The “Elusive DMOAD”: Aggrecanase Inhibition from Laboratory to Clinic A.-M

Total Page:16

File Type:pdf, Size:1020Kb

The “Elusive DMOAD”: Aggrecanase Inhibition from Laboratory to Clinic A.-M The “elusive DMOAD”: Aggrecanase inhibition from laboratory to clinic A.-M. Malfait1, M.D. Tortorella2 1Rush University Medical School, ABSTRACT mechanical “wear and tear” disease (3), Department of Medicine, Division From the time of their discovery in 1999, but rather a condition in which well-de- of Rheumatology, Chicago IL, USA; the aggrecanases, and ADAMTS-5 in fined biochemically mediated pathways 2Guangzhou Institutes of Biomedical particular, have been heavily investi- bring about articular cartilage damage Health, Chinese Academy of Sciences, Guangzhou, China. gated as targets for disease-modifying (4). These changing concepts brought osteoarthritis drug (DMOAD) devel- the expectation that, one day, scientists Anne-Marie Malfait Micky D. Tortorella opment. Here, we provide a brief nar- would be able to develop inhibitors that rative review of the discovery efforts Please address correspondence to: prevent, slow down, halt, or even re- Dr Anne-Marie Malfait, to target these enzymes, and how this verse cartilage damage. Since then, the Rush University Medical School, led to the current ongoing programmes developing concept that OA is a failure Department of Medicine, that hold promise for the future. We of the joint as an organ, where different Division of Rheumatology, discuss a comparison of inhibition of tissues and the crosstalk between them, 1611 W. Harrison Street, Suite 510, collagen breakdown versus inhibition including articular cartilage, subchon- Chicago, IL 60612, USA. of aggrecan breakdown. We then sum- dral bone, and the synovium, drives E-mail: [email protected] marise existing programmes that target [email protected] the progression of the disease and as- ADAMTS-5, including small molecule sociated symptoms (5). This has led Received and accepted on September 17, 2019. inhibitors, monoclonal neutralising to the identification of multiple targets antibodies and nanobodies, and gene in different joint tissues that contrib- Clin Exp Rheumatol 2019; 37 (Suppl. 120): S130-S134. editing technologies. We also briefly ute to disease. Drugs that are currently discuss the potential analgesic effects under investigation for their potential © Copyright CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2019. this strategy may offer in addition to its DMOAD effects include both anabolic joint-protective effects. (i.e. promoting cartilage repair) and Key words: ADAMTS-5, collagenase, anti-catabolic strategies, with some disease-modifying osteoarthritis drug Introduction drugs intended for systemic administra- (DMOAD), antibodies, cartilage Successful disease modification in OA tion while others, such as the anabolic remains an elusive goal, in spite of FGF-18 (Sprifermin, EMDSerono) and significant progress in our understand- the wnt-pathway inhibitor, SM04690 ing of osteoarthritis (OA) pathogen- (Lorecivivint, Samumed), are being esis and sophistication of methods to developed for intra-articular adminis- assess disease state and progression. tration. As discussed in detail in the article by Elsewhere in this Supplement, Oo and Oo and Hunter in this Supplement, a Hunter discuss DMOADs that are in disease-modifying osteoarthritis drug phase 2/3 (1). Exciting novel strategies (DMOAD) is a drug that modifies the are currently in earlier phases (phase underlying OA pathophysiology, there- 1/2), including a senolytic agent for in- by inhibiting structural damage to pre- tra-articular administration, UBX0101 vent or reduce long-term disability and (Unity Biotechnology), which aims Funding: A.-M. Malfait (R01AR064251, offer potential symptomatic relief (1). to eliminate senescent chondrocytes R01AR060364, R61AR073576) is Currently, there are no FDA or EMA from articular cartilage. Senescent supported by the US National Institutes approved DMOADs (2), but aggressive cells (SnCs), which have lost prolifera- of Health/National Institute of Arthritis ongoing efforts by many organisations tive potential, accumulate in all tissues and Musculoskeletal and Skin Diseases and teams in academia and industry are with age and promote the ageing pro- (NIH/NIAMS). offering the hope that DMOADs are on cess through the secretion of the “Se- The funding sources had no role in the study. the horizon. As depicted in Fig. 1 [and nescence Associated Secretory Pheno- discussed in (1)], the current DMOAD type” (SASP), a host of inflammatory Competing interests: A.M. Malfait has received consulting fees from EMDSerono pipeline is densely populated with ac- cytokines, chemokines, and proteases and Vizuri, as well as a grant from tive clinical trials. that profoundly alter the tissue micro- Galapagos N.V.; It was not until the 1980s that the con- environment (6, 7). Senescent chon- M. Tortorella is an employee of GIBH. cept took hold that OA is not simply a drocytes are found in cartilage isolated S-130 Clinical and Experimental Rheumatology 2019 Aggrecanase inhibition in OA / A.M. Malfait & M.D. Tortorella Fig. 1. Pipeline of potential DMOADs in Phase I. from patients undergoing joint replace- Breakdown of articular cartilage is a carefully. While it is accepted that ment (8, 9). In a surgical mouse model hallmark of OA. Two key targetable preventing loss of collagen from the of OA, SnCs were found to accumu- pathways contribute to the enzymatic cartilage ECM will preserve its elastic late in cartilage and synovium (10). degradation of the cartilage extracellu- properties and integrity, systemic inhi- UBX0101 is a potent senolytic small lar matrix (ECM). Aggrecan and type II bition of collagenase activity may pose molecule inhibitor of the MDM2/p53 collagen make up the two major macro- specific problems. Type II collagen is a protein interaction, and disruption of molecular components of articular car- hydrophobic molecule and has no self- this interaction triggers the elimination tilage and are essential for maintaining elimination mechanism from the ECM. of senescent cells. In a surgical mouse cartilage function and integrity, with As cells produce more collagen as part model of OA, intra-articular treatment aggrecan providing cartilage with its of its normal anabolic maintenance, with UBX0101 attenuated joint dam- compressibility and collagen providing collagen will accumulate in the matrix age and, importantly, the drug was able its elasticity [reviewed in (11)]. Deg- until it is proteolytically degraded and to reduce development of naturally oc- radation of these macromolecules is removed by collagenase activity. If this curring disease in ageing mice (10). A mediated by proteolytic cleavage, thus activity is blocked, collagen has the phase 1 study to evaluate safety, tolera- representing druggable mechanisms potential to build up in the ECM caus- bility, and pharmacokinetics of a single of intervention requiring the design ing fibroplasia. Indeed, musculoskel- intra-articular injection of UBX0101 in of protease inhibitors with the proper etal syndrome (MSS, which is defined patients diagnosed with painful OA of pharmacokinetic properties. Aggrecan as painless loss of range of motion in the knee was recently completed. Re- breakdown is mediated by the aggre- large joints, particularly in the shoul- sults have yet to be posted on https:// canases, predominantly ADAMTS-4 ders, joint stiffness and joint swelling, clinicaltrials.gov. and ADAMTS-5, while collagen un- soft tissue pain, and fibrosis of palmar winding and degradation is mediated by tendons) has been observed in clinical Targeting the cartilage matrix the collagenases, predominantly MMP- studies with broad-spectrum MMP in- The current pre-clinical and clinical 1, 8, 13 and 14, although MMP-8 has hibitors and is a pharmacological effect pipeline comprises different strategies not been reproducibly found in articular likely due to the non-selectivity of col- to block the activity of the collagenases cartilage like other members (unpub- lagenase inhibitors (12, 13). Therefore, and aggrecanases. In the current nar- lished results). it is important that drug discovery rative review, we provide a brief over- scientists design drugs that target the view of the discovery efforts to target Targeting collagen degradation collagenase(s) responsible for catabo- these enzymes, and how this led to the There are pros and cons to inhibiting lism observed in OA, but not the col- current ongoing programmes that hold either collagen versus aggrecan deg- lagenase activity responsible for matrix promise for the future. radation, which need to be considered homeostasis in cartilage and other tis- Clinical and Experimental Rheumatology 2019 S-131 Aggrecanase inhibition in OA / A.M. Malfait & M.D. Tortorella sues. It is currently thought that MMP- 24). It was also found that Adamts5 null Neutralising antibodies targeting 1 and MMP-14 are homeostatic col- mice are protected from joint damage ADAMTS-5 lagenases in cartilage and some other in the antigen-induced arthritis model GSK developed a humanised AD- tissues, whereas MMP-13 appears to (25), as well as in a surgical model of AMTS-5-selective monoclonal anti- be responsible for the catabolism ob- OA, induced by destabilisation of the body (GSK2394002), which was effi- served in OA (14-16). Designing se- medial meniscus (DMM) (26). Aggre- cacious in the DMM model both in a lective MMP-13 inhibitors has proven canase-resistant aggrecan mutant mice prophylactic and a therapeutic protocol. difficult, however. The first and second are also protected from developing Systemic treatment attenuated joint generation inhibitors that were devel- experimental
Recommended publications
  • ADAMTS13 and 15 Are Not Regulated by the Full Length and N‑Terminal Domain Forms of TIMP‑1, ‑2, ‑3 and ‑4
    BIOMEDICAL REPORTS 4: 73-78, 2016 ADAMTS13 and 15 are not regulated by the full length and N‑terminal domain forms of TIMP‑1, ‑2, ‑3 and ‑4 CENQI GUO, ANASTASIA TSIGKOU and MENG HUEE LEE Department of Biological Sciences, Xian Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P.R. China Received June 29, 2015; Accepted July 15, 2015 DOI: 10.3892/br.2015.535 Abstract. A disintegrin and metalloproteinase with thom- proteolysis activities associated with arthritis, morphogenesis, bospondin motifs (ADAMTS) 13 and 15 are secreted zinc angiogenesis and even ovulation [as reviewed previously (1,2)]. proteinases involved in the turnover of von Willebrand factor Also known as the VWF-cleaving protease, ADAMTS13 and cancer suppression. In the present study, ADAMTS13 is noted for its ability in cleaving and reducing the size of the and 15 were subjected to inhibition studies with the full-length ultra-large (UL) form of the VWF. Reduction in ADAMTS13 and N-terminal domain forms of tissue inhibitor of metallo- activity from either hereditary or acquired deficiency causes proteinases (TIMPs)-1 to -4. TIMPs have no ability to inhibit accumulation of UL-VWF multimers, platelet aggregation and the ADAMTS proteinases in the full-length or N-terminal arterial thrombosis that leads to fatal thrombotic thrombocy- domain form. While ADAMTS13 is also not sensitive to the topenic purpura [as reviewed previously (1,3)]. By contrast, hydroxamate inhibitors, batimastat and ilomastat, ADAMTS15 ADAMTS15 is a potential tumor suppressor. Only a limited app can be effectively inhibited by batimastat (Ki 299 nM). In number of in-depth investigations have been carried out on the conclusion, the present results indicate that TIMPs are not the enzyme; however, expression and profiling studies have shown regulators of these two ADAMTS proteinases.
    [Show full text]
  • P.D187H Mutation Impairs ADAMTS13 Activity and Secretion and Contributes to Thrombotic Thrombocytopenic Purpura in Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Journal of Thrombosis and Haemostasis, 13: 283–292 DOI: 10.1111/jth.12804 ORIGINAL ARTICLE The novel ADAMTS13-p.D187H mutation impairs ADAMTS13 activity and secretion and contributes to thrombotic thrombocytopenic purpura in mice E. DE COCK,* C. HERMANS,† J. DE RAEYMAECKER,‡ K. DE CEUNYNCK,* B. DE MAEYER,* N. VANDEPUTTE,* A. VANDENBULCKE,* H. DECKMYN,* H. ROTTENSTEINER,§ M. DE MAEYER,‡ S. F. DE MEYER* andK. VANHOORELBEKE* *Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk; †Division of Haematology, Haemostasis and Thrombosis Unit, Saint-Luc University Hospital, Brussels; ‡Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, Laboratory of Biomolecular Modeling, KU Leuven, Leuven, Belgium; and §Baxter Innovations GmbH, Vienna, Austria To cite this article: De Cock E, Hermans C, De Raeymaecker J, De Ceunynck K, De Maeyer B, Vandeputte N, Vandenbulcke A, Deckmyn H, Rottensteiner H, De Maeyer M, De Meyer SF, Vanhoorelbeke K. The novel ADAMTS13-p.D187H mutation impairs ADAMTS13 activity and secretion and contributes to thrombotic thrombocytopenic purpura in mice. J Thromb Haemost 2015; 13: 283–92. of ADAMTS13. The homozygous p.D187H mutation Summary. Background: Congenital thrombotic thrombo- down-regulated ADAMTS13 activity in vitro. Impaired cytopenic purpura (TTP) is characterized by mutations in proteolytic activity was linked to unstable Ca2+ binding the ADAMTS13 gene, which either impair protein secre- as visualized using a molecular dynamics simulation. In tion or influence ADAMTS13 (A Disintegrin-like And addition, the p.D187H mutation affects protein secretion Metalloprotease domain with ThromboSpondin type-1 in vitro.InAdamts13–/– mice, the homozygous p.D187H motif, member 13) activity.
    [Show full text]
  • Oncostatin M in Combination with Tumour Necrosis Factor Α Induces a Ann Rheum Dis: First Published As 10.1136/Ard.2004.028191 on 5 May 2005
    ARD Online First, published on May 5, 2005 as 10.1136/ard.2004.028191 Oncostatin M in combination with tumour necrosis factor α induces a Ann Rheum Dis: first published as 10.1136/ard.2004.028191 on 5 May 2005. Downloaded from chondrocyte membrane-associated aggrecanase that is distinct from ADAMTS aggrecanase-1 or -2. W Hui, HE Barksby, DA Young, TE Cawston, N McKie, AD Rowan Musculoskeletal Research Group, School of Clinical Medical Sciences, University of Newcastle upon Tyne, Newcastle, NE2 4HH, United Kingdom. http://ard.bmj.com/ on September 30, 2021 by guest. Protected copyright. Address reprint requests to Dr. Drew Rowan, Musculoskeletal Research Group, Medical School, University of Newcastle upon Tyne, Newcastle, NE2 4HH, United Kingdom. Tel: 0044 191 222 8821. Fax: 0044 191 222 5455. E-mail: [email protected] KEY WORDS: aggrecanase, ADAMTS, TIMP, chondrocyte, membrane "The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in ARD editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://ard.bmjjournals.com/misc/ifora/licenceform.shtml)." 1 Copyright Article author (or their employer) 2005. Produced by BMJ Publishing Group Ltd (& EULAR) under licence. ABSTRACT Objective: We have previously reported that chondrocyte membranes exhibit an aggrecanase Ann Rheum Dis: first published as 10.1136/ard.2004.028191 on 5 May 2005.
    [Show full text]
  • Kartogenin Inhibits Pain Behavior, Chondrocyte Inflammation, And
    www.nature.com/scientificreports OPEN Kartogenin inhibits pain behavior, chondrocyte infammation, and attenuates osteoarthritis Received: 12 January 2018 Accepted: 30 August 2018 progression in mice through Published: xx xx xxxx induction of IL-10 Ji Ye Kwon1, Seung Hoon Lee1, Hyun-Sik Na1, KyungAh Jung2, JeongWon Choi1, Keun Hyung Cho1, Chang-Yong Lee3, Seok Jung Kim4, Sung-Hwan Park1,5, Dong-Yun Shin3 & Mi-La Cho1,2,6 Osteoarthritis (OA) is a major degenerative joint condition that causes articular cartilage destruction. It was recently found that enhancement of chondroclasts and suppression in Treg cell diferentiation are involved in the pathogenesis of OA. Kartogenin (KGN) is a small drug-like molecule that induces chondrogenesis in mesenchymal stem cells (MSCs). This study aimed to identify whether KGN can enhance severe pain behavior and improve cartilage repair in OA rat model. Induction of OA model was loaded by IA-injection of MIA. In the OA rat model, treatment an intra-articular injection of KGN. Pain levels were evaluated by analyzing PWL and PWT response in animals. Histological analysis and micro-CT images of femurs were used to analyze cartilage destruction. Gene expression was measured by real-time PCR. Immunohistochemistry was analyzed to detect protein expression. KGN injection signifcantly decreased pain severity and joint destruction in the MIA-induced OA model. KGN also increased mRNA levels of the anti-infammatory cytokine IL-10 in OA patients’ chondrocytes stimulated by IL-1β. Decreased chondroclast expression, and increased Treg cell expression. KGN revealed therapeutic activity with the potential to reduce pain and improve cartilage destruction. Thus, KGN could be a therapeutic molecule for OA that inhibits cartilage damage.
    [Show full text]
  • Identifying the Human Aggrecanase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Osteoarthritis and Cartilage 18 (2010) 1109e1116 Review Identifying the human aggrecanase A.J. Fosang*, F.M. Rogerson University of Melbourne, Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington Road, Parkville 3052, Australia article info summary Article history: It is clear that A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 is the Received 9 April 2010 major aggrecanase in mouse cartilage, however it is not at all clear which enzyme is the major Accepted 4 June 2010 aggrecanase in human cartilage. Identifying the human aggrecanase is difficult because multiple, inde- pendent, molecular processes determine the final level of enzyme activity. As investigators, we have Keywords: good methods for measuring changes in the expression of ADAMTS mRNA, and good methods for Aggrecan detecting aggrecanase activity, but no methods that distinguish the source of the activity. In between Aggrecanase gene expression and enzyme action there are many processes that can potentially enhance or inhibit the Cartilage fi ADAMTS-4 nal level of activity. In this editorial we discuss how each of these processes affects ADAMTS activity and ADAMTS-5 argue that measuring any one process in isolation has little value in predicting overall ADAMTS activity Messenger RNA in vivo. Proteinase activity Crown Copyright Ó 2010 Published by Elsevier Ltd on behalf of Osteoarthritis
    [Show full text]
  • ADAMTS4 Or ADAMTS5: Which Is the Key Enzyme in the Cartilage Degradation of Osteoarthritis and Kashin-Beck Disease?
    ADAMTS4 or ADAMTS5: Which is the Key Enzyme in the Cartilage Degradation of Osteoarthritis and Kashin-Beck Disease? Peilin Meng Xi’an Jiaotong University, National Health and Family Planning Commission Mikko J. Lammi Umeå University Linlin Yuan Xi’an Jiaotong University, National Health and Family Planning Commission SiJia Tan Xi’an Jiaotong University, National Health and Family Planning Commission Feng’e Zhang Xi’an Jiaotong University, National Health and Family Planning Commission Peilin Li Xi’an Jiaotong University, National Health and Family Planning Commission Yanan Zhang Xi’an Jiaotong University, National Health and Family Planning Commission Wenyu Li Xi’an Jiaotong University, National Health and Family Planning Commission Sen Wang ( [email protected] ) Xi’an Jiaotong University, National Health and Family Planning Commission Xiong Guo Xi’an Jiaotong University, National Health and Family Planning Commission Research Article Keywords: ADAMTS4, ADANTS5, Osteoarthritis, Kashin-Beck Disease, immunohistochemical. Posted Date: June 30th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-640139/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract Background: This study aims to investigate the altered expression of a disintegrin and metalloproteinase with thrombospondin motifs 4ADAMTS4and a disintegrin and metalloproteinase with thrombospondin motifs 5ADAMTS5in the human articular cartilage between osteoarthritis(OA) and Kashin-Beck disease(KBD) and compare their roles in the cartilage injury. Methods: Articular samples were collected from conrmed OA patients and KBD patients then divided into three groups, and the articular cartilages from the normal donors were used as controls. The morphologylocation and expression of ADAMTS4 and ADAMTS5 as well as aggrecan were detected by histochemical staining and immunohistochemical staining.
    [Show full text]
  • Strategies to Target ADAM17 in Disease: from Its Discovery to the Irhom Revolution
    molecules Review Strategies to Target ADAM17 in Disease: From Its Discovery to the iRhom Revolution Matteo Calligaris 1,2,†, Doretta Cuffaro 2,†, Simone Bonelli 1, Donatella Pia Spanò 3, Armando Rossello 2, Elisa Nuti 2,* and Simone Dario Scilabra 1,* 1 Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90145 Palermo, Italy; [email protected] (M.C.); [email protected] (S.B.) 2 Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; [email protected] (D.C.); [email protected] (A.R.) 3 Università degli Studi di Palermo, STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Viale delle Scienze Ed. 16, 90128 Palermo, Italy; [email protected] * Correspondence: [email protected] (E.N.); [email protected] (S.D.S.) † These authors contributed equally to this work. Abstract: For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions.
    [Show full text]
  • The Metalloprotease Inhibitor TIMP-3 Regulates Amyloid Precursor Protein and Apolipoprotein E Receptor Proteolysis
    The Journal of Neuroscience, October 3, 2007 • 27(40):10895–10905 • 10895 Neurobiology of Disease The Metalloprotease Inhibitor TIMP-3 Regulates Amyloid Precursor Protein and Apolipoprotein E Receptor Proteolysis Hyang-Sook Hoe,1 Matthew J. Cooper,1 Mark P. Burns,1 Patrick A. Lewis,3 Marcel van der Brug,3 Geetanjali Chakraborty,1 Casandra M. Cartagena,1 Daniel T. S. Pak,2 Mark R. Cookson,3 and G. William Rebeck1 Departments of 1Neuroscience and 2Pharmacology, Georgetown University Medical Center, Washington, DC 20057-1464, and 3Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland 20892-3707 Cellular cholesterol levels alter the processing of the amyloid precursor protein (APP) to produce A␤. Activation of liver X receptors (LXRs), one cellular mechanism to regulate cholesterol homeostasis, has been found to alter A␤ levels in vitro and in vivo. To identify genes regulated by LXR, we treated human neuroblastoma cells with an LXR agonist (TO-901317) and examined gene expression by microarray. As expected, TO-901317 upregulated several cholesterol metabolism genes, but it also decreased expression of a metallopro- tease inhibitor, TIMP-3. We confirmed this finding using real-time PCR and by measuring TIMP-3 protein in glia, SY5Y cells, and COS7 cells. TIMP-3 is a member of a family of metalloproteinase inhibitors and blocks A disintegrin and metalloproteinase-10 (ADAM-10) and ADAM-17, two APP ␣-secretases. We found that TIMP-3 inhibited ␣-secretase cleavage of APP and an apolipoprotein E (apoE) receptor, ApoER2. TIMP-3 decreased surface levels of ADAM-10, APP, and ApoER2. These changes were accompanied by increased APP ␤-C- terminal fragment and A␤ production.
    [Show full text]
  • ADAMTS-5: Issnthe Story 1473-2262 So Far
    AJ.European Fosang Cells et al. and Materials Vol. 15 200 8 (pages 11-26) DOI: 10.22203/eCM.v015a02 ADAMTS-5: ISSNThe story 1473-2262 so far ADAMTS-5: THE STORY SO FAR Amanda J. Fosang*, Fraser M. Rogerson, Charlotte J. East, Heather Stanton University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia Abstract List of abbreviations The recent discovery of ADAMTS-5 as the major ADAM A disintegrin and metalloproteinase aggrecanase in mouse cartilage came as a surprise. A great ADAMTS A disintegrin and metalloproteinase with deal of research had focused on ADAMTS-4 and much thrombospondin motifs less was known about the regulation, expression and activity CS Chondroitin sulphate of ADAMTS-5. Two years on, it is still not clear whether CS-2 Second chondroitin sulphate domain ADAMTS-4 or ADAMTS-5 is the major aggrecanase in G1 First (N-terminal) globular domain of human cartilage. On the one hand there are in vitro studies aggrecan using siRNA, neutralising antibodies and immuno- G2 Second (N-terminal) globular domain of precipitation with anti-ADAMTS antibodies that suggest aggrecan a significant role for ADAMTS-4 in aggrecanolysis. On IGD Interglobular domain of aggrecan the other hand, ADAMTS-5 (but not ADAMTS-4)-deficient KS Keratan sulphate mice are protected from cartilage erosion in models of MMP Matrix metalloproteinase experimental arthritis, and recombinant human ADAMTS- TIMP Tissue inhibitor of matrix metalloproteinase 5 is substantially more active than ADAMTS-4. The activity TS Thrombospondin of both enzymes is modulated by C-terminal processing, α2M α2-Macroglobulin which occurs naturally in vivo.
    [Show full text]
  • Biological and Structural Implications Ngee H
    Biochem. J. (2010) 431, 113–122 (Printed in Great Britain) doi:10.1042/BJ20100725 113 Reactive-site mutants of N-TIMP-3 that selectively inhibit ADAMTS-4 and ADAMTS-5: biological and structural implications Ngee H. LIM*, Masahide KASHIWAGI*, Robert VISSE*, Jonathan JONES†, Jan J. ENGHILD‡, Keith BREW§ and Hideaki NAGASE*1 *Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, London W6 8LH, U.K., †Orthopaedics and Trauma, Wexham Park Hospital, Slough, Berks. SL2 4HL, U.K., ‡Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Science Park, University of A˚rhus, Gustav Wieds Vej 10c, DK-8000 A˚rhus C, Denmark, and §Department of Basic Science, College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 3341, U.S.A. We have reported previously that reactive-site mutants of 3and[−2A]N-TIMP-3 were effective inhibitors of aggrecan N-TIMP-3 [N-terminal inhibitory domain of TIMP-3 (tissue degradation, but not of collagen degradation in both IL-1α inhibitor of metalloproteinases 3)] modified at the N-terminus, (interleukin-1α)-stimulated porcine articular cartilage explants selectively inhibited ADAM17 (a disintegrin and metallopro- and IL-1α with oncostatin M-stimulated human cartilage explants. teinase 17) over the MMPs (matrix metalloproteinases). The Molecular modelling studies indicated that the [−1A]N-TIMP-3 primary aggrecanases ADAMTS (ADAM with thrombospondin mutant has additional stabilizing interactions with the catalytic motifs) -4 and -5 are ADAM17-related metalloproteinases which domains of ADAM17, ADAMTS-4 and ADAMTS-5 that are are similarly inhibited by TIMP-3, but are poorly inhibited by absent from complexes with MMPs.
    [Show full text]
  • The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo
    International Journal of Molecular Sciences Article The Anti-ADAMTS-5 Nanobody® M6495 Protects Cartilage Degradation Ex Vivo Anne Sofie Siebuhr 1,* , Daniela Werkmann 2, Anne-C. Bay-Jensen 1, Christian S. Thudium 1, Morten Asser Karsdal 1, Benedikte Serruys 3, Christoph Ladel 2, Martin Michaelis 2 and Sven Lindemann 2 1 ImmunoScience, Nordic Bioscience Biomarkers and Research, 2730 Herlev, Denmark; [email protected] (A.-C.B.-J.); [email protected] (C.S.T.); [email protected] (M.A.K.) 2 Merck KGaA, 64293 Darmstadt, Germany; [email protected] (D.W.); [email protected] (C.L.); [email protected] (M.M.); [email protected] (S.L.) 3 Ablynx, A Sanofi Company, 9052 Ghent, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +45-(44)-52-52-52 Received: 1 July 2020; Accepted: 2 August 2020; Published: 20 August 2020 Abstract: Osteoarthritis (OA) is associated with cartilage breakdown, brought about by ADAMTS-5 mediated aggrecan degradation followed by MMP-derived aggrecan and type II collagen degradation. We investigated a novel anti-ADAMTS-5 inhibiting Nanobody® (M6495) on cartilage turnover ex vivo. Bovine cartilage (BEX, n = 4), human osteoarthritic - (HEX, n = 8) and healthy—cartilage (hHEX, n = 1) explants and bovine synovium and cartilage were cultured up to 21 days in medium alone (w/o), with pro-inflammatory cytokines (oncostatin M (10 ng/mL) + TNFα (20 ng/mL) (O + T), IL-1α (10 ng/mL) or oncostatin M (50 ng/mL) + IL-1β (10 ng/mL)) with or without M6495 (1000 0.46 − nM). Cartilage turnover was assessed in conditioned medium by GAG (glycosaminoglycan) and biomarkers of ADAMTS-5 driven aggrecan degradation (huARGS and exAGNxI) and type II collagen degradation (C2M) and formation (PRO-C2).
    [Show full text]
  • And ADAM-TS5 (Aggrecanase-2) in a Model of Cartilage Degradation M
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Osteoarthritis and Cartilage (2001) 9, 539–552 © 2001 OsteoArthritis Research Society International 1063–4584/01/060539+14 $35.00/0 doi:10.1053/joca.2001.0427, available online at http://www.idealibrary.com on The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation M. D. Tortorella*, A.-M. Malfait*, C. Deccico and E. Arner† DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA Summary Introduction: Cleavage of aggrecan between residues Glu373–Ala374, which is believed to be a key event in aggrecan destruction in arthritic diseases, has been attributed to an enzymatic activity, aggrecanase. Two cartilage aggrecanases have been identified, aggrecanase-1 (ADAM-TS4) and aggrecanase-2 (ADAM-TS5) and both enzymes have been shown very efficiently to cleave soluble aggrecan at the Glu373–Ala374 site. Objective: To determine whether ADAM-TS4 and/or ADAM-TS5 are the aggrecanases responsible for aggrecan catabolism following interleukin-1 (IL-1) and tumor necrosis factor (TNF) treatment of bovine articular cartilage. Results: (1) IL-1- and TNF-stimulated release of aggrecan was associated with cleavage of aggrecan within the C-terminus at the ADAM-TS4 and ADAM-TS5-sensitive sites, Glu1480–Gly1481, Glu1667–Gly1668, and Glu1871–Leu1872. (2) The order of cleavage following IL-1 stimulation of cartilage explants was the same as when soluble aggrecan is digested with recombinant human ADAM-TS4 and ADAM-TS5. (3) Both constitutive and stimulated cleavage of aggrecan at the ADAM-TS4 and ADAM-TS5-sensitive sites in cartilage was blocked by a general metalloproteinase inhibitor but not by a MMP-specific inhibitor, and this inhibition correlated with inhibition of aggrecan release from cartilage.
    [Show full text]