Submodularity in Action: from Machine Learning to Signal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Semidifferential-Based Submodular Function Optimization
Fast Semidifferential-based Submodular Function Optimization: Extended Version Rishabh Iyer [email protected] University of Washington, Seattle, WA 98195, USA Stefanie Jegelka [email protected] University of California, Berkeley, CA 94720, USA Jeff Bilmes [email protected] University of Washington, Seattle, WA 98195, USA Abstract family of feasible solution sets. The set C could express, We present a practical and powerful new for example, that solutions must be an independent set framework for both unconstrained and con- in a matroid, a limited budget knapsack, or a cut (or strained submodular function optimization spanning tree, path, or matching) in a graph. Without based on discrete semidifferentials (sub- and making any further assumptions about f, the above super-differentials). The resulting algorithms, problems are trivially worst-case exponential time and which repeatedly compute and then efficiently moreover inapproximable. optimize submodular semigradients, offer new If we assume that f is submodular, however, then in and generalize many old methods for sub- many cases the above problems can be approximated modular optimization. Our approach, more- and in some cases solved exactly in polynomial time. A over, takes steps towards providing a unifying function f : 2V ! R is said to be submodular (Fujishige, paradigm applicable to both submodular min- 2005) if for all subsets S; T ⊆ V , it holds that f(S) + imization and maximization, problems that f(T ) ≥ f(S [ T ) + f(S \ T ). Defining f(jjS) , f(S [ historically have been treated quite distinctly. j) − f(S) as the gain of j 2 V with respect to S ⊆ V , The practicality of our algorithms is impor- then f is submodular if and only if f(jjS) ≥ f(jjT ) tant since interest in submodularity, owing to for all S ⊆ T and j2 = T . -
A Lagrangian Decomposition Approach Combined with Metaheuristics for the Knapsack Constrained Maximum Spanning Tree Problem
MASTERARBEIT A Lagrangian Decomposition Approach Combined with Metaheuristics for the Knapsack Constrained Maximum Spanning Tree Problem ausgeführt am Institut für Computergraphik und Algorithmen der Technischen Universität Wien unter der Anleitung von Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl und Univ.-Ass. Dipl.-Ing. Dr.techn. Jakob Puchinger durch Sandro Pirkwieser, Bakk.techn. Matrikelnummer 0116200 Simmeringer Hauptstraße 50/30, A-1110 Wien Datum Unterschrift Abstract This master’s thesis deals with solving the Knapsack Constrained Maximum Spanning Tree (KCMST) problem, which is a so far less addressed NP-hard combinatorial optimization problem belonging to the area of network design. Thereby sought is a spanning tree whose profit is maximal, but at the same time its total weight must not exceed a specified value. For this purpose a Lagrangian decomposition approach, which is a special variant of La- grangian relaxation, is applied to derive upper bounds. In the course of the application the problem is split up in two subproblems, which are likewise to be maximized but easier to solve on its own. The subgradient optimization method as well as the Volume Algorithm are deployed to solve the Lagrangian dual problem. To derive according lower bounds, i.e. feasible solutions, a simple Lagrangian heuristic is applied which is strengthened by a problem specific local search. Furthermore an Evolutionary Algorithm is presented which uses a suitable encoding for the solutions and appropriate operators, whereas the latter are able to utilize heuristics based on defined edge-profits. It is shown that simple edge-profits, derived straightforward from the data given by an instance, are of no benefit. -
Chapter 8 Stochastic Gradient / Subgradient Methods
Chapter 8 Stochastic gradient / subgradient methods Contents (class version) 8.0 Introduction........................................ 8.2 8.1 The subgradient method................................. 8.5 Subgradients and subdifferentials................................. 8.5 Properties of subdifferentials.................................... 8.7 Convergence of the subgradient method.............................. 8.10 8.2 Example: Hinge loss with 1-norm regularizer for binary classifier design...... 8.17 8.3 Incremental (sub)gradient method............................ 8.19 Incremental (sub)gradient method................................. 8.21 8.4 Stochastic gradient (SG) method............................. 8.23 SG update.............................................. 8.23 Stochastic gradient algorithm: convergence analysis....................... 8.26 Variance reduction: overview................................... 8.33 Momentum............................................. 8.35 Adaptive step-sizes......................................... 8.37 8.5 Example: X-ray CT reconstruction........................... 8.41 8.1 © J. Fessler, April 12, 2020, 17:55 (class version) 8.2 8.6 Summary.......................................... 8.50 8.0 Introduction This chapter describes two families of algorithms: • subgradient methods • stochastic gradient methods aka stochastic gradient descent methods Often we turn to these methods as a “last resort,” for applications where none of the methods discussed previously are suitable. Many machine learning applications, -
Approximate Submodularity and Its Applications: Subset Selection, Sparse Approximation and Dictionary Selection∗
Journal of Machine Learning Research 19 (2018) 1{34 Submitted 10/16; Revised 8/18; Published 8/18 Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection∗ Abhimanyu Dasy [email protected] Google David Kempez [email protected] Department of Computer Science University of Southern California Editor: Jeff Bilmes Abstract We introduce the submodularity ratio as a measure of how \close" to submodular a set function f is. We show that when f has submodularity ratio γ, the greedy algorithm for maximizing f provides a (1 − e−γ )-approximation. Furthermore, when γ is bounded away from 0, the greedy algorithm for minimum submodular cover also provides essentially an O(log n) approximation for a universe of n elements. As a main application of this framework, we study the problem of selecting a subset of k random variables from a large set, in order to obtain the best linear prediction of another variable of interest. We analyze the performance of widely used greedy heuristics; in particular, by showing that the submodularity ratio is lower-bounded by the smallest 2k- sparse eigenvalue of the covariance matrix, we obtain the strongest known approximation guarantees for the Forward Regression and Orthogonal Matching Pursuit algorithms. As a second application, we analyze greedy algorithms for the dictionary selection prob- lem, and significantly improve the previously known guarantees. Our theoretical analysis is complemented by experiments on real-world and synthetic data sets; in particular, we focus on an analysis of how tight various spectral parameters and the submodularity ratio are in terms of predicting the performance of the greedy algorithms. -
Fast and Private Submodular and K-Submodular Functions
Fast and Private Submodular and k-Submodular Functions Maximization with Matroid Constraints Akbar Rafiey 1 Yuichi Yoshida 2 Abstract The problem of maximizing nonnegative monotone submodular functions under a certain constraint has been in- tensively studied in the last decade, and a wide range of efficient approximation algorithms have been developed for this problem. Many machine learning problems, including data summarization and influence maximization, can be naturally modeled as the problem of maximizing monotone submodular functions. However, when such applications involve sensitive data about individuals, their privacy concerns should be addressed. In this paper, we study the problem of maximizing monotone submodular functions subject to matroid constraints in the frame- 1 work of differential privacy. We provide (1 e )-approximation algorithm which improves upon the previous results in terms of approximation guarantee.− This is done with an almost cubic number of function evaluations in our algorithm. 1 Moreover, we study k-submodularity, a natural generalization of submodularity. We give the first 2 - approximation algorithm that preserves differential privacy for maximizing monotone k-submodular functions subject to matroid constraints. The approximation ratio is asymptotically tight and is obtained with an almost linear number of function evaluations. 1. Introduction A set function F : 2E R is submodular if for any S T E and e E T it holds that F (S e ) F (S) F (T e ) F (T ).→The theory of submodular maximization⊆ ⊆ provides∈ -
Subgradient Method
Subgradient Method Ryan Tibshirani Convex Optimization 10-725/36-725 Last last time: gradient descent Consider the problem min f(x) x n for f convex and differentiable, dom(f) = R . Gradient descent: (0) n choose initial x 2 R , repeat (k) (k−1) (k−1) x = x − tk · rf(x ); k = 1; 2; 3;::: Step sizes tk chosen to be fixed and small, or by backtracking line search If rf Lipschitz, gradient descent has convergence rate O(1/) Downsides: • Requires f differentiable this lecture • Can be slow to converge next lecture 2 Subgradient method n Now consider f convex, with dom(f) = R , but not necessarily differentiable Subgradient method: like gradient descent, but replacing gradients with subgradients. I.e., initialize x(0), repeat (k) (k−1) (k−1) x = x − tk · g ; k = 1; 2; 3;::: where g(k−1) 2 @f(x(k−1)), any subgradient of f at x(k−1) Subgradient method is not necessarily a descent method, so we (k) (0) (k) keep track of best iterate xbest among x ; : : : x so far, i.e., f(x(k) ) = min f(x(i)) best i=0;:::k 3 Outline Today: • How to choose step sizes • Convergence analysis • Intersection of sets • Stochastic subgradient method 4 Step size choices • Fixed step sizes: tk = t all k = 1; 2; 3;::: • Diminishing step sizes: choose to meet conditions 1 1 X 2 X tk < 1; tk = 1; k=1 k=1 i.e., square summable but not summable Important that step sizes go to zero, but not too fast Other options too, but important difference to gradient descent: all step sizes options are pre-specified, not adaptively computed 5 Convergence analysis n Assume that f convex, dom(f) = R , and also that f is Lipschitz continuous with constant G > 0, i.e., jf(x) − f(y)j ≤ Gkx − yk2 for all x; y Theorem: For a fixed step size t, subgradient method satisfies lim f(x(k) ) ≤ f ? + G2t=2 k!1 best Theorem: For diminishing step sizes, subgradient method sat- isfies lim f(x(k) ) = f ? k!1 best 6 Basic bound, and convergence rate (0) ? Letting R = kx − x k2, after k steps, we have the basic bound R2 + G2 Pk t2 f(x(k) ) − f(x?) ≤ i=1 i best Pk 2 i=1 ti Previous theorems follow from this. -
An Efficient Solution Methodology for Mixed-Integer Programming Problems Arising in Power Systems" (2016)
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 12-15-2016 An Efficient Solution Methodology for Mixed- Integer Programming Problems Arising in Power Systems Mikhail Bragin University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Bragin, Mikhail, "An Efficient Solution Methodology for Mixed-Integer Programming Problems Arising in Power Systems" (2016). Doctoral Dissertations. 1318. https://opencommons.uconn.edu/dissertations/1318 An Efficient Solution Methodology for Mixed-Integer Programming Problems Arising in Power Systems Mikhail Bragin, PhD University of Connecticut, 2016 For many important mixed-integer programming (MIP) problems, the goal is to obtain near- optimal solutions with quantifiable quality in a computationally efficient manner (within, e.g., 5, 10 or 20 minutes). A traditional method to solve such problems has been Lagrangian relaxation, but the method suffers from zigzagging of multipliers and slow convergence. When solving mixed-integer linear programming (MILP) problems, the recently adopted branch-and-cut may also suffer from slow convergence because when the convex hull of the problems has complicated facial structures, facet- defining cuts are typically difficult to obtain, and the method relies mostly on time-consuming branching operations. In this thesis, the novel Surrogate Lagrangian Relaxation method is developed and its convergence is proved to the optimal multipliers, without the knowledge of the optimal dual value and without fully optimizing the relaxed problem. Moreover, for practical implementations a stepsizing formula, that guarantees convergence without requiring the optimal dual value, has been constructively developed. The key idea is to select stepsizes in a way that distances between Lagrange multipliers at consecutive iterations decrease, and as a result, Lagrange multipliers converge to a unique limit. -
Subgradient Methods
Subgradient Methods Stephen Boyd and Almir Mutapcic Notes for EE364b, Stanford University, Winter 2006-07 April 13, 2008 Contents 1 Introduction 2 2 Basic subgradient method 2 2.1 Negativesubgradientupdate. .... 2 2.2 Stepsizerules................................... 3 2.3 Convergenceresults.............................. .. 4 3 Convergence proof 4 3.1 Assumptions.................................... 4 3.2 Somebasicinequalities . ... 5 3.3 Aboundonthesuboptimalitybound . ... 7 3.4 Astoppingcriterion.............................. .. 8 3.5 Numericalexample ................................ 8 4 Alternating projections 9 4.1 Optimal step size choice when f ⋆ isknown................... 9 4.2 Finding a point in the intersection of convex sets . ......... 11 4.3 Solving convex inequalities . ..... 14 4.4 Positive semidefinite matrix completion . ........ 15 5 Projected subgradient method 16 5.1 Numericalexample ................................ 18 6 Projected subgradient for dual problem 18 6.1 Numericalexample ................................ 20 7 Subgradient method for constrained optimization 21 7.1 Numericalexample ................................ 24 8 Speeding up subgradient methods 24 1 1 Introduction The subgradient method is a very simple algorithm for minimizing a nondifferentiable convex function. The method looks very much like the ordinary gradient method for differentiable functions, but with several notable exceptions: The subgradient method applies directly to nondifferentiable f. • The step lengths are not chosen via a line search, as in the ordinary gradient method. • In the most common cases, the step lengths are fixed ahead of time. Unlike the ordinary gradient method, the subgradient method is not a descent method; • the function value can (and often does) increase. The subgradient method is readily extended to handle problems with constraints. Subgradient methods can be much slower than interior-point methods (or Newton’s method in the unconstrained case). -
1 Base Polytopes
6.883 Learning with Combinatorial Structure Note for Lecture 8 Authors: Hongyi Zhang A bit of history in combinatorial optimization. Last time we talked about the Lovász extension, which plays an important role in the optimization of submodular functions. Actually, despite the name Lovász, Jack Edmonds is another important figure who made huge contribution to this concept, and submodular optimization in general. In DISCML 20111, there was a brief introduction to Jack Edmonds’ contributions to mathematics and computer science by Jeff Bilmes. 1 Base polytopes 1.1 Examples of base polytopes Recall that in the last lecture we defined the base polytope BF of a submodular function, and showed that there is a greedy algorithm to solve the optimization problem max y>x y2BF and the solution is closely related to Lovász extension. Now we shall look at several other examples where interesting concepts turn out to be the base polytopes of some submodu- lar (or supermodular) functions. 1.1.1 Probability simplex Let the ground set be V such that jVj = n. Define F (S) = minfjSj; 1g;S ⊆ V, in last lecture we already saw that F (S) is submodular. It is easy to check that BF is a probability sim- plex. In fact, by definition ( ) X X BF = y : yi = F (V) and yi ≤ F (S) 8S ⊆ V i2V i2S ( n ) X = y : yi = 1 and yi ≥ 0; 8i i=1 n which is a standard (n−1)-simplex in R . 1http://las.ethz.ch/discml/discml11.html NIPS Workshop on Discrete Optimization in Ma- chine Learning 2011 1 1.1.2 Permutahedron PjSj Let the ground set be V such that jVj = n. -
On the Links Between Probabilistic Graphical Models and Submodular Optimisation Senanayak Sesh Kumar Karri
On the Links between Probabilistic Graphical Models and Submodular Optimisation Senanayak Sesh Kumar Karri To cite this version: Senanayak Sesh Kumar Karri. On the Links between Probabilistic Graphical Models and Submodular Optimisation. Machine Learning [cs.LG]. Université Paris sciences et lettres, 2016. English. NNT : 2016PSLEE047. tel-01753810 HAL Id: tel-01753810 https://tel.archives-ouvertes.fr/tel-01753810 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` DE DOCTORAT de l’Universite´ de recherche Paris Sciences Lettres PSL Research University Prepar´ ee´ a` l’Ecole´ normale superieure´ On the Links between Probabilistic Graphical Models and Submodular Optimisation Liens entre modeles` graphiques probabilistes et optimisation sous-modulaire Ecole´ doctorale n◦386 ECOLE´ DOCTORALE DE SCIENCES MATHEMATIQUES´ DE PARIS CENTRE Specialit´ e´ INFORMATIQUE COMPOSITION DU JURY : M Andreas Krause ETH Zurich, Rapporteur M Nikos Komodakis ENPC Paris, Rapporteur M Francis Bach Inria Paris, Directeur de these` Soutenue par Senanayak Sesh Kumar KARRI le 27.09.2016 M Josef Sivic ENS Paris, Membre du Jury Dirigee´ par Francis BACH M Antonin Chambolle CMAP EP Paris, Membre du Jury M Guillaume Obozinski ENPC Paris, Membre du Jury RESEARCH UNIVERSITY PARIS ÉCOLENORMALE SUPÉRIEURE What is the purpose of life? Proof and Conjecture, .... -
Maximizing Non-Monotone Submodular Functions
Maximizing non-monotone submodular functions Uriel Feige∗ Vahab S. Mirrokni∗ Jan Vondr´ak† April 19, 2007 Abstract Submodular maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NP-hard. In this paper, we design the first constant-factor approximation algorithms for maximiz- 1 ing nonnegative submodular functions. In particular, we give a deterministic local search 3 - 2 approximation and a randomized 5 -approximation algorithm for maximizing nonnegative sub- 1 modular functions. We also show that a uniformly random set gives a 4 -approximation. For 1 symmetric submodular functions, we show that a random set gives a 2 -approximation, which can be also achieved by deterministic local search. These algorithms work in the value oracle model where the submodular function is acces- sible through a black box returning f(S) for a given set S. We show that in this model, our 1 2 -approximation for symmetric submodular functions is the best one can achieve with a subex- ponential number of queries. For the case that the submodular function is given explicitly (specifically, as a sum of poly- nomially many nonnegative submodular functions, each on a constant number of elements) we 5 prove that for any fixed > 0, it is NP-hard to achieve a ( 6 + )-approximation for sym- 3 metric nonnegative submodular functions, or a ( 4 + )-approximation for general nonnegative submodular functions. ∗Microsoft Research. -
Submodular Function Maximization Andreas Krause (ETH Zurich) Daniel Golovin (Google)
Submodular Function Maximization Andreas Krause (ETH Zurich) Daniel Golovin (Google) Submodularity1 is a property of set functions with deep theoretical consequences and far{ reaching applications. At first glance it appears very similar to concavity, in other ways it resembles convexity. It appears in a wide variety of applications: in Computer Science it has recently been identified and utilized in domains such as viral marketing (Kempe et al., 2003), information gathering (Krause and Guestrin, 2007), image segmentation (Boykov and Jolly, 2001; Kohli et al., 2009; Jegelka and Bilmes, 2011a), document summarization (Lin and Bilmes, 2011), and speeding up satisfiability solvers (Streeter and Golovin, 2008). In this survey we will introduce submodularity and some of its generalizations, illustrate how it arises in various applications, and discuss algorithms for optimizing submodular functions. Our emphasis here is on maximization; there are many important results and applications related to minimizing submodular functions that we do not cover2. As a concrete running example, we will consider the problem of deploying sensors in a drinking water distribution network (see Figure 1) in order to detect contamination. In this domain, we may have a model of how contaminants, accidentally or maliciously introduced into the network, spread over time. Such a model then allows to quantify the benefit f(A) of deploying sensors at a particular set A of locations (junctions or pipes in the network) in terms of the detection performance (such as average time to detection). Based on this notion of utility, we then wish to find an optimal subset A ⊆ V of locations maximizing the utility, maxA f(A), subject to some constraints (such as bounded cost).