LSTM Vs Random Forest for Binary Classification of Insurance Related Text
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Malware Classification with BERT
San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-25-2021 Malware Classification with BERT Joel Lawrence Alvares Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons Malware Classification with Word Embeddings Generated by BERT and Word2Vec Malware Classification with BERT Presented to Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree By Joel Alvares May 2021 Malware Classification with Word Embeddings Generated by BERT and Word2Vec The Designated Project Committee Approves the Project Titled Malware Classification with BERT by Joel Lawrence Alvares APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE San Jose State University May 2021 Prof. Fabio Di Troia Department of Computer Science Prof. William Andreopoulos Department of Computer Science Prof. Katerina Potika Department of Computer Science 1 Malware Classification with Word Embeddings Generated by BERT and Word2Vec ABSTRACT Malware Classification is used to distinguish unique types of malware from each other. This project aims to carry out malware classification using word embeddings which are used in Natural Language Processing (NLP) to identify and evaluate the relationship between words of a sentence. Word embeddings generated by BERT and Word2Vec for malware samples to carry out multi-class classification. BERT is a transformer based pre- trained natural language processing (NLP) model which can be used for a wide range of tasks such as question answering, paraphrase generation and next sentence prediction. However, the attention mechanism of a pre-trained BERT model can also be used in malware classification by capturing information about relation between each opcode and every other opcode belonging to a malware family. -
No-Decision Classification: an Alternative to Testing for Statistical
The Journal of Socio-Economics 33 (2004) 631–650 No-decision classification: an alternative to testing for statistical significance Nathan Berga,b,∗ a School of Social Sciences, University of Texas at Dallas, GR 31 211300, Box 830688, Richardson, TX 75083-0688, USA b Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development, Berlin, Germany Abstract This paper proposes a new statistical technique for deciding which of two theories is better supported by a given set of data while allowing for the possibility of drawing no conclusion at all. Procedurally similar to the classical hypothesis test, the proposed technique features three, as opposed to two, mutually exclusive data classifications: reject the null, reject the alternative, and no decision. Referred to as No-decision classification (NDC), this technique requires users to supply a simple null and a simple alternative hypothesis based on judgments concerning the smallest difference that can be regarded as an economically substantive departure from the null. In contrast to the classical hypothesis test, NDC allows users to control both Type I and Type II errors by specifying desired probabilities for each. Thus, NDC integrates judgments about the economic significance of estimated magnitudes and the shape of the loss function into a familiar procedural form. © 2004 Elsevier Inc. All rights reserved. JEL classification: C12; C44; B40; A14 Keywords: Significance; Statistical significance; Economic significance; Hypothesis test; Critical region; Type II; Power ∗ Corresponding author. Tel.: +1 972 883 2088; fax +1 972 883 2735. E-mail address: [email protected]. 1053-5357/$ – see front matter © 2004 Elsevier Inc. All rights reserved. -
Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection
Technological University Dublin ARROW@TU Dublin Articles School of Science and Computing 2018-7 Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection Iftikhar Ahmad King Abdulaziz University, Saudi Arabia, [email protected] MUHAMMAD JAVED IQBAL UET Taxila MOHAMMAD BASHERI King Abdulaziz University, Saudi Arabia See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/ittsciart Part of the Computer Sciences Commons Recommended Citation Ahmad, I. et al. (2018) Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection, IEEE Access, vol. 6, pp. 33789-33795, 2018. DOI :10.1109/ACCESS.2018.2841987 This Article is brought to you for free and open access by the School of Science and Computing at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Authors Iftikhar Ahmad, MUHAMMAD JAVED IQBAL, MOHAMMAD BASHERI, and Aneel Rahim This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/ittsciart/44 SPECIAL SECTION ON SURVIVABILITY STRATEGIES FOR EMERGING WIRELESS NETWORKS Received April 15, 2018, accepted May 18, 2018, date of publication May 30, 2018, date of current version July 6, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2841987 -
Machine Learning Methods for Classification of the Green
International Journal of Geo-Information Article Machine Learning Methods for Classification of the Green Infrastructure in City Areas Nikola Kranjˇci´c 1,* , Damir Medak 2, Robert Župan 2 and Milan Rezo 1 1 Faculty of Geotechnical Engineering, University of Zagreb, Hallerova aleja 7, 42000 Varaždin, Croatia; [email protected] 2 Faculty of Geodesy, University of Zagreb, Kaˇci´ceva26, 10000 Zagreb, Croatia; [email protected] (D.M.); [email protected] (R.Ž.) * Correspondence: [email protected]; Tel.: +385-95-505-8336 Received: 23 August 2019; Accepted: 21 October 2019; Published: 22 October 2019 Abstract: Rapid urbanization in cities can result in a decrease in green urban areas. Reductions in green urban infrastructure pose a threat to the sustainability of cities. Up-to-date maps are important for the effective planning of urban development and the maintenance of green urban infrastructure. There are many possible ways to map vegetation; however, the most effective way is to apply machine learning methods to satellite imagery. In this study, we analyze four machine learning methods (support vector machine, random forest, artificial neural network, and the naïve Bayes classifier) for mapping green urban areas using satellite imagery from the Sentinel-2 multispectral instrument. The methods are tested on two cities in Croatia (Varaždin and Osijek). Support vector machines outperform random forest, artificial neural networks, and the naïve Bayes classifier in terms of classification accuracy (a Kappa value of 0.87 for Varaždin and 0.89 for Osijek) and performance time. Keywords: green urban infrastructure; support vector machines; artificial neural networks; naïve Bayes classifier; random forest; Sentinel 2-MSI 1. -
Random Forest Regression of Markov Chains for Accessible Music Generation
Random Forest Regression of Markov Chains for Accessible Music Generation Vivian Chen Jackson DeVico Arianna Reischer [email protected] [email protected] [email protected] Leo Stepanewk Ananya Vasireddy Nicholas Zhang [email protected] [email protected] [email protected] Sabar Dasgupta* [email protected] New Jersey’s Governor’s School of Engineering and Technology July 24, 2020 *Corresponding Author Abstract—With the advent of machine learning, new generative algorithms have expanded the ability of computers to compose creative and meaningful music. These advances allow for a greater balance between human input and autonomy when creating original compositions. This project proposes a method of melody generation using random forest regression, which in- creases the accessibility of generative music models by addressing the downsides of previous approaches. The solution generalizes the concept of Markov chains while avoiding the excessive computational costs and dataset requirements associated with past models. To improve the musical quality of the outputs, the model utilizes post-processing based on various scoring metrics. A user interface combines these modules into an application that achieves the ultimate goal of creating an accessible generative music model. Fig. 1. A screenshot of the user interface developed for this project. I. INTRODUCTION One of the greatest challenges in making generative music is emulating human artistic expression. DeepMind’s generative II. BACKGROUND audio model, WaveNet, attempts this challenge, but requires A. History of Generative Music large datasets and extensive training time to produce qual- ity musical outputs [1]. Similarly, other music generation The term “generative music,” first popularized by English algorithms such as MelodyRNN, while effective, are also musician Brian Eno in the late 20th century, describes the resource intensive and time-consuming. -
Evaluating the Combination of Word Embeddings with Mixture of Experts and Cascading Gcforest in Identifying Sentiment Polarity
Evaluating the Combination of Word Embeddings with Mixture of Experts and Cascading gcForest In Identifying Sentiment Polarity by Mounika Marreddy, Subba Reddy Oota, Radha Agarwal, Radhika Mamidi in 25TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (SIGKDD-2019) Anchorage, Alaska, USA Report No: IIIT/TR/2019/-1 Centre for Language Technologies Research Centre International Institute of Information Technology Hyderabad - 500 032, INDIA August 2019 Evaluating the Combination of Word Embeddings with Mixture of Experts and Cascading gcForest In Identifying Sentiment Polarity Mounika Marreddy Subba Reddy Oota [email protected] IIIT-Hyderabad IIIT-Hyderabad Hyderabad, India Hyderabad, India [email protected] [email protected] Radha Agarwal Radhika Mamidi IIIT-Hyderabad IIIT-Hyderabad Hyderabad, India Hyderabad, India [email protected] [email protected] ABSTRACT an effective neural networks to generate low dimensional contex- Neural word embeddings have been able to deliver impressive re- tual representations and yields promising results on the sentiment sults in many Natural Language Processing tasks. The quality of analysis [7, 14, 21]. the word embedding determines the performance of a supervised Since the work of [2], NLP community is focusing on improving model. However, choosing the right set of word embeddings for a the feature representation of sentence/document with continuous given dataset is a major challenging task for enhancing the results. development in neural word embedding. Word2Vec embedding In this paper, we have evaluated neural word embeddings with was the first powerful technique to achieve semantic similarity (i) a mixture of classification experts (MoCE) model for sentiment between words but fail to capture the meaning of a word based classification task, (ii) to compare and improve the classification on context [17]. -
Comparison of Machine Learning Techniques When Estimating Probability of Impairment
Comparison of Machine Learning Techniques when Estimating Probability of Impairment Estimating Probability of Impairment through Identification of Defaulting Customers one year Ahead of Time Authors: Supervisors: Alexander Eriksson Prof. Oleg Seleznjev Jacob Långström Xun Su June 13, 2019 Student Master thesis, 30 hp Degree Project in Industrial Engineering and Management Spring 2019 Abstract Probability of Impairment, or Probability of Default, is the ratio of how many customers within a segment are expected to not fulfil their debt obligations and instead go into Default. This isakey metric within banking to estimate the level of credit risk, where the current standard is to estimate Probability of Impairment using Linear Regression. In this paper we show how this metric instead can be estimated through a classification approach with machine learning. By using models trained to find which specific customers will go into Default within the upcoming year, based onNeural Networks and Gradient Boosting, the Probability of Impairment is shown to be more accurately estimated than when using Linear Regression. Additionally, these models provide numerous real-life implementations internally within the banking sector. The new features of importance we found can be used to strengthen the models currently in use, and the ability to identify customers about to go into Default let banks take necessary actions ahead of time to cover otherwise unexpected risks. Key Words Classification, Imbalanced Data, Machine Learning, Probability of Impairment, Risk Management Sammanfattning Titeln på denna rapport är En jämförelse av maskininlärningstekniker för uppskattning av Probability of Impairment. Uppskattningen av Probability of Impairment sker genom identifikation av låntagare som inte kommer fullfölja sina återbetalningsskyldigheter inom ett år. -
10-601 Machine Learning, Project Phase1 Report Random Forest
10-601 Machine Learning, Project Phase1 Report Group Name: DEADLINE Team Member: Zhitao Pei (zhitaop), Sean Hao (xinhao) Random Forest Environment: Weka 3.6.11 Data: Full dataset Parameters: 200 trees 400 features 1 seed Unlimited max depth of trees Accuracy: The training takes about half an hour and achieve an accuracy of 39.886%. Explanation: The reason we choose it is that random forest learner will usually give good performance compared to other classifiers. Decision tree is one of the best classifiers as the ranking showed in the class. Random forest is an ensemble of decision trees which is able to reduce the variance and give a better and unbiased result compared to other decision tree. The error mostly occurs when the images are hard to tell the difference simply based on the grid. Multilayer Perceptron Environment: Weka 3.6.11 Parameters: Hidden Layer: 3 Learning Rate: 0.3 Momentum: 0.2 Training Time: 500 Validation Threshold: 20 Accuracy: 27.448% Explanation: I chose Neural Network because I consider the features are independent since they are pixels of picture. To get the relationships between those pixels, a good way is weight different features and combine them to get a result. Multilayer perceptron is perfectly match with my imagination. However, training Multilayer perceptrons consumes huge time once there are many nodes in hidden layer. So I indicates that the node in hidden layer only could be 3. It is bad but that's a sort of trade off. In next phase, I will try to construct different Neural Network structure to reduce the training time and improve model accuracy. -
Binary Classification Models with “Uncertain” Predictions
Binary classification models with “Uncertain” predictions Damjan Krstajic1§, Ljubomir Buturovic2, Simon Thomas3, David E Leahy4 1Research Centre for Cheminformatics, Jasenova 7, 11030 Beograd, Serbia 2Clinical Persona, 932 Mouton Circle, East Palo Alto, CA 94303, USA 3Cyprotex Discovery Ltd, No. 24 Mereside, Alderley Park, Macclesfield SK10 4TG, UK 4Discovery Bus Ltd, The Oakridge Centre, Gibhill Farm, Shrigley Rd, Macclesfield, SK10 5SE, UK §Corresponding author Email addresses: DK: [email protected] LB: [email protected] ST: [email protected] DEL: [email protected] - 1 - Abstract Binary classification models which can assign probabilities to categories such as “the tissue is 75% likely to be tumorous” or “the chemical is 25% likely to be toxic” are well understood statistically, but their utility as an input to decision making is less well explored. We argue that users need to know which is the most probable outcome, how likely that is to be true and, in addition, whether the model is capable enough to provide an answer. It is the last case, where the potential outcomes of the model explicitly include ‘don’t know’ that is addressed in this paper. Including this outcome would better separate those predictions that can lead directly to a decision from those where more data is needed. Where models produce an “Uncertain” answer similar to a human reply of “don’t know” or “50:50” in the examples we refer to earlier, this would translate to actions such as “operate on tumour” or “remove compound from use” where the models give a “more true than not” answer. -
Social Dating: Matching and Clustering
Social Dating: Matching and Clustering SangHyeon (Alex) Ahn Jin Yong Shin 3900 North Charles St 3900 North Charles St Baltimore, MD 21218, USA Baltimore, MD 21218, USA [email protected] [email protected] Abstract 1 Introduction Purpose of the paper was to apply machine learn- Social dating is a stage of interpersonal rela- ing algorithms for Social Dating problems and build tionship between two individuals for with the tools to be used for smarter decision making in aim of each assessing the other’s suitability as matching process. We used the data from Speed Dat- a partner in a more committed intimate rela- ing Experiment (of 21 waves) which includes each tionship or marriage. Today, many individ- candidate’s demographic attributes and preferences. uals spend a lot of money, time, and effort We have selected relevant features to provide the for the search of their true partners. Some most informative data and used SQL to inner join reasons for the inefficiency in seeking sexual partners include limited pool of candidates, missing feature variables. lack of transparency in uncovering personal- We implemented Machine Learning algorithms ities, and the nature of time consumption in (without the use of external libraries) to perform building relationships. Finding the right part- (1) binary classifications to predict a date match ner in a machine driven automated process can between a candidate and a potential partner, and be beneficial towards increasing efficiency in (2) clustering analysis on candidates to use narrow the following aspects: reduced time and ef- down a pool of candidates by demographic traits fort, a larger pool, and a level of quantita- and partner preferences. -
How Will AI Shape the Future of Law?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto How Will AI Shape the Future of Law? EDITED BY RIIKKA KOULU & LAURA KONTIAINEN 2019 Acknowledgements The editors and the University of Helsinki Legal Tech Lab would like to thank the authors and interviewees for the time and effort they put into their papers. We would also like to thank the Faculty of Law at University of Helsinki and particularly the continuous kind support of Professor Kimmo Nuotio, the former dean of the faculty and the Lab’s unofficial godfather, for facilitating the Lab’s development and for helping us make the second Legal Tech Conference happen. In addition, we would like to express our gratitude to the conference sponsors, Finnish Bar Association, the Association of Finnish Lawyers, Edita Publishing, Attorneys at Law Fondia and Attorneys at Law Roschier as well as the Legal Design Summit community for their support. It takes a village to raise a conference. Therefore, we would like to thank everyone whose time and commitment has turned the conference and this publication from an idea into reality. Thank you to the attendees, speakers, volunteers and Legal Tech Lab crew members. RIIKKA KOULU & LAURA KONTIAINEN Legal Tech Lab, University of Helsinki 2019 University of Helsinki Legal Tech Lab publications © Authors and Legal Tech Lab ISBN 978-951-51-5476-7 (print) ISBN 978-951-51-5477-4 (PDF) Print Veiters Helsinki 2019 Contents Foreword 009 KIMMO NUOTIO I Digital Transformation of -
Evaluation of Adaptive Random Forest Algorithm for Classification of Evolving Data Stream
DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2020 Evaluation of Adaptive random forest algorithm for classification of evolving data stream AYHAM ALKAZAZ MARWA SAADO KHAROUKI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Evaluation of Adaptive random forest algorithm for classification of evolving data stream AYHAM ALKAZAZ & MARWA SAADO KHAROUKI Degree Project in Computer Science Date: August 16, 2020 Supervisor: Erik Fransén Examiner: Pawel Herman School of Electrical Engineering and Computer Science Swedish title: Evaluering av Adaptive random forest algoritm för klassificering av utvecklande dataström Abstract In the era of big data, online machine learning algorithms have gained more and more traction from both academia and industry. In multiple scenarios de- cisions and predictions has to be made in near real-time as data is observed from continuously evolving data streams. Offline learning algorithms fall short in different ways when it comes to handling such problems. Apart from the costs and difficulties of storing these data streams in storage clusters and the computational difficulties associated with retraining the models each time new data is observed in order to keep the model up to date, these methods also don't have built-in mechanisms to handle seasonality and non-stationary data streams. In such streams, the data distribution might change over time in what is called concept drift. Adaptive random forests are well studied and effective for online learning and non-stationary data streams. By using bagging and drift detection mechanisms adaptive random forests aim to improve the accuracy and performance of traditional random forests for online learning.