Phil 312: Intermediate Logic, Precept 11

Total Page:16

File Type:pdf, Size:1020Kb

Phil 312: Intermediate Logic, Precept 11 Phil 312: Intermediate Logic, Precept 11. Alejandro Naranjo Sandoval, [email protected] 1879 Hall, 227 http://scholar.princeton.edu/ansandoval/classes/phi-312-intermediate-logic 1. Stone Duality: From Boolean Algebras to Stone Spaces. • The main result we will prove this week is the Stone Duality theorem, i.e., the theorem that the categories Bool and Stone are duals of each other. Here I'll review quickly this result. • To show this theorem, one needs to show that, given a Boolean Algebra, one can construct a Stone Space corresponding to it, and vice versa. So let's give ourselves a Boolean Algebra B. Let hom(B; 2) be the set of states of B (i.e., homomorphisms from B to 2). Now, given a 2 B, some states of B might map it to 1, some might map it to 0. So, in particular, we can consider the set of states of B which map a to 1: Ua = fφ 2 hom(B; 2) j φ(a) = 1g: • The family of set B = fUa j a 2 Bg generates a topology on hom(B; 2) (i.e., let T be the family of (potentially arbitrary) union of elements of B. Make sure you see that T is a topology and B is a basis of T ). • We define S(B) to be the set hom(B; 2) equipped with this topology T . As was proved in class, this topological space is a Stone Space, i.e., it is (i) totally separated, and (ii) compact. 2. Stone Duality: From Stone Spaces to Boolean Algebras. • Now given a Stone Space X. (Suppose this is a set X with a topology T ). Then, define K(X) ⊆ T to be the set of clopen subsets of X. Note that K(X) is never empty, since X; ; 2 K(X). So define 1K(X) := X, 0K(X) := ;, and the Boolean operations to be the usual set-theoretic operations (make sure you see that the union and intersection of clopen sets is clopen, and that X n U, for U clopen, is also clopen). Hence we get that K(X) is a Boolean algebra. 3. An application of Stone Duality. • Example 1. A Boolean algebra has n atoms (recall: a 2 B is an atom iff if b ≤ a is non-zero, then b = a) iff its corresponding Stone Space X has n isolated points (x 2 X is an isolated point of X iff fxg is open in X). Proof. ()) Suppose a 2 B is an atom. Hint: Consider f 2 hom(B; 2) as defined in PSet6 by f(x) = 1 iff a ≤ x. The claim will be that ffg is open in S(B). (() Let fxg be open in the Stone space X. Hint: last precept we proved that every 1 finite set in a Hausdorff space is closed. Also, we know that Stone spaces are Hausdorff. In precept 8, I (almost) proved that the atoms of a theory T are in bijection with the atoms of its corresponding Boolean algebra. So now we have that these are also in bijection with the isolated points of the corresponding Stone space. 4. A brief word about the Cantor Set. • Let's define the Cantor set C first. Let I0 be the closed unit interval [0; 1] in the real line R. This set has two disconnected closed segments contained in it, namely 1 2 L = 0; 3 and R = 3 ; 1 . Let I1 = L [ R. In turn, each of these segments will 1 2 1 contain two subsegments, i.e., L contains LL = 0; 9 and LR = 9 ; 3 ; R contains 2 7 8 RL = 3 ; 9 and RR = 9 ; 1 . Let I2 = LL [ LR [ RL [ RR. We can continue this process ad infinitum, i.e., by deleting the open middle third of each subsegment, thus 1 2 1 creating two closed subsubsegments. (In other words, Ii+1 = 3 Ii [ 3 + 3 Ii ). So let \ C = Ii: i=0;1;2;::: • (Note that this defines C as a subset of R. For it to be a topological space, we equip it with a topology. This topology is the subspace topology, as defined in precept last time.) • We can prove various properties of the Cantor space. For example, it is uncountably infinite (optional: this is another application of a diagonal argument. For x 2 C, the position of x in C can be represented by a string of Ls and Rs, depending on where x is in each of the two subsegments of each Ii. So suppose we have a list of all elements in C. Then we can form one y 2 X which is not in the list by making it's i-th letter R iff the i-th letter of the i-th element of the list is L). • Example 2. The Cantor Space is a Stone Space. Proof. Hint: (i) for compactness, you can assume that closed intervals (i.e., sets of the form [a; b]) of R are closed and compact. (ii) To prove that it is totally disconnected, use that two distinct x; y 2 C differ in at least one letter, when they are represented as strings of Ls and Rs. • Example 3. (Optional). The Stone Space of a finitely axiomatizable theory T (with axioms p0; p1; : : : ; pn) is a clopen subset of the Cantor set. m m+1 Proof. Consider a subsegment S = 3k ; 3k \C of C. Then C nS is closed (since it is the union of segments of the same form). Hence S is open. So subsegments of that sort are clopen. This is the intuitive idea of the proof: a model of T corresponds to one of those subsegments of C. The truth of each propositional constant can be represented in the Cantor set as a choice of whether to \to go" right or left at each juncture, say, if true go left, otherwise go right. Only finitely many propositional constants are relevant to the truth of the axioms of T . So the models of T can be represented in the Cantor m m+1 set as a finite string of Ls and Rs, i.e., as a subsegment of the form 3k ; 3k \ C, and we are done. 2 • Example 4. Let T be the theory with axioms p0 ! pi, for i = 1; 2;:::. Show that there is no finitely axiomatizable theory T 0 (in the same signature) that is equivalent to T . Proof. If T 0 is finitely axiomatizable, then by Example 3 it corresponds to a clopen subset of the Cantor space C. On the other hand, as you proved in PSet 1, p0 is an atom of T . So, by Example 1, there is an isolated point in the Stone space corresponding to T . But in the real numbers no open set can contain an isolated point (intuitively: any neighborhood of the isolated point will intersect with an open set in infinitely more points). So Mod(T ) is not open in C. So T 0 and T are not equivalent. 5. Warm-up for final exercise: More applications of Stone Duality. Try these at home, and let me know if you need some help. (Some hints are included). • Example 5. A Stone space is separable (i.e. has a countable basis) iff the corresponding Boolean algebra is countable. Proof. (( ) Suppose B is a countable Boolean algebra. Hint: Straightforward. Use definition of S(B). • Example 6. A Stone space is discrete iff the corresponding Boolean algebra is finite. Proof. (( ) Given a finite Boolean algebra B. Hint: Since in the last precept we proved that finite sets in Hausdorff spaces are closed, and given that Stone spaces are Hausdorff, it suffices to prove that S(B) is finite. 3.
Recommended publications
  • Stone Coalgebras
    Electronic Notes in Theoretical Computer Science 82 No. 1 (2003) URL: http://www.elsevier.nl/locate/entcs/volume82.html 21 pages Stone Coalgebras Clemens Kupke 1 Alexander Kurz 2 Yde Venema 3 Abstract In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen as Stone coalgebras in a natural way. This yields a duality between the category of modal algebras and that of coalgebras over the Vietoris functor. Building on this idea, we introduce the notion of a Vietoris polynomial functor over the category of Stone spaces. For each such functor T we establish a link between the category of T -sorted Boolean algebras with operators and the category of Stone coalgebras over T . Applications include a general theorem providing final coalgebras in the category of T -coalgebras. Key words: coalgebra, Stone spaces, Vietoris topology, modal logic, descriptive general frames, Kripke polynomial functors 1 Introduction Technically, every coalgebra is based on a carrier which itself is an object in the so-called base category. Most of the literature on coalgebras either focuses on Set as the base category, or takes a very general perspective, allowing arbitrary base categories, possibly restricted by some constraints. The aim of this paper is to argue that, besides Set, the category Stone of Stone spaces is of relevance as a base category.
    [Show full text]
  • Arxiv:2101.00942V2 [Math.CT] 31 May 2021 01Ascainfrcmuigmachinery
    Reiterman’s Theorem on Finite Algebras for a Monad JIŘÍ ADÁMEK∗, Czech Technical University in Prague, Czech Recublic, and Technische Universität Braun- schweig, Germany LIANG-TING CHEN, Academia Sinica, Taiwan STEFAN MILIUS†, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany HENNING URBAT‡, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper, Reiterman’s theorem is generalized to finite Eilenberg- Moore algebras for a monad T on a category D: we prove that a class of finite T-algebras is a pseudovariety iff it is presentable by profinite equations. As a key technical tool, we introduce the concept of a profinite monad T associated to the monad T, which gives a categorical view of the construction of the space of profinite terms. b CCS Concepts: • Theory of computation → Algebraic language theory. Additional Key Words and Phrases: Monad, Pseudovariety, Profinite Algebras ACM Reference Format: Jiří Adámek, Liang-Ting Chen, Stefan Milius, and Henning Urbat. 2021. Reiterman’s Theorem on Finite Al- gebras for a Monad. 1, 1 (June 2021), 49 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION One of the main principles of both mathematics and computer science is the specification of struc- tures in terms of equational properties. The first systematic study of equations as mathematical objects was pursued by Birkhoff [7] who proved that a class of algebraic structures over a finitary signature Σ can be specified by equations between Σ-terms if and only if it is closed under quo- tient algebras (a.k.a.
    [Show full text]
  • TOPOLOGY and ITS APPLICATIONS the Number of Complements in The
    TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 55 (1994) 101-125 The number of complements in the lattice of topologies on a fixed set Stephen Watson Department of Mathematics, York Uniuersity, 4700 Keele Street, North York, Ont., Canada M3J IP3 (Received 3 May 1989) (Revised 14 November 1989 and 2 June 1992) Abstract In 1936, Birkhoff ordered the family of all topologies on a set by inclusion and obtained a lattice with 1 and 0. The study of this lattice ought to be a basic pursuit both in combinatorial set theory and in general topology. In this paper, we study the nature of complementation in this lattice. We say that topologies 7 and (T are complementary if and only if 7 A c = 0 and 7 V (T = 1. For simplicity, we call any topology other than the discrete and the indiscrete a proper topology. Hartmanis showed in 1958 that any proper topology on a finite set of size at least 3 has at least two complements. Gaifman showed in 1961 that any proper topology on a countable set has at least two complements. In 1965, Steiner showed that any topology has a complement. The question of the number of distinct complements a topology on a set must possess was first raised by Berri in 1964 who asked if every proper topology on an infinite set must have at least two complements. In 1969, Schnare showed that any proper topology on a set of infinite cardinality K has at least K distinct complements and at most 2” many distinct complements.
    [Show full text]
  • Math 501. Homework 2 September 15, 2009 ¶ 1. Prove Or
    Math 501. Homework 2 September 15, 2009 ¶ 1. Prove or provide a counterexample: (a) If A ⊂ B, then A ⊂ B. (b) A ∪ B = A ∪ B (c) A ∩ B = A ∩ B S S (d) i∈I Ai = i∈I Ai T T (e) i∈I Ai = i∈I Ai Solution. (a) True. (b) True. Let x be in A ∪ B. Then x is in A or in B, or in both. If x is in A, then B(x, r) ∩ A , ∅ for all r > 0, and so B(x, r) ∩ (A ∪ B) , ∅ for all r > 0; that is, x is in A ∪ B. For the reverse containment, note that A ∪ B is a closed set that contains A ∪ B, there fore, it must contain the closure of A ∪ B. (c) False. Take A = (0, 1), B = (1, 2) in R. (d) False. Take An = [1/n, 1 − 1/n], n = 2, 3, ··· , in R. (e) False. ¶ 2. Let Y be a subset of a metric space X. Prove that for any subset S of Y, the closure of S in Y coincides with S ∩ Y, where S is the closure of S in X. ¶ 3. (a) If x1, x2, x3, ··· and y1, y2, y3, ··· both converge to x, then the sequence x1, y1, x2, y2, x3, y3, ··· also converges to x. (b) If x1, x2, x3, ··· converges to x and σ : N → N is a bijection, then xσ(1), xσ(2), xσ(3), ··· also converges to x. (c) If {xn} is a sequence that does not converge to y, then there is an open ball B(y, r) and a subsequence of {xn} outside B(y, r).
    [Show full text]
  • Isolated Points, Duality and Residues
    JOURNAL OF PURE AND APPLIED ALGEBRA Journal of Pure and Applied Algebra 117 % 118 (1997) 469-493 Isolated points, duality and residues B . Mourrain* INDIA, Projet SAFIR, 2004 routes des Lucioles, BP 93, 06902 Sophia-Antipolir, France This work is dedicated to the memory of J. Morgenstem. Abstract In this paper, we are interested in the use of duality in effective computations on polynomials. We represent the elements of the dual of the algebra R of polynomials over the field K as formal series E K[[a]] in differential operators. We use the correspondence between ideals of R and vector spaces of K[[a]], stable by derivation and closed for the (a)-adic topology, in order to construct the local inverse system of an isolated point. We propose an algorithm, which computes the orthogonal D of the primary component of this isolated point, by integration of polynomials in the dual space K[a], with good complexity bounds. Then we apply this algorithm to the computation of local residues, the analysis of real branches of a locally complete intersection curve, the computation of resultants of homogeneous polynomials. 0 1997 Elsevier Science B.V. 1991 Math. Subj. Class.: 14B10, 14Q20, 15A99 1. Introduction Considering polynomials as algorithms (that compute a value at a given point) in- stead of lists of terms, has lead to recent interesting developments, both from a practical and a theoretical point of view. In these approaches, evaluations at points play an im- portant role. We would like to pursue this idea further and to study evaluations by themselves.
    [Show full text]
  • Math 3283W: Solutions to Skills Problems Due 11/6 (13.7(Abc)) All
    Math 3283W: solutions to skills problems due 11/6 (13.7(abc)) All three statements can be proven false using counterexamples that you studied on last week's skills homework. 1 (a) Let S = f n jn 2 Ng. Every point of S is an isolated point, since given 1 1 1 n 2 S, there exists a neighborhood N( n ; ") of n that contains no point of S 1 1 1 different from n itself. (We could, for example, take " = n − n+1 .) Thus the set P of isolated points of S is just S. But P = S is not closed, since 0 is a boundary point of S which nevertheless does not belong to S (every neighbor- 1 hood of 0 contains not only 0 but, by the Archimedean property, some n , thus intersects both S and its complement); if S were closed, it would contain all of its boundary points. (b) Let S = N. Then (as you saw on the last skills homework) int(S) = ;. But ; is closed, so its closure is itself; that is, cl(int(S)) = cl(;) = ;, which is certainly not the same thing as S. (c) Let S = R n N. The closure of S is all of R, since every natural number n is a boundary point of R n N and thus belongs to its closure. But R is open, so its interior is itself; that is, int(cl(S)) = int(R) = R, which is certainly not the same thing as S. (13.10) Suppose that x is an isolated point of S, and let N = (x − "; x + ") (for some " > 0) be an arbitrary neighborhood of x.
    [Show full text]
  • REVERSIBLE FILTERS 1. Introduction a Topological Space X Is Reversible
    REVERSIBLE FILTERS ALAN DOW AND RODRIGO HERNANDEZ-GUTI´ ERREZ´ Abstract. A space is reversible if every continuous bijection of the space onto itself is a homeomorphism. In this paper we study the question of which countable spaces with a unique non-isolated point are reversible. By Stone duality, these spaces correspond to closed subsets in the Cech-Stoneˇ compact- ification of the natural numbers β!. From this, the following natural problem arises: given a space X that is embeddable in β!, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the solution to this problem in some cases. It is especially interesting whether the image of the required embedding is a weak P -set. 1. Introduction A topological space X is reversible if every time that f : X ! X is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces Rn (by the Brouwer invariance of domain theorem) and the space ! [ fpg, where p is an ultrafilter, as a subset of β!. This last example is of interest to us. Given a filter F ⊂ P(!), consider the space ξ(F) = ! [ fFg, where every point of ! is isolated and every neighborhood of F is of the form fFg [ A with A 2 F. Spaces of the form ξ(F) have been studied before, for example by Garc´ıa-Ferreira and Uzc´ategi([6] and [7]).
    [Show full text]
  • Some Limits of Boolean Algebras
    SOME LIMITS OF BOOLEAN ALGEBRAS FRANKLIN HAIMO 1. Introduction. Inverse systems of topological spaces and direct and inverse systems of Abelian groups and resulting applications thereof to algebraic topology have been studied intensively, and the techniques employed are now standard [2]. (Numbers in brackets refer to the bibliography at the end of the paper.) We shall apply some of these ideas to the treatment of sets of Boolean algebras in order to obtain, in the inverse case, a representation, and, in both cases, some information about the ideals and about the decompositions of certain algebras. For instance, it is well known [l] that the cardinal product B* of a set {Ba} of Boolean algebras, indexed by a class A, is also a Boolean algebra. Moreover, if each Ba is m-complete for some fixed cardinal m [3], then B* is m-complete. When A is a set partly ordered by = and directed thereby, and when the Ba form an inverse system (to be defined below), we shall show that the re- sulting inverse limit set is a Boolean algebra, a subalgebra of B*, and a similar result will hold in the direct case, at least in part.1 For each nonfinite Boolean algebra B, there will be constructed a nontrivial inverse limit representation of B, the inverse limit of all principal ideals [3] of B (with repetitions). In the direct case, ideals in the limit algebra (and the homomorphic algebras which they generate) will turn out to be direct limits of like objects. Direct decomposition into ideals of the direct limit takes place (it will be seen) if there is a similar decomposition in each Ba.
    [Show full text]
  • Categories of Certain Minimal Topological Spaces
    CATEGORIES OF CERTAIN MINIMAL TOPOLOGICAL SPACES MANUEL P. BERRI1 (received 9 September 1963) The main purpose of this paper is to discuss the categories of the minimal topological spaces investigated in [1], [2], [7], and [8]. After these results are given, an application will be made to answer the following question: If 2 is the lattice of topologies on a set X and % is a Hausdorff (or regular, or completely regular, or normal, or locally compact) topology does there always exist a minimal Hausdorff (or minimal regular, or minimal com- pletely regular, or minimal normal, or minimal locally compact) topology weaker than %1 The terminology used in this paper, in general, will be that found in Bourbaki: [3], [4], and [5]. Specifically, Tx and Fre"chet spaces are the same; T2 and Hausdorff spaces are the same; regular spaces, completely regular spaces, normal spaces, locally compact spaces, and compact spaces all satisfy the Hausdorff separation axiom. An open (closed) filter-base is one composed exclusively of open (closed) sets. A regular filter-base is an open filter-base which is equivalent to a closed filter-base. Finally in the lattice of topologies on a given set X, a topology is said to be minimal with respect to some property P (or is said to be a minimal P-topology) if there exists no other weaker (= smaller, coarser) topology on X with property P. The following theorems which characterize minimal Hausdorff topo- logies and minimal regular topologies are proved in [1], [2], and [5]. THEOREM 1. A Hausdorff space is minimal Hausdorff if, and only if, (i) every open filter-base has an adherent point; (ii) if such an adherent point is unique, then the filter-base converges to it.
    [Show full text]
  • Stone Duality Above Dimension Zero: Axiomatising the Algebraic Theory of C(X)
    Stone duality above dimension zero: Axiomatising the algebraic theory of C(X) Vincenzo Marraa, Luca Reggioa,b aDipartimento di Matematica \Federigo Enriques", Universit`adegli Studi di Milano, via Cesare Saldini 50, 20133 Milano, Italy bUniversit´eParis Diderot, Sorbonne Paris Cit´e,IRIF, Case 7014, 75205 Paris Cedex 13, France Abstract It has been known since the work of Duskin and Pelletier four decades ago that Kop, the opposite of the category of compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that Kop is equivalent to a possibly infinitary variety of algebras ∆ in the sense of S lomi´nskiand Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of ∆ can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosick´yindependently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of Kop. In particular, ∆ is not a finitary variety | Isbell's result is best possible. The problem of axiomatising ∆ by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of ∆. Key words: Algebraic theories, Stone duality, Boolean algebras, MV-algebras, Lattice-ordered Abelian groups, C∗-algebras, Rings of continuous functions, Compact Hausdorff spaces, Stone-Weierstrass Theorem, Axiomatisability. 2010 MSC: Primary: 03C05. Secondary: 06D35, 06F20, 46E25. 1. Introduction. In the category Set of sets and functions, coordinatise the two-element set as 2 := f0; 1g.
    [Show full text]
  • A First Course in Topology: Explaining Continuity (For Math 112, Spring 2005)
    A FIRST COURSE IN TOPOLOGY: EXPLAINING CONTINUITY (FOR MATH 112, SPRING 2005) PAUL BANKSTON CONTENTS (1) Epsilons and Deltas ................................... .................2 (2) Distance Functions in Euclidean Space . .....7 (3) Metrics and Metric Spaces . ..........10 (4) Some Topology of Metric Spaces . ..........15 (5) Topologies and Topological Spaces . ...........21 (6) Comparison of Topologies on a Set . ............27 (7) Bases and Subbases for Topologies . .........31 (8) Homeomorphisms and Topological Properties . ........39 (9) The Basic Lower-Level Separation Axioms . .......46 (10) Convergence ........................................ ..................52 (11) Connectedness . ..............60 (12) Path Connectedness . ............68 (13) Compactness ........................................ .................71 (14) Product Spaces . ..............78 (15) Quotient Spaces . ..............82 (16) The Basic Upper-Level Separation Axioms . .......86 (17) Some Countability Conditions . .............92 1 2 PAUL BANKSTON (18) Further Reading . ...............97 TOPOLOGY 3 1. Epsilons and Deltas In this course we take the overarching view that the mathematical study called topology grew out of an attempt to make precise the notion of continuous function in mathematics. This is one of the most difficult concepts to get across to beginning calculus students, not least because it took centuries for mathematicians themselves to get it right. The intuitive idea is natural enough, and has been around for at least four hundred years. The mathematically precise formulation dates back only to the ninteenth century, however. This is the one involving those pesky epsilons and deltas, the one that leaves most newcomers completely baffled. Why, many ask, do we even bother with this confusing definition, when there is the original intuitive one that makes perfectly good sense? In this introductory section I hope to give a believable answer to this quite natural question.
    [Show full text]
  • Chapter 3. Topology of the Real Numbers. 3.1
    3.1. Topology of the Real Numbers 1 Chapter 3. Topology of the Real Numbers. 3.1. Topology of the Real Numbers. Note. In this section we “topological” properties of sets of real numbers such as open, closed, and compact. In particular, we will classify open sets of real numbers in terms of open intervals. Definition. A set U of real numbers is said to be open if for all x ∈ U there exists δ(x) > 0 such that (x − δ(x), x + δ(x)) ⊂ U. Note. It is trivial that R is open. It is vacuously true that ∅ is open. Theorem 3-1. The intervals (a,b), (a, ∞), and (−∞,a) are open sets. (Notice that the choice of δ depends on the value of x in showing that these are open.) Definition. A set A is closed if Ac is open. Note. The sets R and ∅ are both closed. Some sets are neither open nor closed. Corollary 3-1. The intervals (−∞,a], [a,b], and [b, ∞) are closed sets. 3.1. Topology of the Real Numbers 2 Theorem 3-2. The open sets satisfy: n (a) If {U1,U2,...,Un} is a finite collection of open sets, then ∩k=1Uk is an open set. (b) If {Uα} is any collection (finite, infinite, countable, or uncountable) of open sets, then ∪αUα is an open set. Note. An infinite intersection of open sets can be closed. Consider, for example, ∞ ∩i=1(−1/i, 1 + 1/i) = [0, 1]. Theorem 3-3. The closed sets satisfy: (a) ∅ and R are closed. (b) If {Aα} is any collection of closed sets, then ∩αAα is closed.
    [Show full text]