicar­ Keywords: boxylic acids, including fatty acids grafted as side-chains to the backbone of the polymer. The strategy Bio-based polymers Fatty acids utilized tends to create linear polymers by protecting two of the hydroxyl groups in pentaerythritol Pentaerythritol by esterification with fatty acids before the polymerization reaction.
    [Show full text]
  • Dibasic Acids for Nylon Manufacture
    - e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene
    [Show full text]
  • Glutaric Acid Production by Systems Metabolic Engineering of an L-Lysine–Overproducing Corynebacterium Glutamicum
    Glutaric acid production by systems metabolic engineering of an L-lysine–overproducing Corynebacterium glutamicum Taehee Hana, Gi Bae Kima, and Sang Yup Leea,b,c,1 aMetabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; bBioInformatics Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; and cBioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141, Daejeon, Republic of Korea Contributed by Sang Yup Lee, October 6, 2020 (sent for review August 18, 2020; reviewed by Tae Seok Moon and Blake A. Simmons) There is increasing industrial demand for five-carbon platform processes rely on nonrenewable and toxic starting materials, chemicals, particularly glutaric acid, a widely used building block however. Thus, various approaches have been taken to biologi- chemical for the synthesis of polyesters and polyamides. Here we cally produce glutaric acid from renewable resources (13–19). report the development of an efficient glutaric acid microbial pro- Naturally, glutaric acid is a metabolite of L-lysine catabolism in ducer by systems metabolic engineering of an L-lysine–overproducing Pseudomonas species, in which L-lysine is converted to glutaric Corynebacterium glutamicum BE strain. Based on our previous study, acid by the 5-aminovaleric acid (AVA) pathway (20, 21). We an optimal synthetic metabolic pathway comprising Pseudomonas previously reported the development of the first glutaric acid- putida L-lysine monooxygenase (davB) and 5-aminovaleramide amido- producing Escherichia coli by introducing this pathway compris- hydrolase (davA) genes and C.
    [Show full text]
  • ALIPHATIC DICARBOXYLIC ACIDS from OIL SHALE ORGANIC MATTER – HISTORIC REVIEW REIN VESKI(A)
    Oil Shale, 2019, Vol. 36, No. 1, pp. 76–95 ISSN 0208-189X doi: https://doi.org/10.3176/oil.2019.1.06 © 2019 Estonian Academy Publishers ALIPHATIC DICARBOXYLIC ACIDS FROM OIL SHALE ORGANIC MATTER ‒ HISTORIC REVIEW REIN VESKI(a)*, SIIM VESKI(b) (a) Peat Info Ltd, Sõpruse pst 233–48, 13420 Tallinn, Estonia (b) Department of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Abstract. This paper gives a historic overview of the innovation activities in the former Soviet Union, including the Estonian SSR, in the direct chemical processing of organic matter concentrates of Estonian oil shale kukersite (kukersite) as well as other sapropelites. The overview sheds light on the laboratory experiments started in the 1950s and subsequent extensive, triple- shift work on a pilot scale on nitric acid, to produce individual dicarboxylic acids from succinic to sebacic acids, their dimethyl esters or mixtures in the 1980s. Keywords: dicarboxylic acids, nitric acid oxidation, plant growth stimulator, Estonian oil shale kukersite, Krasava oil shale, Budagovo sapropelite. 1. Introduction According to the National Development Plan for the Use of Oil Shale 2016– 2030 [1], the oil shale industry in Estonia will consume 28 or 9.1 million tons of oil shale in the years to come in a “rational manner”, which in today’s context means the production of power, oil and gas. This article discusses the reasonability to produce aliphatic dicarboxylic acids and plant growth stimulators from oil shale organic matter concentrates. The technology to produce said acids and plant growth stimulators was developed by Estonian researchers in the early 1950s, bearing in mind the economic interests and situation of the Soviet Union.
    [Show full text]
  • Transformation of Dicarboxylic Acids by Three Airborne Fungi
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in 'Environmental Science & Technology', copyright © American Chemical Society after peer review. To access the final edited and published work https://www.sciencedirect.com/science/article/pii/S0048969707010972 doi: 10.1016/j.scitotenv.2007.10.035 Microbial and “de novo” transformation of dicarboxylic acids by three airborne fungi Valérie Côté, Gregor Kos, Roya Mortazavi, Parisa A. Ariya Abstract Micro-organisms and organic compounds of biogenic or anthropogenic origins are important constituents of atmospheric aerosols, which are involved in atmospheric processes and climate change. In order to investigate the role of fungi and their metabolisation activity, we collected airborne fungi using a biosampler in an urban location of Montreal, Quebec, Canada (45° 28′ N, 73° 45′ E). After isolation on Sabouraud dextrose agar, we exposed isolated colonies to dicarboxylic acids (C2–C7), a major group of organic aerosols and monitored their growth. Depending on the acid, total fungi numbers varied from 35 (oxalic acid) to 180 CFU/mL (glutaric acid). Transformation kinetics of malonic acid, presumably the most abundant dicarboxylic acid, at concentrations of 0.25 and 1.00 mM for isolated airborne fungi belonging to the genera Aspergillus, Penicillium, Eupenicillium, and Thysanophora with the fastest transformation rate are presented. The initial concentration was halved within 4.5 and 11.4 days. Other collected fungi did not show a significant degradation and the malonic acid concentration remained unchanged (0.25 and 1.00 mM) within 20 days. Degradation of acid with formation of metabolites was followed using high performance liquid chromatography-ultraviolet detection (HPLC/UV) and gas chromatography–mass spectrometry (GC/MS), as well as monitoring of 13C labelled malonic acid degradation with solid-state nuclear magnetic resonance spectroscopy (NMR).
    [Show full text]
  • 8342 RA Rosin Flux Paste
    8342 RA Rosin Flux Paste MG Chemicals UK Limited Version No: A-1.0 2 Issue Date: 12/08/2019 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 14/01/2021 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 8342 Synonyms SDS Code: 8342; 8342-50G | UFI: MKH0-J0US-C00M-20WV Other means of identification RA Rosin Flux Paste 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses flux paste Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone numbers +(44) 20 35147487 Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to regulation (EC) No 1272/2008 H334 - Respiratory Sensitizer Category 1, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1 [CLP] [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. Label elements Hazard pictogram(s) SIGNAL WORD DANGER Hazard statement(s) H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.
    [Show full text]
  • Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites
    bioRxiv preprint doi: https://doi.org/10.1101/075176; this version posted September 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites Ruixin Zhoua, Kaustuv Basub, Hyman Hartmanc, Christopher J. Matochad, S. Kelly Searsb, Hojatollah Valib,e, and Marcelo I. Guzman*,a *Corresponding Author: [email protected] aDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506, USA; bFacility for Electron Microscopy Research, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada; cEarth, Atmosphere, and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; dDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; eDepartment of Anatomy & Cell Biology, 3640 University Street, Montreal H3A 0C7, Canada The authors declare no competing financial interest. Number of text pages: 20 Number of Figures: 9 Number of Tables: 0 bioRxiv preprint doi: https://doi.org/10.1101/075176; this version posted September 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life.
    [Show full text]
  • The Human Urine Metabolome
    The Human Urine Metabolome Souhaila Bouatra1, Farid Aziat1, Rupasri Mandal1, An Chi Guo2, Michael R. Wilson2, Craig Knox2, Trent C. Bjorndahl1, Ramanarayan Krishnamurthy1, Fozia Saleem1, Philip Liu1, Zerihun T. Dame1, Jenna Poelzer1, Jessica Huynh1, Faizath S. Yallou1, Nick Psychogios3, Edison Dong1, Ralf Bogumil4, Cornelia Roehring4, David S. Wishart1,2,5* 1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada, 3 Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 4 BIOCRATES Life Sciences AG, Innsbruck, Austria, 5 National Institute for Nanotechnology, Edmonton, Alberta, Canada Abstract Urine has long been a ‘‘favored’’ biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples.
    [Show full text]
  • Fatty Acid Oxidation
    FATTY ACID OXIDATION 1 FATTY ACIDS A fatty acid contains a long hydrocarbon chain and a terminal carboxylate group. The hydrocarbon chain may be saturated (with no double bond) or may be unsaturated (containing double bond). Fatty acids can be obtained from- Diet Adipolysis De novo synthesis 2 FUNCTIONS OF FATTY ACIDS Fatty acids have four major physiological roles. 1)Fatty acids are building blocks of phospholipids and glycolipids. 2)Many proteins are modified by the covalent attachment of fatty acids, which target them to membrane locations 3)Fatty acids are fuel molecules. They are stored as triacylglycerols. Fatty acids mobilized from triacylglycerols are oxidized to meet the energy needs of a cell or organism. 4)Fatty acid derivatives serve as hormones and intracellular messengers e.g. steroids, sex hormones and prostaglandins. 3 TRIGLYCERIDES Triglycerides are a highly concentrated stores of energy because they are reduced and anhydrous. The yield from the complete oxidation of fatty acids is about 9 kcal g-1 (38 kJ g-1) Triacylglycerols are nonpolar, and are stored in a nearly anhydrous form, whereas much more polar proteins and carbohydrates are more highly 4 TRIGLYCERIDES V/S GLYCOGEN A gram of nearly anhydrous fat stores more than six times as much energy as a gram of hydrated glycogen, which is likely the reason that triacylglycerols rather than glycogen were selected in evolution as the major energy reservoir. The glycogen and glucose stores provide enough energy to sustain biological function for about 24 hours, whereas the Triacylglycerol stores allow survival for several weeks. 5 PROVISION OF DIETARY FATTY ACIDS Most lipids are ingested in the form of triacylglycerols, that must be degraded to fatty acids for absorption across the intestinal epithelium.
    [Show full text]
  • Investigations on Acid Hydrolysis of Polyesters*
    Investigations on Acid Hydrolysis of Polyesters* E. SZABÓ-RÉTHY and I. VANCSÓ-SZMERCSÁNYI Research Institute f or the Plastics Industry, Budapest XIV Received August 31, 1971 Accepted for publication March 17, 1972 The present investigations aimed at the relationships by which the acid hydrolysis of polyesters can be treated kinetically and consequently effects of the essential variables on the acid-catalyzed hydrolysis of polyesters were determined. In this respect, our results are concerned with hydrolysis of polyesters from different types of dicarboxylic acids and diols in the presence of various acid catalysts under different conditions of reaction variables. In some cases, activation energies were also determined based on temperature dependence of the rate constants. The results may refer to the possible re­ action mechanisms. Several papers have covered the kinetics and mechanism of hydrolysis of monoesters both in acid and in alkaline media. In the fundamental work of Day and Ingold [1], the possible reaction mechanisms of ester hydrolysis were summarized and classified. The subsequent studies directed principally to supporting these mechanisms or determining the category into which a particular ester hydrolysis can be placed according to the classification reported. Studies on hydrolysis of polyesters are far less comprehensive. Only a few papers have treated this field being confined merely to investigations of hydrolyses in alkaline media [2 — 6]. The present paper deals with acid hydrolysis of polyesters connected partly with our previous studies on kinetics and mechanism of polyesterification [7-11]. Experimental The experiments were performed in inert atmosphere in two ways: 1. Hydrolysis was carried out in a double-walled thermoregulated vessel equipped with a reflux condenser.
    [Show full text]
  • Development of a Promising Microbial Platform for the Production of Dicarboxylic Acids from Biorenewable Resources
    Lee et al. Biotechnol Biofuels (2018) 11:310 https://doi.org/10.1186/s13068-018-1310-x Biotechnology for Biofuels RESEARCH Open Access Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources Heeseok Lee1,2, Changpyo Han1, Hyeok‑Won Lee1, Gyuyeon Park1,2, Wooyoung Jeon1, Jungoh Ahn1 and Hongweon Lee1* Abstract Background: As a sustainable industrial process, the production of dicarboxylic acids (DCAs), used as precursors of polyamides, polyesters, perfumes, plasticizers, lubricants, and adhesives, from vegetable oil has continuously garnered interest. Although the yeast Candida tropicalis has been used as a host for DCA production, additional strains are continually investigated to meet productivity thresholds and industrial needs. In this regard, the yeast Wickerhamiella sorbophila, a potential candidate strain, has been screened. However, the lack of genetic and physiological informa‑ tion for this uncommon strain is an obstacle that merits further research. To overcome this limitation, we attempted to develop a method to facilitate genetic recombination in this strain and produce high amounts of DCAs from methyl laurate using engineered W. sorbophila. Results: In the current study, we frst developed efcient genetic engineering tools for the industrial application of W. sorbophila. To increase homologous recombination (HR) efciency during transformation, the cell cycle of the yeast was synchronized to the S/G2 phase using hydroxyurea. The HR efciency at POX1 and POX2 loci increased from 56.3% and 41.7%, respectively, to 97.9% in both cases. The original HR efciency at URA3 and ADE2 loci was nearly 0% during the early stationary and logarithmic phases of growth, and increased to 4.8% and 25.6%, respectively.
    [Show full text]