Creating Subdivision Rules from Polyhedra with Identifications

Total Page:16

File Type:pdf, Size:1020Kb

Creating Subdivision Rules from Polyhedra with Identifications CREATING SUBDIVISION RULES FROM POLYHEDRA WITH IDENTIFICATIONS BRIAN RUSHTON Abstract. Cannon, Swenson, and others have proved numerous theorems about subdivision rules asso- ciated to hyperbolic groups with a 2-sphere at infinity. However, few explicit examples are known. We construct an explicit subdivision rule for many 3-manifolds from polyhedral gluings. The manifolds that satisfy the conditions include all closed manifolds created from right-angled hyperbolic polyhedra, as well as many 3-manifolds with toral or hyperbolic boundary. 1. Introduction A long-standing conjecture of Cannon is that every Gromov hyperbolic group with a 2-sphere at infinity is a closed hyperbolic 3-manifold; in other words, it acts by isometries on hyperbolic 3-space, and its quotient is a closed manifold [4]. This is true for Gromov hyperbolic groups that are already known to be 3-manifold groups by the Geometrization conjecture, proved by Perelman [8]. However, it is not at all obvious that hyperbolic groups with a 2-sphere at infinity correspond to any manifold at all, and this is the reason the conjecture remains unsolved. One approach, adopted by Cannon, Floyd, and Parry, among others, is to study subdivision rules [2]. All Gromov hyperbolic groups with a 2-sphere at infinity have a subdivision rule on the sphere [3]. A subdivision rule is a way of dividing the sphere into a tiling, or cell structure, with a recursive formula for dividing each tile into smaller tiles. The most famous examples include barycentric subdivision and hexagonal refinement, where a triangle is chopped up into smaller triangles, which are chopped up into smaller tiles, etc. Cannon has shown that, if a subdivision rule for a group is conformal (meaning that tiles don't get too distorted in the long run), then the group must be a hyperbolic 3-manifold group [4]. However, it has proven difficult to determine if a subdivision rule is conformal or not. Cannon and Swenson have proven the converse, i.e. that a hyperbolic 3-manifold groups have a conformal subdivision rule [3]. One difficulty is the lack of examples. In [2], Cannon, Floyd, and Parry describe a subdivision rule arising from a hyperbolic 3-orbifold with three tile types, a pentagon, a triangle, and a quadrilateral. However, no other examples have been published. On the other hand, explicit subdivision rules have been found for all non-split, prime alternating links [10], most of which are finite-volume hyperbolic 3-manifold groups. However, none of these are Gromov hyperbolic. arXiv:1201.5176v1 [math.GT] 25 Jan 2012 Our goal in constructing these subdivision rules is to shed light on Cannon's conformality. Currently, the only ways of determining whether a subdivision rule is conformal or not require us to check infinitely many tilings. It seems likely that there is a simple way of telling if a subdivision rule is conformal or not just from the combinatorial structure of the tile types. By creating many examples, we can hope to explain why some tilings are conformal and others are not. In this paper, we construct an explicit subdivision rule for a large class of 3-manifold groups, the majority of which will be hyperbolic 3-manifold groups, some closed, some finite-volume, and some of infinite volume. We start by constructing a replacement rule. A replacement rule is different from a subdivision rule. Both give a recursive way of constructing one tiling from another, but a subdivision rule requires the new tiling to include the old one as a subset, while a replacement rule does not. We then explain how to convert these replacement rules into subdivision rules in a large number of cases. As an example of our method, the tilings Date: August 25, 2021. 1 2 BRIAN RUSHTON in Figures 1 and 2 correspond to the same manifold that Cannon, Floyd and Parry studied in [2]; the tiling in their paper is different from the one we obtain, but strongly related. 2. Preliminaries To associate a subdivision rule to a manifold (even a non-hyperbolic one), we create a spherical space at infinity, similar to that of word-hyperbolic groups. To do so, we approximate spheres in R3 by taking the boundary of polyhedra built up from fundamental domains. More specifically, we let B(0) be a single fundamental domain, and let S(0) be its boundary graph. The structure of S(0) gives us a tiling of S2. Now, let B(1) be formed from B(0) by attaching polyhedra to all its exposed faces, and let S(1) be its boundary, and so on. This defines a sequence of tilings of the sphere, which defines a combinatorial structure on the space at infinity. Note S(n) must be a topological sphere for all n. We now define the various terms we use in this paper. Definition 1. We will, for convenience, define a polyhedron as a topological ball with a cell structure on the boundary, where all vertices have valence three or more, all faces have at least three edges, and any two faces that intersect do so in a single edge or a vertex. Definition 2. A fan is a chain a1; a2; :::; an of faces in a polyhedron surrounding a single vertex v, where ai \ ai+1 contains an edge coming out of v for 1 ≤ i ≤ n + 1. If a1 \ an does not contain an edge coming out of v, then a1 and an are called the ends of the fan. If a1 \ an does contain such an edge, then the fan a1; :::; an is the star of the vertex. We consider a single face to be a fan of size 1. See Figure 3 for examples of fans. Definition 3. A polyhedron is spread out if, given any face A and any fan B not containing A, A \ B is a vertex, one edge, or two contiguous edges. Among the platonic solids, the cube, dodecahedron, octahedron, and icosahedron are spread out. The tetrahedron is not; if we take our fan to be the star of a vertex, all three of its edges intersect the remaining face. This is analogous to alternating links. Alternating links have a well-known checkerboard polyhedral decom- position, where the boundary is an alternating diagram for the link. All hyperbolic alternating links have an alternating diagram that is reduced, non-split, and prime, and these properties are very similar to the spread-out condition above. Andreev's theorem [1] (later extended by Rivin and others [7]) implies that all convex hyperbolic polyhedra π with dihedral angles equal to 2 at every edge is spread out. We will need restrictions on edge cycle lengths. Definition 4. When polyhedra are glued together, the edges are identified under the gluing maps. For a given edge e, the edge cycle length of e is the size of the equivalence class containing e. In the universal cover of a manifold, the edge cycle length turns out to be the number of distinct fundamental domains surrounding lifts of the edge. Thus, if a polyhedral fundamental domain for a hyperbolic 3-manifold 2π has dihedral angle n at an edge e, the edge cycle length of e is n. We are now ready to state the theorem. 3. Existence of replacement rules Theorem 1. Let M be a manifold (possibly with boundary) that can be decomposed into polyhedra P1;P2; :::; Pn. If each polyhedron is spread out, and all edge cycles have even length ≥ 4, there exists a replacement rule for M. In this replacement rule, each new polyhedron is placed on exactly one fan in the previous stage of the replacement rule. CREATING SUBDIVISION RULES FROM POLYHEDRA WITH IDENTIFICATIONS 3 Figure 1. The first three subdivisions of a tile type for a hyperbolic orbifold. 4 BRIAN RUSHTON Figure 2. The fourth subdivision of a tile type for the same hyperbolic orbifold. CREATING SUBDIVISION RULES FROM POLYHEDRA WITH IDENTIFICATIONS 5 a) b) c) d) Figure 3. The shaded portions in a,b, and c are all examples of fans, while the shaded portion in d is not. Proof. Let S(n) represent the tiling given by gluing n layers of polyhedra to a base polyhedron. Note that in S(0), all exposed faces are fans consisting of single faces. Also, all edges border fans of size 1. As we glue on more and more polyhedra, each edge will be buried. This happens when we glue a number of polyhedra adjacent to it equal to its cycle length. All edges in S(0) are adjacent to only one polyhedron; we say that these are unburdened edges. As we place polyhedra on the faces to either side, we get closer to closing up the cycle of polyhedra around the edge; we say this edge is now a burdened edge. More precisely, a burdened edge is any edge adjacent to more than one polyhedron. Because the edge cycle has even length and all edges start out adjacent to a single polyhedron, when we glue a polyhedron on either side of the edge at each stage, it will eventually only have one polyhedron remaining to glue on. If we continued to glue polyhedra on either side, we would exceed the cycle length; thus, we glue a single polyhedron onto both faces neighboring this edge. Because this gluing behavior is different from that of previous stages, we say the edge is a loaded edge. That is, a loaded edge needs only one polyhedron to complete its cycle, and we focus on this type of edge in our proof. All edges start out as unburdened, become burdened, become loaded, and then disappear as we glue a polyhedron over them.
Recommended publications
  • Arxiv:2008.00328V3 [Math.DS] 28 Apr 2021 Uniformly Hyperbolic and Topologically Mixing
    ERGODICITY AND EQUIDISTRIBUTION IN STRICTLY CONVEX HILBERT GEOMETRY FENG ZHU Abstract. We show that dynamical and counting results characteristic of negatively-curved Riemannian geometry, or more generally CAT(-1) or rank- one CAT(0) spaces, also hold for geometrically-finite strictly convex projective structures equipped with their Hilbert metric. More specifically, such structures admit a finite Sullivan measure; with respect to this measure, the Hilbert geodesic flow is strongly mixing, and orbits and primitive closed geodesics equidistribute, allowing us to asymptotically enumerate these objects. In [Mar69], Margulis established counting results for uniform lattices in constant negative curvature, or equivalently for closed hyperbolic manifolds, by means of ergodicity and equidistribution results for the geodesic flows on these manifolds with respect to suitable measures. Thomas Roblin, in [Rob03], obtained analogous ergodicity and equidistribution results in the more general setting of CAT(−1) spaces. These results include ergodicity of the horospherical foliations, mixing of the geodesic flow, orbital equidistribution of the group, equidistribution of primitive closed geodesics, and, in the geometrically finite case, asymptotic counting estimates. Gabriele Link later adapted similar techniques to prove similar results in the even more general setting of rank-one isometry groups of Hadamard spaces in [Lin20]. These results do not directly apply to manifolds endowed with strictly convex projective structures, considered with their Hilbert metrics and associated Bowen- Margulis measures, since strictly convex Hilbert geometries are in general not CAT(−1) or even CAT(0) (see e.g. [Egl97, App. B].) Nevertheless, these Hilbert geometries exhibit substantial similarities to Riemannian geometries of pinched negative curvature. In particular, there is a good theory of Busemann functions and of Patterson-Sullivan measures on these geometries.
    [Show full text]
  • [Math.GT] 9 Oct 2020 Symmetries of Hyperbolic 4-Manifolds
    Symmetries of hyperbolic 4-manifolds Alexander Kolpakov & Leone Slavich R´esum´e Pour chaque groupe G fini, nous construisons des premiers exemples explicites de 4- vari´et´es non-compactes compl`etes arithm´etiques hyperboliques M, `avolume fini, telles M G + M G que Isom ∼= , ou Isom ∼= . Pour y parvenir, nous utilisons essentiellement la g´eom´etrie de poly`edres de Coxeter dans l’espace hyperbolique en dimension quatre, et aussi la combinatoire de complexes simpliciaux. C¸a nous permet d’obtenir une borne sup´erieure universelle pour le volume minimal d’une 4-vari´et´ehyperbolique ayant le groupe G comme son groupe d’isom´etries, par rap- port de l’ordre du groupe. Nous obtenons aussi des bornes asymptotiques pour le taux de croissance, par rapport du volume, du nombre de 4-vari´et´es hyperboliques ayant G comme le groupe d’isom´etries. Abstract In this paper, for each finite group G, we construct the first explicit examples of non- M M compact complete finite-volume arithmetic hyperbolic 4-manifolds such that Isom ∼= G + M G , or Isom ∼= . In order to do so, we use essentially the geometry of Coxeter polytopes in the hyperbolic 4-space, on one hand, and the combinatorics of simplicial complexes, on the other. This allows us to obtain a universal upper bound on the minimal volume of a hyperbolic 4-manifold realising a given finite group G as its isometry group in terms of the order of the group. We also obtain asymptotic bounds for the growth rate, with respect to volume, of the number of hyperbolic 4-manifolds having a finite group G as their isometry group.
    [Show full text]
  • Apollonian Circle Packings: Dynamics and Number Theory
    APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them.
    [Show full text]
  • On Eigenvalues of Geometrically Finite Hyperbolic Manifolds With
    On Eigenvalues of Geometrically Finite Hyperbolic Manifolds with Infinite Volume Xiaolong Hans Han April 6, 2020 Abstract Let M be an oriented geometrically finite hyperbolic manifold of dimension n ≥ 3 with infinite volume. Then for all k ≥ 0, we provide a lower bound on the k-th eigenvalue of the Laplacian operator acting on functions on M by a constant and the k-th eigenvalue of some neighborhood Mf of the thick part of the convex core. 1. Introduction As analytic data of a manifold, the spectrum of the Laplacian operator acting on func- tions contains rich information about the geometry and topology of a manifold. For example, by results of Cheeger and Buser, with a lower bound on Ricci curvature, the first eigenvalue is equivalent to the Cheeger constant of a manifold, which depends on the geometry of the manifold. The rigidity and richness of hyperbolic geometry make the connection even more intriguing: by Canary [4], for infinite volume, topologically tame hyperbolic 3-manifolds, the 2 bottom of the L -spectrum of −∆, denoted by λ0, is zero if and only if the manifold is not geometrically finite. If λ0 of a geometrically finite, infinite volume hyperbolic manifold is 1, by Canary and Burger [2], the manifold is either the topological interior of a handlebody or an R-bundle over a closed surface, which is a very strong topological restriction. Conversely, if we have data about the geometry of a manifold, we can convert it into data about its spectrum, like lower bounds on eigenvalues, dimensions of eigenspaces, existence of embedded eigenvalues, etc.
    [Show full text]
  • ISOMETRY TRANSFORMATIONS of HYPERBOLIC 3-MANIFOLDS Sadayoshi KOJIMA 0. Introduction by a Hyperbolic Manifold, We Mean a Riemanni
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 29 (1988) 297-307 297 North-Holland ISOMETRY TRANSFORMATIONS OF HYPERBOLIC 3-MANIFOLDS Sadayoshi KOJIMA Department of Information Science, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo, Japan Received 1 December 1986 Revised 10 June 1987 The isometry group of a compact hyperbolic manifold is known to be finite. We show that every finite group is realized as the full isometry group of some compact hyperbolic 3-manifold. AMS (MOS) Subj. Class.: 57S17, 53C25, 57M99 3-manifold hyperbolic manifold isometry 0. Introduction By a hyperbolic manifold, we mean a Riemannian manifold with constant sectional curvature -1. It is known by several ways that the isometry group of a hyperbolic manifold of finite volume is finite. On the other hand, Greenberg has shown in [3] that every finite group is realized as the full conformal automorphism group of some Riemann surface of hyperbolic type. Since such a Riemann surface, which is a 2-manifold with a conformal structure, inherits a unique conformally equivalent hyperbolic structure through the uniformization theorem, there are no limitations on the group structure of the full isometry group of a hyperbolic manifold in dimension 2. In this paper, we first give a quick proof of the theorem of Greenberg quoted above, and then along the same line we show, raising the dimension by one. Theorem. Every jinite group is realized as the full isometry group of some closed hyperbolic 3 -manifold. An immediate corollary to this is the following.
    [Show full text]
  • Hyperbolic Geometry
    Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry.
    [Show full text]
  • Hyperbolic Geometry, Surfaces, and 3-Manifolds Bruno Martelli
    Hyperbolic geometry, surfaces, and 3-manifolds Bruno Martelli Dipartimento di Matematica \Tonelli", Largo Pontecorvo 5, 56127 Pisa, Italy E-mail address: martelli at dm dot unipi dot it version: december 18, 2013 Contents Introduction 1 Copyright notices 1 Chapter 1. Preliminaries 3 1. Differential topology 3 1.1. Differentiable manifolds 3 1.2. Tangent space 4 1.3. Differentiable submanifolds 6 1.4. Fiber bundles 6 1.5. Tangent and normal bundle 6 1.6. Immersion and embedding 7 1.7. Homotopy and isotopy 7 1.8. Tubolar neighborhood 7 1.9. Manifolds with boundary 8 1.10. Cut and paste 8 1.11. Transversality 9 2. Riemannian geometry 9 2.1. Metric tensor 9 2.2. Distance, geodesics, volume. 10 2.3. Exponential map 11 2.4. Injectivity radius 12 2.5. Completeness 13 2.6. Curvature 13 2.7. Isometries 15 2.8. Isometry group 15 2.9. Riemannian manifolds with boundary 16 2.10. Local isometries 16 3. Measure theory 17 3.1. Borel measure 17 3.2. Topology on the measure space 18 3.3. Lie groups 19 3.4. Haar measures 19 4. Algebraic topology 19 4.1. Group actions 19 4.2. Coverings 20 4.3. Discrete groups of isometries 20 v vi CONTENTS 4.4. Cell complexes 21 4.5. Aspherical cell-complexes 22 Chapter 2. Hyperbolic space 25 1. The models of hyperbolic space 25 1.1. Hyperboloid 25 1.2. Isometries of the hyperboloid 26 1.3. Subspaces 27 1.4. The Poincar´edisc 29 1.5. The half-space model 31 1.6.
    [Show full text]
  • Hyperbolic Deep Learning for Chinese Natural Language Understanding
    Hyperbolic Deep Learning for Chinese Natural Language Understanding Marko Valentin Micic1 and Hugo Chu2 Kami Intelligence Ltd, HK SAR [email protected] [email protected] Abstract Recently hyperbolic geometry has proven to be effective in building embeddings that encode hierarchical and entailment information. This makes it particularly suited to modelling the complex asymmetrical relationships between Chinese characters and words. In this paper we first train a large scale hyperboloid skip-gram model on a Chinese corpus, then apply the character embeddings to a downstream hyperbolic Transformer model derived from the principles of gyrovector space for Poincare disk model. In our experiments the character-based Transformer outperformed its word-based Euclidean equivalent. To the best of our knowledge, this is the first time in Chinese NLP that a character-based model outperformed its word- based counterpart, allowing the circumvention of the challenging and domain-dependent task of Chinese Word Segmentation (CWS). 1 Introduction Recent advances in deep learning have seen tremendous improvements in accuracy and scalability in all fields of application. Natural language processing (NLP), however, still faces many challenges, particularly in Chinese, where even word-segmentation proves to be a difficult and as-yet unscalable task. Traditional neural network architectures employed to tackle NLP tasks are generally cast in the standard Euclidean geometry. While this setting is adequate for most deep learning tasks, where it has often allowed for the achievement of superhuman performance in certain areas (e.g. AlphaGo [35], ImageNet [36]), its performance in NLP has yet to reach the same levels. Recent research arXiv:1812.10408v1 [cs.CL] 11 Dec 2018 indicates that some of the problems NLP faces may be much more fundamental and mathematical in nature.
    [Show full text]
  • Hyperbolic Geometry
    Flavors of Geometry MSRI Publications Volume 31, 1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a ThisworkwassupportedinpartbyTheGeometryCenter,UniversityofMinnesota,anSTC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry. This has not been true of the mathematicians and physicists of our generation.
    [Show full text]
  • Quasi-Isometries of Graph Manifolds Do Not Preserve Non-Positive Curvature
    QUASI-ISOMETRIES OF GRAPH MANIFOLDS DO NOT PRESERVE NON-POSITIVE CURVATURE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Andrew Nicol, MS Graduate Program in Mathematics The Ohio State University 2014 Dissertation Committee: Jean-Fran¸coisLafont, Advisor Brian Ahmer Nathan Broaddus Michael Davis c Copyright by Andrew Nicol 2014 ABSTRACT Continuing the work of Frigerio, Lafont, and Sisto [8], we recall the definition of high dimensional graph manifolds. They are compact, smooth manifolds which decompose into finitely many pieces, each of which is a hyperbolic, non-compact, finite volume manifold of some dimension with toric cusps which has been truncated at the cusps and crossed with an appropriate dimensional torus. This class of manifolds is a generalization of two of the geometries described in Thurston's geometrization conjecture: H3 and H2 × R. In their monograph, Frigerio, Lafont, and Sisto describe various rigidity results and prove the existence of infinitely many graph manifolds not supporting a locally CAT(0) metric. Their proof relies on the existence of a cochain having infinite order. They leave open the question of whether or not there exists pairs of graph manifolds with quasi-isometric fundamental group but where one supports a locally CAT(0) metric while the other cannot. Using a number of facts about bounded cohomology and relative hyperbolicity, I extend their result, showing that there exists a cochain that is not only of infinite order but is also bounded. I also show that this is sufficient to construct two graph manifolds with the desired properties.
    [Show full text]
  • Classifying Hyperbolic Manifolds— All’S Well That Ends Well Danamackenzie
    Hall of Mirrors. Spectacular images result from plotting the action of a Kleinian group in 3-dimensional space. To a topologist, this image represents the outside, or convex hull, of a 3-dimensional “hall of mir- rors.” Each individual room in the hall of mirrors corresponds to a 3-dimensional manifold. In a case like this one, where the walls of the hall of mirrors form visible spheres, the manifold is said to be “geomet- rically finite,” and its ends are tame. Until recently topologists did not know if “geometrically infinite” manifolds, where the spheres shrink down to an infinitely fine froth, also had tame ends. (c JosLeys.) 14 What’s Happening in the Mathematical Sciences Classifying Hyperbolic Manifolds— All’s Well That Ends Well DanaMackenzie hile the status of one famous unsolved problem in topology remained uncertain, topologists conquered Wfour other major problems in 2004. The four theorems that went into this unique sundae—the Ending Laminations Conjecture, the Tame Ends Conjecture, the Ahlfors Measure Conjecture, and the Density Conjecture—were not household names, even among mathematicians. Yet to topologists who study three-dimensional spaces, they were as familiar (and went together as well) as chocolate, vanilla, hot fudge sauce and a maraschino cherry. The Poincaré Conjecture (see “First of Seven Millennium Danny Calegari. (Photo courtesy Problems Nears Completion,” p. 2) can be compared to the of Danny Calegari.) quest for the Loch Ness Monster: Whether you discover it or prove it doesn’t exist, fame and glory are sure to follow. On the other hand, if topologists spent all their time hunting Loch Ness monsters, the subject would never advance.
    [Show full text]
  • A Short Proof of Unique Ergodicity of Horospherical Foliations on Infinite Volume Hyperbolic Manifolds Tome 8, No 1 (2016), P
    CONFLUENTES MATHEMATICI Barbara SCHAPIRA A short proof of unique ergodicity of horospherical foliations on infinite volume hyperbolic manifolds Tome 8, no 1 (2016), p. 165-174. <http://cml.cedram.org/item?id=CML_2016__8_1_165_0> © Les auteurs et Confluentes Mathematici, 2016. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 8, 1 (2016) 165-174 A SHORT PROOF OF UNIQUE ERGODICITY OF HOROSPHERICAL FOLIATIONS ON INFINITE VOLUME HYPERBOLIC MANIFOLDS BARBARA SCHAPIRA Abstract. We provide a new proof of the fact that the horospherical group N < G = SOo(d, 1) acting on the frame bundle Γ\G of a hyperbolic manifold admits a unique invariant ergodic measure (up to multiplicative constants) supported on the set of frames whose orbit under the geodesic flow comes back infinitely often in a compact set. This result is known, but our proof is more direct and much shorter. 1. Introduction The (unstable) horocycle flow on the unit tangent bundle of compact hyperbolic surfaces is uniquely ergodic. Furstenberg [6] proved that the Liouville measure is the unique invariant measure under this flow.
    [Show full text]