(Acari: Hydrachnidia) of the Standing Waters of Corsica, Sardinia and Sicily: Review and New Data R

Total Page:16

File Type:pdf, Size:1020Kb

(Acari: Hydrachnidia) of the Standing Waters of Corsica, Sardinia and Sicily: Review and New Data R This article was downloaded by: [Universita Studi la Sapienza] On: 22 July 2014, At: 03:27 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Italian Journal of Zoology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tizo20 The water mites (Acari: Hydrachnidia) of the standing waters of Corsica, Sardinia and Sicily: review and new data R. Gereckea, F. Marroneb, G. Sorgic, M. Dossenad & F. Stoche a Institut für Evolution und Ökologie, Abteilung Evolutionsbiologie der Invertebraten, Universität Tübingen, Germany b Dipartimento di Scienze e Tecnologie Biologiche, Chimiche & Farmaceutiche, Università di Palermo, Italy c Dipartimento di Scienze Biologiche, Geologiche e Ambientale, Sezione di Biologia Animale, Università di Catania, Italy d Queen Mary School of Biological and Chemical Sciences, University of London, UK e Department of Life, Health & Environmental Sciences, University of L’Aquila, Italy Published online: 21 Jul 2014. To cite this article: R. Gerecke, F. Marrone, G. Sorgi, M. Dossena & F. Stoch (2014): The water mites (Acari: Hydrachnidia) of the standing waters of Corsica, Sardinia and Sicily: review and new data, Italian Journal of Zoology, DOI: 10.1080/11250003.2014.922129 To link to this article: http://dx.doi.org/10.1080/11250003.2014.922129 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions Italian Journal of Zoology, 2014, 1–20 http://dx.doi.org/10.1080/11250003.2014.922129 The water mites (Acari: Hydrachnidia) of the standing waters of Corsica, Sardinia and Sicily: review and new data R. GERECKE1*, F. MARRONE2, G. SORGI3, M. DOSSENA4, & F. STOCH5 1Institut für Evolution und Ökologie, Abteilung Evolutionsbiologie der Invertebraten, Universität Tübingen, Germany, 2Dipartimento di Scienze e Tecnologie Biologiche, Chimiche & Farmaceutiche, Università di Palermo, Italy, 3Dipartimento di Scienze Biologiche, Geologiche e Ambientale, Sezione di Biologia Animale, Università di Catania, Italy, 4Queen Mary School of Biological and Chemical Sciences, University of London, UK, and 5Department of Life, Health & Environmental Sciences, University of L’Aquila, Italy (Received 7 March 2014; accepted 28 April 2014) Abstract A compilation of our present knowledge of the water mites (Acari: Hydrachnidia) adapted to life in standing waters on the three large islands in the western Mediterranean (Corsica, Sardinia and Sicily) is provided. In addition to published data, this study deals with a rich volume of new material from recent field work, mostly deriving from intermittent ponds and pools, an extremely poorly investigated yet peculiar habitat type in the Mediterranean area. Species richness of water mites reported for the standing waters of the three islands amounts to 91 species. Out of the 47 species for which we present new distributional data, Hydrachna incisa Halbert, 1903, Hydrachna leegei Koenike, 1895, Piersigia limophila Protz, 1896, Hydryphantes crassipalpis Koenike, 1914 and Piona laminata (Thor, 1900) have not been recorded previously from the Mediterranean area. Most of these species were believed to have typical North European distributions. In addition to these, a further 13 species are recorded for the first time from the area covered. In total, 11 species are new for Italy, seven more are new for Sicily, three for Sardinia and seven for Corsica. Redescriptions are given of Axonopsis complanata (Müller, 1776) (A. graeca, nov. syn), Brachypoda baderi (reported for the first time after the original description from Abruzzo, Italy, synonymization with B. mutila rejected) and B. mutila (recorded for the first time outside Algeria with certainty). For each species, information is given on habitat preference and geographical distribution; the significance of the data is discussed under perspectives of zoogeography and nature protection. The completeness of our knowledge for the three investigated island is assessed using rarefaction curves and non-parametric estimators of species richness; while Sicily can be considered fairly well known, Corsica and Sardinia require further sampling to assess their water mite diversity. Keywords: Water mites, diversity, standing waters, faunistics, threatened habitats Downloaded by [Universita Studi la Sapienza] at 03:27 22 July 2014 Introduction smaller wetlands of the circum-Mediterranean coun- Available knowledge on the diversity and distribu- tries which, in spite of its outstanding diversity and tion of certain “less charismatic” aquatic invertebrate conservation value, has been nearly neglected till groups is far from being satisfactory even in Europe; recent times (Alvarez Cobelas et al. 2005). This is indeed, it has often been stressed that species distri- unfortunate, as ponds and pools have been shown to bution currently reflects taxonomists’ distribution contribute as much to the regional biodiversity of (Ruffo & Stoch 2006). This scenario is further wor- Mediterranean countries as rivers or lakes; they sened by to the so-called taxonomy crisis (Boero host a distinguishing fauna, and provide stepping- 2001), and there is an undeniable risk that much stones and increased connectivity between other biological diversity might in fact disappear even freshwater habitats (Boix et al. 2012). before being known and described. Furthermore, Notwithstanding their particular significance for certain geographical areas or habitat typologies are understanding and investigating the ecology of often overlooked due to historical, cultural or eco- inland water invertebrate assemblages (Smit & Van nomical reasons; this is the case for the biota of the der Hammen 1992; Dohet et al. 2008), water mites *Correspondence: R. Gerecke, Biesingerstr. 11, DE 72070 Tübingen, Germany. Tel: 0049 7071 49410. Email: [email protected] © 2014 Unione Zoologica Italiana 2 R. Gerecke et al. are not included in the “European Water Framework century were fixed in situ in 80% ethanol and sorted Directive” (Directive 2000/60/EC of the European in the laboratory under a stereomicroscope. All Parliament). Updated faunal works and taxonomical material was stored in separate tubes; when neces- keys for Northern and Central European faunas are sary, selected specimens were dissected and slide- nowadays available (Gerecke 2007, 2010), while our mounted as described by Davids et al. (2007). If no knowledge of the circum-Mediterranean fauna is to other bibliography is mentioned, species identifica- date unsatisfactory. We are thus aiming in this paper tion was based on K. Viets (1936), Lundblad (1956) to contribute to fill this gap on the circum- and Gerecke (2007, 2010). Mediterranean water mite fauna, focusing on the A total of about 1000 water mite specimens were lentic inland water bodies of the three larger western studied. Several locations were investigated only Mediterranean islands (Corsica, Sardinia and Sicily). once; others were visited several times as indicated in Table I. Species were classified as standing water dwellers Materials and methods (lenitobionts) based on the presence of swimming Most samplings were carried out from 2004 to 2013. setae. This rather simple character works surprisingly In addition, we add also earlier, unpublished data well and, in many cases, all members of selected from collecting activities during the last two decades genera are lenitobionts, while other genera include of the 20th century. Each sampled site was unam- species that avoid standing waters. However, the biguously identified through its WGS84 geographi- following restrictions were necessary: in cal coordinates; some notes on the habitat typology Hydryphantes, H. handschini Walter, 1925 and H. and hydroperiod of each sampling site were also armentarius Gerecke, 1996, both characterized by recorded (Figure 1). very low numbers of swimming setae, have a clear Invertebrate samples were collected using 150-μm preference for helocrenic springs (Gerecke 1996). mesh-sized hand- and towing nets. The material They were therefore excluded from this paper, but from the 1980s and 1990s was sorted out in the a few new records of the latter are included, which field from the living material and stored in was collected in some
Recommended publications
  • Water Mites of the Genus Arrenurus (Acari; Hydrachnida) from Europe and North America
    Department of Animal Morphology Institute of Environmental Biology Adam Mickiewicz University Mariusz Więcek EFFECTS OF THE EVOLUTION OF INTROMISSION ON COURTSHIP COMPLEXITY AND MALE AND FEMALE MORPHOLOGY: WATER MITES OF THE GENUS ARRENURUS (ACARI; HYDRACHNIDA) FROM EUROPE AND NORTH AMERICA Mentors: Prof. Jacek Dabert – Institute of Environmental Biology, Adam Mickiewicz University Prof. Heather Proctor – Department of Biological Sciences, University of Alberta POZNAŃ 2015 1 ACKNOWLEDGEMENTS First and foremost I want to thank my mentor Prof. Jacek Dabert. It has been an honor to be his Ph.D. student. I would like to thank for his assistance and support. I appreciate the time and patience he invested in my research. My mentor, Prof. Heather Proctor, guided me into the field of behavioural biology, and advised on a number of issues during the project. She has been given me support and helped to carry through. I appreciate the time and effort she invested in my research. My research activities would not have happened without Prof. Lubomira Burchardt who allowed me to work in her team. Many thanks to Dr. Peter Martin who introduced me into the world of water mites. His enthusiasm was motivational and supportive, and inspirational discussions contributed to higher standard of my research work. I thank Dr. Mirosława Dabert for introducing me in to techniques of molecular biology. I appreciate Dr. Reinhard Gerecke and Dr. Harry Smit who provided research material for this study. Many thanks to Prof. Bruce Smith for assistance in identification of mites and sharing his expert knowledge in the field of pheromonal communication. I appreciate Dr.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D.
    [Show full text]
  • Download 864.99 KB
    ----------------------------------------------------------------, Records of the Western Australian Museum 20: 409-414 (2002). The larval morphology and host of the Australian water mite Limnochares australica (Acari: Hydrachnidia: Limnocharidae) Peter MartinI and Harry Smit2 1 Zoologisches Institut, Christian-Albrechts-Universitat zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany 2 Emmastraat 43-a, 1814 DM Alkmaar, The Netherlands Abstract - The present study deals with the larval morphology and host­ parasite association of Limnochares (Cyclothrix) australica, a water mite from standing waters throughout Australia. The larva can be separated from the other described Limnochares spp. larvae, including the other Cyclothrix species of the area L. (L.) crinita by its unusual leg claws. The larvae of Limnochares australica were found as parasites of the water strider Tenagogerris pallidus (Gerridae, Hemiptera, Insecta). Limnochares australica is the only known Cyclothrix species parasitizing Gerridae. INTRODUCTION odontognatha Canestrini, 1884 parasitic on a The water mite Limnochares (Cyclothrix) australica water beetle. Unfortunately, his description of Lundblad, 1941a inhabits standing waters in the larva is inadequate, and the species is widespread regions of Australia. So far, the species considered a species incerta. The only Australian is known from Tasmania, Victoria, New South species of which more is known on the life cycle Wales and Western Australia (Harvey, 1990, 1998). is PhysoIimnesia australis Halik, 1940. Proctor The second author collected the species also in the (1997) reported that the larvae forgo the Northern Territory and in the Kimberley (northern parasitic stage. Hitherto, there is only one well­ Western Australia). Hence, it is likely that the supported host-parasite association for species occurs throughout Australia.
    [Show full text]
  • Does Parasitism Mediate Water Mite Biogeography?
    Systematic & Applied Acarology 25(9): 1552–1560 (2020) ISSN 1362-1971 (print) https://doi.org/10.11158/saa.25.9.3 ISSN 2056-6069 (online) Article Does parasitism mediate water mite biogeography? HIROMI YAGUI 1 & ANTONIO G. VALDECASAS 2* 1 Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita 105, Lima 33. Peru. 2 Museo Nacional de Ciencias Naturales (CSIC), c/José Gutierrez Abascal, 2, 28006- Madrid. Spain. *Author for correspondence: Antonio G Valdecasas ([email protected]) Abstract The biogeography of organisms, particularly those with complex lifestyles that can affect dispersal ability, has been a focus of study for many decades. Most Hydrachnidia, commonly known as water mites, have a parasitic larval stage during which dispersal is predominantly host-mediated, suggesting that these water mites may have a wider distribution than non-parasitic species. However, does this actually occur? To address this question, we compiled and compared the geographic distribution of water mite species that have a parasitic larval stage with those that have lost it. We performed a bootstrap resampling analysis to compare the empirical distribution functions derived from both the complete dataset and one excluding the extreme values at each distribution tail. The results show differing distribution patterns between water mites with and without parasitic larval stages. However, contrary to expectation, they show that a wider geographic distribution is observed for a greater proportion of the species with a non-parasitic larval stage, suggesting a relevant role for non-host-mediated mechanisms of dispersal in water mites. Keywords: biogeography, water mites, non-parasitic larvae, parasitic larvae, worldwide distribution patterns Introduction Studies of the geographic distribution of organisms have greatly influenced our understanding of how species emerge and have provided arguments favoring the theory of evolution by natural selection proposed by Darwin (1859).
    [Show full text]
  • Water Mites of the Genus Unionicola Haldeman, 1842 (Acari, Hydrachnidia, Unionicolidae) in Russia
    Zootaxa 3919 (3): 401–456 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3919.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:FF49DAFE-EA8E-473B-9F3D-CEB670B4882B Water mites of the genus Unionicola Haldeman, 1842 (Acari, Hydrachnidia, Unionicolidae) in Russia PETR V. TUZOVSKIJ1& KSENIA A. SEMENCHENKO2 1Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzkii District, Yaroslavl Province, 152742 Russia. E-mail: [email protected] 2Institute of Biology and Soil Science, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia. E-mail: [email protected] Table of contents Abstract . 401 Introduction . 402 Material and methods . 402 Results . 402 Family Unionicolidae Oudemans, 1909 . 402 Subfamily Unionicolidae Oudemans, 1909 . 402 Genus Unionicola Haldeman, 1842 . 403 Unionicola intermedia (Koenike, 1882) . 403 Unionicola crassipes (O.F. Müller, 1776) . 406 Unionicola rossica sp.n. 408 Unionicola figuralis (Koch, 1836) . 410 Unionicola gracilipalpis (Viets, 1908) . 413 Unionicola markovensis Tuzovskij, 1990 . 415 Unionicola minor (Soar, 1900) . 417 Unionicola hankoi Szalay, 1927 . 420 Unionicola aculeata (Koenike, 1890) . 422 Unionicola aculeatella sp.n. 424 Unionicola bonzi (Claparède, 1869) . 427 Unionicola inusitata Koenike, 1914 . 430 Unionicola rezvoi Sokolow, 1931 . 432 Unionicola samaraensis sp.n. 434 Unionicola setipella sp.n. 436 Unionicola setipes Sokolow, 1931 . 438 Unionicola tricuspis (Koenike, 1895). 441 Unionicola japonensis Viets, 1933 . 443 Unionicola primoryensis sp.n. 445 Unionicola ypsilophora (Bonz, 1783) . 448 Unionicola arcuata (Wolcott, 1898) . 451 Key to species of the genus Unionicola . 453 Acknowledgements . 454 References . 455 Abstract This study presents a detailed taxonomic review of water mites of the genus Unionicola Haldeman, 1842 (Hygrobatoidea: Unionicolidae) found in the fauna of Russia during the long-term survey period of 1969–2013.
    [Show full text]
  • Acari: Prostigmata: Parasitengona) V
    Acarina 16 (1): 3–19 © ACARINA 2008 CALYPTOSTASY: ITS ROLE IN THE DEVELOPMENT AND LIFE HISTORIES OF THE PARASITENGONE MITES (ACARI: PROSTIGMATA: PARASITENGONA) V. N. Belozerov St. Petersburg State University, Biological Research Institute, Stary Peterhof, 198504, RUSSIA, e-mail: [email protected] ABSTRACT: The paper presents a review of available data on some aspects of calyptostasy, i.e. the alternation of active (normal) and calyptostasic (regressive) stages that is characteristic of the life cycles in the parasitengone mites. There are two different, non- synonymous approaches to ontogenetic and ecological peculiarities of calyptostasy in the evaluation of this phenomenon and its significance for the development and life histories of Parasitengona. The majority of acarologists suggests the analogy between the alternating calyptostasy in Acari and the metamorphic development in holometabolous insects, and considers the calyptostase as a pupa-like stage. This is controversial with the opposite view emphasizing the differences between calyptostases and pupae in regard to peculiarities of moulting events at these stages. However both approaches imply the similar, all-level organismal reorganization at them. The same twofold approach concerns the ecological importance of calyptostasy, i.e. its organizing role in the parasitengone life cycles. The main (parasitological) approach is based on an affirmation of optimizing role of calyptostasy through acceleration of development for synchronization of hatching periods in the parasitic parasitengone larvae and their hosts, while the opposite (ecophysiological) approach considers the calyptostasy as an adaptation to climate seasonality itself through retaining the ability for developmental arrests at special calyptostasic stages evoked from normal active stages as a result of the life cycle oligomerization.
    [Show full text]
  • (Acari: Tetranychidae): High Genome Rearrangement and Extremely Truncated Trnas Ming-Long Yuan, Dan-Dan Wei, Bao-Jun Wang, Wei Dou, Jin-Jun Wang*
    Yuan et al. BMC Genomics 2010, 11:597 http://www.biomedcentral.com/1471-2164/11/597 RESEARCH ARTICLE Open Access The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs Ming-Long Yuan, Dan-Dan Wei, Bao-Jun Wang, Wei Dou, Jin-Jun Wang* Abstract Background: The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of Panonychus citri (Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari. Results: The mitochondrial genome of P. citri is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for P. citri is the same as those for P. ulmi and Tetranychus urticae, but distinctly different from other Acari by a series of gene translocations and/ or inversions.
    [Show full text]
  • Finnish Water Mites (Acari: Hydrachnidia, Halacaroidea), the List and Distribution
    Memoranda Soc. Fauna Flora Fennica 85:69–78. 2009 Finnish water mites (Acari: Hydrachnidia, Halacaroidea), the list and distribution A.M. Bagge & Pauli Bagge† A.M. Bagge, University of Jyväskylä, Open University, P.O. Box 35, FI-40014, Finland, Author for correspondence, e-mail [email protected]. The species of Finnish water mites (Acari, Hydrachidia and Halacaroidea) are listed, and their occurrence in the biogeographical provinces shown. The list is based on publica- tions, on unpublished data known by the authors, and on a private collection (of Pauli Bagge). The list consists of 139 Hydrachnidia and 9 Halacaroidea species, which are mainly limnetic or lotic. Brackish waters and the family Halacaridae have remained little studied. 1. Introduction Water mites are one of the most diversified groups of invertebrates in the freshwaters. For example the number of taxa may exceed 50 species in clean large lowland rivers of central Europe (Van der Hammen and Smit, 1996), but is lower in the northern streams (Bagge, 2001). The species and distribution of Finnish water mites have been of interest only by few researchers. The first studies have been done during expeditions of Ferdinand Koenike and Erik Nordenskiöld in the late of 19th century. The species list was later completed, among others, by professor Kaarlo Mainio Levander, who has been mentioned as ’the father of Finnish lim- nology’. Viktor Ozolinš (1931) made a good sum- Pauli Bagge. Prof. Bagge passed away 19.6.2009. mary of these early studies in his article of Finnish water mite fauna. Determination of small Acari species and especially the difficult larvae stages years, from 1960s to 2009.
    [Show full text]
  • The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes
    diversity Review The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes 1,2, , 3, 4 1 Adrian A. Vasquez * y , Bana A. Kabalan y, Jeffrey L. Ram and Carol J. Miller 1 Healthy Urban Waters, Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA; [email protected] 2 Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA 3 Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA; bana.kabalan@ufl.edu 4 Department of Physiology, School of Medicine Wayne State University, Detroit, MI 48201, USA; jeff[email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 May 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: Water mites form one of the most biodiverse groups within the aquatic arachnid class. These freshwater macroinvertebrates are predators and parasites of the equally diverse nematocerous Dipterans, such as mosquitoes, and water mites are believed to have diversified as a result of these predatory and parasitic relationships. Through these two major biotic interactions, water mites have been found to greatly impact a variety of mosquito species. Although these predatory and parasitic interactions are important in aquatic ecology, very little is known about the diversity of water mites that interact with mosquitoes. In this paper, we review and update the past literature on the predatory and parasitic mite–mosquito relationships, update past records, discuss the biogeographic range of these interactions, and add our own recent findings on this topic conducted in habitats around the Laurentian Great Lakes.
    [Show full text]
  • Zootaxa, Water Mites of the Genus Limnesia Koch
    Zootaxa 2234: 21–38 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Water mites of the genus Limnesia Koch, 1836 (Acari: Hydrachnidia, Limnesiidae) from China, with description of four new species TIANCI YI & DAOCHAO JIN1 Institute of Entomology, Guizhou University; The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang, 550025, China 1Corresponding author. E-mail: [email protected] Abstract Seven species of Limnesia Koch, 1836, from China are described or redescribed from newly collected material. Treated herein are four new species (Limnesia diploseta sp. nov., Limnesia turgeotrochanter sp. nov., Limnesia megaseta sp. nov. and Limnesia hirtigenitalia sp. nov.) as well as three previously known species (Limnesia maculata (Müller, 1776), Limnesia papillosa Viets, 1935 and Limnesia undulata (Müller, 1776)). Key words: Limnesia, taxonomy, China Introduction The genus Limnesia Koch, 1836, one of the largest genera of the family Limnesiidae Thor, 1900, has a diversity of more than 270 species in 12 subgenera worldwide (Cook 1974; Viets 1987; Otero 1987; Cook 1988; Davids 1997; Jin 1997; Tuzovskij 1997, 2007; Wiles 1999; Smit 1996, 1998, 2002; Ferradás et al. 2004). In China, 12 species in the genus Limnesia have been previously recorded (Yi et al. 2008): Limnesia maculata (Müller, 1776), L. undulata (Müller, 1776), L. koenikei Piersig, 1894, L. lembangensis Piersig, 1906, L. neokoenikei Jin, 1997, L. rimiformis Jin, 1997, L. anomalia Jin, 1997, L. crassignatha Jin, 1997, L. paracorpulenta Jin, 1997, L. falcata Jin, 1997, L. trifurcata Wen et al., 2001 and L. microplatus Wen & Zhu, 2001.
    [Show full text]
  • Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park Natural Resource Data Series NPS/KLMN/NRDS—2019/1208 ON THIS PAGE Unknown Darner Dragonfly perched on ground near Widow Lake, Lassen Volcanic National Park. Photograph by Patrick Graves, KLMN Lakes Crew Lead. ON THE COVER Summit Lake, Lassen Volcanic National Park Photograph by Elliot Hendry, KLMN Lakes Crew Technician. Mountain Ponds and Lakes Monitoring 2016 Results from Lassen Volcanic National Park, Crater Lake National Park, and Redwood National Park Natural Resource Data Series NPS/KLMN/NRDS—2019/1208 Eric C. Dinger National Park Service 1250 Siskiyou Blvd Ashland, Oregon 97520 March 2019 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is intended for the timely release of basic data sets and data summaries. Care has been taken to assure accuracy of raw data values, but a thorough analysis and interpretation of the data has not been completed. Consequently, the initial analyses of data in this report are provisional and subject to change. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • The Digestive Composition and Physiology of Water Mites Adrian Amelio Vasquez Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2017 The Digestive Composition And Physiology Of Water Mites Adrian Amelio Vasquez Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Physiology Commons Recommended Citation Vasquez, Adrian Amelio, "The Digestive Composition And Physiology Of Water Mites" (2017). Wayne State University Dissertations. 1887. https://digitalcommons.wayne.edu/oa_dissertations/1887 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. THE DIGESTIVE COMPOSITION AND PHYSIOLOGY OF WATER MITES by ADRIAN AMELIO VASQUEZ DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2017 MAJOR: PHYSIOLOGY Approved By: Advisor Date © COPYRIGHT BY ADRIAN AMELIO VASQUEZ 2017 All Rights Reserved DEDICATION I dedicate this work to my beautiful wife and my eternal companion. Together we have seen what is impossible become possible! ii ACKNOWLEDGEMENTS It has been a long journey to get to this point and it is impossible to list all the people who contributed to my story. For those that go unnamed please receive my sincerest gratitude. I thank my mentor and friend Dr. Jeffrey Ram. I was able to culminate my academic training in his lab and it has been a great blessing working with him and members of the lab. We look forward to many more years of collaboration. My committee took time out of their busy schedules to help me in achieving this milestone.
    [Show full text]