Advances in Uranium Refining and Conversion Iaea, Vienna, 1987 Iaea-Tecdoc-420

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Uranium Refining and Conversion Iaea, Vienna, 1987 Iaea-Tecdoc-420 IAEA-TECDOC-420 PROCEEDINGS OF A TECHNICAL COMMITTEE MEETING ON ADVANCE URANIUSN I M REFININ CONVERSIOD GAN N ORGANIZEE TH Y DB INTERNATIONAL ATOMIC ENERGY AGENCY AND HEL VIENNAN D» , 7-10 APRIL 1986 A TECHNICAL DOCUMENT ISSUEE TH Y DB INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 198? The IAEA doe t normallsno y maintain stock f reportso thisn i s series. However, microfiche copies of these reports can be obtained from ClearinghousS I N I e Internationa! Atomic Energy Agency Wagramerstrasse5 P.O. Box 100 A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db Austriaf to n Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the I MIS Clearinghouse. ADVANCES IN URANIUM REFINING AND CONVERSION IAEA, VIENNA, 1987 IAEA-TECDOC-420 Printe IAEe th AustriAn i y d b a May 1987 FOREWORD One of the most important steps in the Nuclear Fuel Cycle is the Uranium Refining and conversion which goes from the yellow-cake to three different products: uranium dioxid, natura) O (U el metallic uraniu) (U m and uranium hexafluoride (UF ) . Although its added value is small, may 6 be 2-4% of the total cost of front-end, it is decisive for producing fuel r botfo h type f reactorso s : natural uranium (Magno d Canduan x d )an enriched uranium (LWR) n thiI . e cycls e uraniuth ste th ef o p m hexafluoride is produced which is very important for the enrichment of uranium. e totaTh l volum f thio e s industry e presenth t a , t time nearls i , f o y 40,000t U per year and at the end of the present century it would have reached the 60.000t U/a level. e AgencTh y hel n Advisora d y Group meetine productioth n o g f o n yellowcake and uranium fluorides in Paris, June 1979 and its proceedings were published in 1980. During these seven years, significant improvements have been mad n technologi e equipmenn i e d th an yr fo t uranium refinin d conversionan g , particularly froe environmentalth m , safety and economic viewpoints. The refining and conversion of reprocessed uraniu e mextracteb than ca t y treatinb d g irradiated fuel become equally importan r recyclinfo t g recovered fuel. In response to the growing interest in these topics, the IAEA convened a Technical Committee Meeting on "Advances in Uranium Refining and Conversion Headquarters it t "a s fro , 198m10 6 Aprio t wit e 7 l th h attendanc 7 expert3 f o e s fro 1 countries2 m . This Technical Document contains the 20 papers presented during the meeting. The Agency wishes to thank all the scientists, engineers and institutions who contributed to this Meeting with their papers and their participation. Chairmene Speciath o t le ,thankdu Messrs e ar s . PagH . e (U.K.), A.W. Ashbrook (Canada) Faro. ,R n (France) Leyse. ,E r (Federal Republi Germany)f o c , A.G.M. Jackson (South Africa), I.S. Chang (Republic f Koreao d J.A)an . Vercellone (Argentina) e officer IAEAe Th .th ,f o s responsibl e organizatioth . Ugajir M meetinge fo e. d th Mr an nf o s n ,wa r editinfo e documen . J.Lth gMr . Nucleas e Rojatwa th f so r Materiald an s Fuel Cycle Technology Section. EDITORIAL NOTE preparingIn this materialpress,the International the for staff of Atomic Energy Agency have mounted and paginated the original manuscripts as submitted by the authors and given some attention presentation.the to The views expressed in the papers, the statements made and the general style adopted are responsibilitythe namedthe of authors. necessarilyviewsnot The do reflect govern-thosethe of ments of the Member States or organizations under whose auspices the manuscripts were produced. The use in this book of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of specific companies or of their products or brand names does not imply any endorsement or recommendation on the part of the IAEA. Authors are themselves responsible for obtaining the necessary permission to reproduce copyright material from other sources. CONTENTS PAR RECEN— TI T ADVANCE REFININE TH N SI FRESF GO H URANIUM MATERIALS e refininTh conversiod an g f uraniuno m yellowcak uraniuo et m dioxidd ean uranium hexafluoride fuels in Canada: Current processes.......................................... 9 AshbrookW. A. Recent advance presend an s t statu f uraniuo s m refinin India....................................n gi 1 2 . N. Swaminathan, S.M. Rao, A.K. Sridharan, M. Sampath, V. Suryanarayanan, KansalK. V. Operating experience of a pilot plant for the production of uranium dioxide from uranium ore concentrate................................................................................... 29 M. Shabbir Purification and conversion of uranium from iron and thorium containing deposits.............. 43 H. Movaseghi, MeissamiN. Developmen technologa f o t mako y2 t startin eUO g from "yellowcake" refined with amine sulphuria n i s c environment.....................................................9 4 . J.A. Vercellone Status of uranium refining and conversion process technology in Korea............................ 63 7.5. Chang, S.T. Hwang, J.H. Park Research and development of UF6 conversion in Japan now and subjects in future.............. 81 Y. Hashimoto, L Iwala, T. Nagasaki Experience in yellowcake refining and its conversion to uranium tetrafluoride at IPEN-CNEN/SP.......................................................................................... 103 A. Abrao Conversio f non-nucleano r grade feedstoc UFo kt 4.....................................................l Il . A.A. Ponelïs, M.N. Slabber, C.H.E. Zimmer The conversion from uranium tetrafluoride info hexafluoride in a vertical fluorization reactor.........................................................................................1 14 . Zhang Zhi-Hua, Chao Le-Bao e solvent-containinTh g resi r removinnfo g uranium from effluen f refinino t g process..........9 14 . Zhu Chang-en, Zhou De-yu Waste managemen e refininth n conversiod i t an g f uraniuno Canada.........................mn i 7 15 . A.W. Ashbrook e regulatioTh f uraniuno m refinerie conversiod an s n facilitie Canada.........................n i s 7 16 . J. P. Didyk Conversio f uraniuno e concentratemor reprocessed san d uraniu mnucleao t r fuel intermediate t BNFsa L Springfields Part A: Uranium ore concentrates....................................................................... 185 H. Page PAR REFININ— I TI IRRADIATEF GO D URANIUM MATERIALS Conversion of uranium ore concentrates and reprocessed uranium to nuclear fuel intermediate t BNFa s L Springfields Part B: Reprocessed uranium............................................................................. 207 . Page// Nitrox process: A process developed by COMURHEX of continuous denitration................ 223 R. Romano Recent development e purificatioth n i s f uraniuo n m recovered from irradiated materials......1 23 . Regge,P.de Collard,G. Daniels,A. Huys,D. SannenL. e reprocesseTh d uranium conversion yearn te :f operatioo s f COMURHEX..................no 5 24 . R. Faron Problem impuritieo t e sdu uraniun i s m recovered fro reprocessine mth f go fuelR use,dLW fro e poinmth f vieo t f recycling...............................................wo 5 25 . E. Leyser Conversio f reprocesseno d uraniu Japan............................................................n mi 7 26 . /. Yasuda, Y, Miyamoto, T. Mochiji Panel Discussion.......................................................................................... ....9 27 . List of Participants............................................................................................. 283 PARTI RECENT ADVANCES E INTH REFININ FRESF GO H URANIUM MATERIALS THE REFINING AND CONVERSION OF URANIUM YELLOWCAKE TO URANIUM DIOXIDE AND URANIUM HEXAFLUORIDE FUEL CANADAN SI : CURRENT PROCESSES A.W. ASHBROOK Eldorado Resources Ltd, Ottawa, Ontario, Canada Abstract In Canada, uranium yellowcake is now refined at Blind River and e uraniuth m trioxide produce souts n i shipped ki o Port h0 50 td Hope where it is converted to uranium dioxide and hexafluoride fuels. There have been some significant changes in the processes used n thesi plantsw ne e . Perhap e mosth s t significan e productioth s i t n of uranium tetrafluoride from uranium trioxide using a "wet" process. In this paper the current processing methods are reviewed, with special emphasi n changeo s s froe previouth m s methods. INTRODUCTION Eldorado Resources Ltd. has operated uranium refining facilitie t Pora s t Hope, Ontario, sinc s note wa .1942 t I . however, until 1955 that solvent extraction was used to produce nuclear grade uranium trioxide. In 1958 the production of uranium dioxid s commencewa e o providt d e fuer domestifo l c CANDU reactors. Conversion facilities were adde n 197i d o t 0 produce uranium hexafluorid r exportfo e . n 197I 5a decisio s mad refininwa o nw built e ne a d d an g conversion facility in the Port Hope area. The outcome was. however, that a new refinery was built at Blind River in northern Ontari nortom k (somf Poro h0 w ne 50 et a Hope d an ) uranium hexafluoride plant built at the existing Port Hope facility. The Blind River refinery came on-streara in 1983 and e Porth t Hope conversion facilit n 1984i y . Today, in Canada, uranium yellowcake is refined at Blind River and the uranium trioxide produced is shipped 500 km south to Port Hope s wheri converte t i e o uraniut d m dioxidd an e hexafluoride fuels. UO3 Powder lo Port Hop« I___ j Nmogen Ondes 10 ! Acid Recovery Fig. I. Refining of Uranium Yellcwcak, UO o t e Acid Recycle lo Mill Recycle j lo Digestion Tnick- There have been some significant changee processeth n i s s used in thes w plantsne e . Perhap e mosth st significane th s i t production of uranium tetrafluoride from uranium trioxide using a ''wet'' process n thiI .s pape e currenth r t processing method e reviewedar s , with special emphasi n changeo s s froe th m previous methods.
Recommended publications
  • FACT SHEET Office of Public Affairs
    FACT SHEET Office of Public Affairs Phone: 301-415-8200 Email: [email protected] Uranium Recovery Background The production of fuel for nuclear power plants starts with taking uranium ore from the ground and then purifying and processing it through a series of steps. Uranium recovery focuses on extracting natural uranium ore from the earth and concentrating (or milling) that ore. These recovery operations produce a product, called "yellowcake," which is then transported to a succession of fuel cycle facilities where the yellowcake is transformed into fuel for nuclear power reactors. In addition to yellowcake, uranium recovery operations generate waste products, called byproduct materials, that contain low levels of radioactivity. The NRC does not regulate uranium mining or mining exploration, but does have authority over milling of mined materials and in situ processes used to recover uranium, as well as mill tailings. Today’s conventional uranium mills and in situ recovery (ISR) facilities are operating safely and in a manner that is protective of the environment. The NRC regulates these facilities in close coordination with other Federal agencies and State and Tribal governments and provides technical support and guidance to those Agreement States that have authority over uranium recovery activities. Discussion The NRC becomes involved in uranium recovery operations when the ore is processed and physically or chemically altered. This happens either in a conventional, heap leach uranium mill, or ISR. For that reason, the NRC regulates ISR facilities as well as uranium mills and the disposal of liquid and solid wastes from uranium recovery operations (including mill tailings).
    [Show full text]
  • Key Official US and IAEA Statements About Iran's Nuclear Programs
    Key Official US and IAEA Statements About Iran’s Nuclear Programs Anthony H. Cordesman There is a great deal of speculation about Iran’s nuclear programs that do not list sources or reflect the views of the US intelligence community. It is worth examining what top US intelligence official have said during the last few years, and the details of the IAEA report published in November 2011 – one that clearly reflected official inputs from the US and a number of European intelligence services. U.S. Official Statements on the Iranian Nuclear and Missile Threat The annual unclassified reports to Congress by the Office of the Director of National Intelligence are a key source of US official view. Although the 2010 report by James R. Clapper has already been partly overtaken by the pace of Iran’s rapidly developing program, it still represents the most detailed unclassified estimate of Iran’s capabilities by a senior US official:1 Nuclear We continue to assess Iran is keeping open the option to develop nuclear weapons though we do not know whether Tehran eventually will decide to produce nuclear weapons. Iran continues to develop a range of capabilities that could be applied to producing nuclear weapons, if a decision is made to do so. During the reporting period, Iran continued to expand its nuclear infrastructure and continued uranium enrichment and activities related to its heavy water research reactor, despite multiple United Nations Security Council Resolutions since late 2006 calling for the suspension of those activities. Although Iran made progress in expanding its nuclear infrastructure during 2001, some obstacles slowed progress during this period.
    [Show full text]
  • Implementing Safeguards-By-Design at Natural Uranium Conversion Plants
    NIS Office of Nuclear Safeguards and Security Safeguards-By-Design Facility Guidance Series (NGSI-SBD-002) August 2012 Implementing Safeguards-by-design at Natural Uranium Conversion Plants U.S. DEPARTMENT OF ENERG National Nuclear Security AdministrationY IMPLEMENTING SAFEGUARDS-BY-DESIGN AT NATURAL URANIUM CONVERSION PLANTS Lisa Loden John Begovich Date Published: July 2012 iii CONTENTS Page CONTENTS ......................................................................................................................................... IV 1. INTRODUCTION AND PURPOSE ................................................................................................. 1 2. KEY DEFINITIONS ......................................................................................................................... 2 3. SAFEGUARDS AT NUCPS ............................................................................................................. 7 3.1 SAFEGUARDS OBJECTIVES ................................................................................................. 7 3.2 TRADITIONAL AND INTEGRATED SAFEGUARDS ......................................................... 7 3.3 SAFEGUARDS RESPONSIBILITIES ..................................................................................... 8 3.3.1 STATE REGULATORY AUTHORITY RESPONSIBILITIES ..................................... 8 3.3.2 IAEA RESPONSIBILITIES ............................................................................................ 9 4. ELEMENTS OF FACILITY DESIGN THAT ARE RELEVANT
    [Show full text]
  • Depleted Uranium Hexafluoride: Waste Or Resource?
    UCRGJC-120397 PREPRINT Depleted Uranium Hexafluoride: Waste or Resource? N. Schwertz J. Zoller R Rosen S. Patton C. Bradley A. Murray This paper was prepared for submittal to the Global ‘95 International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems Versailles, France September 11-14,1995 July 1995 This isa preprint of apaper intended for publication in a jaurnal orproceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permiasion of the anthor. DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United Stat= Government. Neither theunited States Governmentmor theuniversity of California nor any oftheir employees, makes any warranty, express or implied, or assumesanylegalliabilityorrespomibility forthe accuracy,completeness,orusefuin~ of any information, apparatus, pduct, or process disdosed, or represents that its use wouldnotinfringe privatelyowned rights. Referencehemin to anyspe&c commercial prodocis, proms, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constituteor imply its endorsement, reconunendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessady state or reflect those of the United States Government or the University of California, and shall not be used for adveltising or product endorsement purposes. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document . DEPLETED URANIUM HEXAFLUORIDE: WASTE OR RESOURCE? N. Schwertz, J. Zoller, R. Rosen, S. Patton LAWRENCE LIVERMORE NATIONAL LABORATORY P.
    [Show full text]
  • Two Paths to a Nuclear Bomb Iran Has Historically Pursued Work on Both Uranium- and Plutonium-Weapons Programs, Western O Cials Say
    Two Paths to a Nuclear Bomb Iran has historically pursued work on both uranium- and plutonium-weapons programs, Western ocials say. The 2015 nuclear deal set temporary limits on a wide range of Iran's nuclear work and committed Tehran to never work on nuclear weapons. Here's how far down those paths Iran is. Creating weapons-grade nuclear fuel Uranium 1 Low-grade uranium ore is 2 Centrifuges are set up in 3 Enriching uranium to 5% is the 4 It takes roughly 200 kg to 250 kg of 20% mined and chemically treated cascades to enrich the uranium. most time-consuming part of enriched uranium to produce the 25 kg of to produce a concentrated The sophisticated process can producing weapons-grade material. 90% enriched uranium, the amount needed yellowcake. After a conversion take years to establish. Iran Iran on Monday exceeded its for a bomb. Iran has reached 20% purity in process, it is fed into produced around 20,000 basic permitted 300-kg stockpile of the past but has never enriched above that centrifuges. centrifuges but is doing research uranium enriched to 3.67%. level. The enriched uranium is converted to Weaponizing nuclear fuel on more advanced machines. uranium metal for weapon use. Deploying the nuclear fuel in a Centrifuges weapon presents technical challenges, many of which Iran isn’t believed to have mastered. Detonating the 5% enriched Uranium Yellowcake Uranium 20% weapon requires a fission ore hexaflouride uranium 90% reaction. The nuclear payload 25kg must be attached to a missile, and the payload must be able 200-250 kg to withstand reentry through through earth's atmosphere as Plutonium it descends to its target.
    [Show full text]
  • Used As a Reference in Ou 1 Ri)
    6307 U-003-307 .8 SUMMARY TECHNICAL REPORT FOR THE PERIOD APRIL 1, 1959 TO JUNE 30, 1959 - (USED AS A REFERENCE IN OU 1 RI) 07/20/59 NLCO-790 NLO 75 REPORT SUMMARY TECHNICAL REPORT I. For t le Period April 1, 1959 to June 30, 1959 I I AEC RESEARCH AND DEVELOPMENT REPORT NLCO- 790 -w6307 Technology -Feed Materials ..:i (M- 3679, 22nd Ed.) 8 - SUMMARY TECHNICAL REPORT FOR THE PERIOD - APRIL 1, 1959 TO JUNE 30, 1959 F. L. CUTHBERT, DIRECTOR c. E. CROMPTON, ASSOCIATE DIRECTOR TECHNICAL DIVISION ._. EDITED BY JOHN W. SIMMONS Date of Issuance: July 20, 1959 NATIONAL LEAD COMPANY OF OHIO p ' I Box 158, Cincinnati 39, Ohio *I Contract No. AT(30 -1) -1156 "630'7 -3- Page No. .' - .. SUMMARY. .. '. 7 - Feed Materials Evaluation :...I '. 11 I. .- . .. 2. Selective Digestion . :-;. 17 ,>+ 3. Bondingin theTri-n-butylPhosphate-H20-U-AcidSy$tem . 27 4. Extraction Column Control . ..: . 37 5. Activation of Pot-Produced Orange Oxide . .' . 41 . Hydrofluorination of Sodium-ContamGated Uranium Oxides. 41 Thermal Decomposition of AnhydibusUranylSulfate . 44 i .. 6. ADU ("Ammonium Diuranate") Process Development . 49 . Laboratory Determination of Impurity Decontamination by an ADU Process . 49 '- Thermobalance Hydrofluorination Investigation of Pilot Plant ADU . 52 7. Analyses of Variations in Visually Determined Derby Grades . 57 8. Recovery of Uranium from a Mixture of Uranium, Magnesium, and Magnesium Fluoride . 61 9. Scrap Processing by an Aqueous UF4 Process . 67 Labomtory Preparation of Green Salt from Plant-Produced UAP and Black Oxide . 67 Green Salt Preparation from Pickle Liquor, Black Oxide, and Reduction Pot Residues . 71 io.
    [Show full text]
  • Uranium Aerosols at a Nuclear Fuel Fabrication Plant: Characterization Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy
    Spectrochimica Acta Part B 131 (2017) 130–137 Contents lists available at ScienceDirect Spectrochimica Acta Part B journal homepage: www.elsevier.com/locate/sab Uranium aerosols at a nuclear fuel fabrication plant: Characterization using scanning electron microscopy and energy dispersive X-ray spectroscopy E. Hansson a,b,⁎, H.B.L. Pettersson a, C. Fortin c, M. Eriksson a,d a Department of Medical and Health Sciences, Linköping University, 58185 Linköping, Sweden b Westinghouse Electric Sweden AB, Bränslegatan 1, 72136 Västerås, Sweden c Carl Zeiss SAS, 100 route de Versailles, 78160 Marly-le-Roi, France d Swedish Radiation Safety Authority, 17116 Stockholm, Sweden article info abstract Article history: Detailed aerosol knowledge is essential in numerous applications, including risk assessment in nuclear industry. Received 31 March 2016 Cascade impactor sampling of uranium aerosols in the breathing zone of nuclear operators was carried out at a Received in revised form 28 February 2017 nuclear fuel fabrication plant. Collected aerosols were evaluated using scanning electron microscopy and energy Accepted 3 March 2017 dispersive X-ray spectroscopy. Imaging revealed remarkable variations in aerosol morphology at the different Available online 6 March 2017 workshops, and a presence of very large particles (up to≅100 × 50 μm2) in the operator breathing zone. Charac- teristic X-ray analysis showed varying uranium weight percentages of aerosols and, frequently, traces of nitrogen, Keywords: fl Uranium uorine and iron. The analysis method, in combination with cascade impactor sampling, can be a powerful tool Aerosol for characterization of aerosols. The uranium aerosol source term for risk assessment in nuclear fuel fabrication Impactor appears to be highly complex.
    [Show full text]
  • Global Fissile Material Report 2006 a Table of Contents
    IPF M Global Fis sile Material Report Developing the technical basis for policy initiatives to secure and irreversibly reduce stocks of nuclear weapons and fissile materials 2006 Over the past six decades, our understanding of the nuclear danger has expanded from the threat posed by the vast nuclear arsenals created by the super- powers in the Cold War to encompass the prolifera- tion of nuclear weapons to additional states and now also to terrorist groups. To reduce this danger, it is essential to secure and to sharply reduce all stocks of highly enriched uranium and separated plutonium, the key materials in nuclear weapons, and to limit any further production. The mission of the IPFM is to advance the technical basis for cooperative international policy initiatives to achieve these goals. A report published by Global Fissile The International Panel on Fissile Materials (IPFM) www.fissilematerials.org Program on Science and Global Security Princeton University Material Report 2006 221 Nassau Street, 2nd Floor Princeton, NJ 08542, USA First report of the International Panel on Fissile Materials First report of the International Panel on Fissile Materials Developing the Technical Basis for Policy Initiatives to Secure and Irreversibly Reduce Stocks of Nuclear Weapons and Fissile Materials www.fissilematerials.org Global Fissile Material Report 2006 a Table of Contents About the IPFM 1 Summary 2 I. Background 5 1 Fissile Materials and Nuclear Weapons 6 2 Nuclear-Weapon and Fissile-Material Stocks 12 3 Production and Disposition of Fissile
    [Show full text]
  • Spectroscopic Signatures of Uranium Speciation for Forensics
    UNLV Theses, Dissertations, Professional Papers, and Capstones May 2017 Spectroscopic Signatures of Uranium Speciation for Forensics Nicholas Wozniak University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Wozniak, Nicholas, "Spectroscopic Signatures of Uranium Speciation for Forensics" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3063. http://dx.doi.org/10.34917/10986257 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. SPECTROSCOPIC SIGNATURES OF URANIUM SPECIATION FOR FORENSICS By Nicholas Robert Wozniak Bachelors of Science – Chemistry Bachelors of Science – Physics Hope College 2012 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy – Radiochemistry Department of Chemistry College of Sciences The Graduate College University of Nevada, Las Vegas May 2017 Dissertation Approval The Graduate College The University of Nevada, Las Vegas April 14, 2017 This dissertation prepared by Nicholas Robert Wozniak entitled Spectroscopic Signatures of Uranium Speciation for Forensics is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy – Radiochemistry Department of Chemistry Ken Czerwinski, Ph.D.
    [Show full text]
  • Nuclear Iran a Glossary of Terms
    Nuclear Iran A Glossary of Terms Simon Henderson and Olli Heinonen Policy Focus 121 | May 2013 Update HARVARD Kennedy School A COPUBLICATION WITH BELFER CENTER for Science and International Affairs Map: Nuclear installations in Iran. TURKMENISTAN TABRIZ Bonab Lashkar Abad TEHRAN MASHAD Karaj Marivan Parchin Fordow Arak QOM IRAQ Natanz AFGHANISTAN Isfahan Ardakan Saghand Darkhovin Yazd IRAN KUWAIT SHIRAZ Bushehr PAKISTAN Gchine BANDAR ABBAS BAHRAIN SAUDI ARABIA QATAR © 2012 The Washington Institute for Near East Policy UAE OMAN Map: Nuclear installations in Iran. Nuclear Iran A Glossary of Terms Simon Henderson and Olli Heinonen Policy Focus 121 | May 2013 Update HARVARD Kennedy School A COPUBLICATION WITH BELFER CENTER for Science and International Affairs n n n The authors extend special thanks to Mary Kalbach Horan and her editorial team at The Washington Institute. n n n All rights reserved. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. © 2012, 2013 by The Washington Institute for Near East Policy and the Harvard Kennedy School’s Belfer Center for Science and International Affairs Copublished in 2012 and 2013 in the United States of America by The Washington Institute for Near East Policy, 1828 L Street NW, Suite 1050, Washington, DC 20036; and the Harvard Kennedy School’s Belfer Center for Science and International Affairs, 79 JFK St., Cambridge, MA 02138. Cover photo: Iran’s president Mahmoud Ahmadinejad visits the Natanz nuclear enrichment facility.
    [Show full text]
  • Technology of Uranium Purification. Impurities Decontamination
    TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND. AIcídio Abrão PUBLICAÇÃO IEA 458 DEZEMBRO/1976 CEQ 69 PUBL. I EA 45B OEZEMBRO/1976 CEQ 68 TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND. Alcidio Abrio CENTRO DE ENGENHARIA QUÍMICA (CEQ) INSTITUTO DE ENERGIA ATÔMICA SAO PAULO - BRASIL APHOVAOO PARA PUBLICAÇÃO EM NOVEMBRO/1976 CONSELHO DELIBERATIVO Eng? HMcio Modnto da Costa Eng? Ivano Humbert Marchesi Prof. Admar Cervellim Prof. Sérgio Matcarenhai de Oliveira Dr. Klaus Reinach Or. Roberto D'Utra Vai SUPERINTENDENTE Prof. Dr, Ròmulo Ribe/r.» Pierori INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11.049 (Pinheiros) Cidade Universitária "Armando de Sallei Oliveira" SAO PAULO - BRASIL NOTA Este trabalho foi confe-ido p«lo autor depois de composto e sua redação tt'i conforme o original, sem qualquer correçáo ou mudança. TECHNOLOGY OF URANIUM PURIFICATION. IMPURITIES DECONTAMINATION FROM URANYL CHLORIDE BY EXTRACTION WITH TRI-n-OCTYLAMINE IN THE PRESENCE OF THIOUREA AS COMPLEXING LIGAND- Alcidio Abrão ABSTRACT The extraction of jranyl chloride by trinoctyiamme ITOAI and in decontamination from several impurities v»,th the aid of thiourea is investigated The effect of thiourea as a complexing agsnt, giving rise to unextracted canonic species of several metallic ion and its consequence in the extraction of uranyl chlonde from hydrochloric acid with TOA benzene!x'lenel is described Also, the effect of an acidified thiourea solution for scrubbing the organic phase loaded with uranyl chloride is studied INTRODUCTION The long chain amines had shown to be excellent extractants for various inorganic rid organic acds, and for a great number of anionic metallic complexes Smith and Page'441 had indicated the association properties of high weight amines w.th acids.
    [Show full text]
  • Sorption of Np and Tc in Underground Waters by Uranium Oxides
    Sorption of Np and Tc in Underground Waters by Uranium Oxides T.V.Kazakovskaya,a V.I. Shapovalova, N.V. Kushnira , E.V. Zakharovab, S.N.Kalmykovb O.N.Batukb, M.J.Hairec a –Russian Federal Nuclear center –All-Russia Scientific Institute of Experimental Physics; 607190, Sarov, Russia, E-mail: [email protected]; b – Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia, c – Oak Ridge National Laboratory, Oak Ridge, Tennessee. Abstract –The production of nuclear fuels results in the accumulation of large quantities of depleted uranium (DU) in the form of uranium hexafluoride (UF6), which is converted to uranium oxides. Depleted uranium dioxide (DUO2) can be used as a component of radiation shielding and as an absorbent for migrating radionuclides (especially 237Np and 99Tc). These may emerge from casks containing spent nuclear fuel (SNF) that are stored for hundreds of thousands of years in high-level wastes (HLW) and SNF repositories (e.g. Yucca Mountain Project). In this case DU oxides serve as an additional engi- neered chemical barrier. This work is a part of the joint Russian –American Program on Beneficial Use of Depleted Uranium. This paper describes the UO2 transformations that take place in contact with various aqueous media (deionized water (DW), J-13 solution that simulates Yucca Mountain ground water, etc.) and sorption of long-lived radionuclides (237Np and 99Тс) from these media by depleted uranium dioxide. Samples of depleted uranium dioxide used in this work originated from the treatment of UF6 in a reducing media to form UO2 (DUO2-1 at 600°C, DUO2-2 at 700°C, and DUO2-3 at 800°C).
    [Show full text]