Acaulospora Aspera, a New Fungal Species in the Glomeromycetes from Rhizosphere Soils of the Inka Nut (Plukenetia Volubilis

Total Page:16

File Type:pdf, Size:1020Kb

Acaulospora Aspera, a New Fungal Species in the Glomeromycetes from Rhizosphere Soils of the Inka Nut (Plukenetia Volubilis Journal of Applied Botany and Food Quality 92, 250 - 257 (2019), DOI:10.5073/JABFQ.2019.092.035 1Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Morales, Peru 2Instituto Nacional de Innovación Agraria (INIA), Dirección General de Recursos Genéticos y Biotecnología, La Molina - Lima, Peru 3Departamento de Micologia, CB, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Brazil 4Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Wädenswil, Switzerland Acaulospora aspera, a new fungal species in the Glomeromycetes from rhizosphere soils of the inka nut (Plukenetia volubilis L.) in Peru Mike Anderson Corazon-Guivin1*, Agustin Cerna-Mendoza1, Juan Carlos Guerrero-Abad1,2, Adela Vallejos-Tapullima1, Gladstone Alves da Silva3, Fritz Oehl4* (Submitted: July 1, 2019; Accepted: September 8, 2019) Summary In San Martín State, located in the transition of the last mountain A new fungal species of the Glomeromycetes, Acaulospora aspera, ridges in the Peruvian Andes towards the Amazonian lowlands, a was isolated from the rhizosphere of the inka nut (Plukenetia volubi- few new AM fungal species have been detected recently, such as two lis) in San Martín State of Peru (Western Amazonia) and propagated new species of the Glomeraceae, Funneliglomus sanmartinensis and in bait cultures on Sorghum spp., Brachiaria brizantha, Medicago Microkamienskia peruviana (Corazon-Guivin et al., 2019a, b). Re- sativa and P. volubilis as host plants. The fungus forms brownish markably, these were isolated in rhizosphere soils of the inka nut yellow to yellow brown spores, (120-)135-195 × (120-)130-187 μm in (Plukenetia volubilis L.) that usually is grown there in mixed cul- diameter. The surface of the structural spore wall layer is crowded ture systems together with several annual crops, such as Zea mays, with small depressions, 0.4-0.7 μm in diameter, up to 0.8 μm deep, Phaseolus vulgaris, Arachis hypogaea, seeded between the rows of and only 1.1-1.8 apart, giving the spore surface a rough, washboard- the main crop inka nut. The inka nut is native to the Peruvian Ama- like appearance, especially when the outermost, evanescent wall lay- zon and has gained increasing agronomic and economic attention er has disappeared. Phylogenetically, the new species is close to A. in Peru and other tropical countries due to its elevated contents of spinosissima, A. excavata and to other morphologically more similar unsaturated fatty acids (omega 3, 6, and 9; CHIRINOS et al., 2013; species such as A. spinosa and A. tuberculata, which form spiny or SRICHAMNONG et al., 2018; wanG et al., 2018). The inka nut plant, tuberculate projections on the outermost, semi-persistent spore wall its cultivation and the fruits/nuts are presented in the Figs. 1-12. layer, or A. herrerae, A. kentinensis, A. scrobiculata and A. minuta, During diversity studies in inka nut plantations of the Peruvian which on the structural spore wall layer all have more pronunced pits Amazonian lowlands and adjacent low level mountain ranges of San than A. aspera. In this study, also the name of A. spinosissima was Martin State in Peru, a further new glomeromycotean fungus was validated, as it had been preliminary declared invalid because of a detected morphologically resembling to Acaulospora laevis, Acau- typing error in the diagnosis section of its original description. lospora spinosissima and Acaulospora herrerae in spore color and sizes (GERDEMANN and TRAPPE, 1974; Furrazola et al., 2013; oehl et al., 2014). The objective of the present study was to analyze Key words: Acaulospora spinosissima, Acaulosporaceae, arbuscu- thoroughly the spores of the new fungus both morphologically and lar mycorrhizal fungi, biodiversity, Glomeromycetes, phylogeny. phylogenetically and to describe it under the new epithet Acaulo- spora aspera. Finally, we validated the name of the fungus Acau- lospora spinosissima, for which in the original description a typing Introduction error in the accession number of the holotype slide had been made in the diagnosis section (oehl et al., 2014). Arbuscular mycorrhizal (AM) fungi are beneficial soil fungi that deliver a couple of important ecosystem services, such plant growth promotion and improved water infiltration and soil aggregation (SIEVERDING, 1991). During the last decades, the knowledge about Material and methods the taxonomy, diversity and biogeography of arbuscular mycorrhizal Study sites and Soil sampling (AM) fungi has considerably been increased (e.g. JANOS and TRAPPE, Soil samples (0-30 cm depth) were repeatedly taken in agricultural 1982; SCHENCK et al., 1984; SIEVERDING et al., 2014; Błaszkowski field site with inka nut at Palmiche (06°20´02.40´´S, 076°36´00.00´´W; et al., 2015; PONTES et al., 2017; TURRINI et al., 2018). This is in 858 m a.s.l.) in the Peruvian Amazonia lowlands and adjacent An- particular true for species of the family Acaulosporaceae (Furrazola dean low mountain ranges in the Department San Martín of the et al., 2013; Palenzuela et al., 2013, 2014, 2015; PEREIRA et al., province Lamas. The site is a traditional agroforestry site, where the 2015). While in 1974 only two Acaulospora species were known inka nut is grown in a mixed culture with maize, beans, peanuts and (GERDEMANN and TRAPPE, 1974) that raised to 15 species in 1990 other annual field crops without addition of chemical fertilizers and (SCHENCK and Pérez, 1990), an increasing number of Acaulospora pesticides. Mean annual temperatures in the study area are about spp. could be included in the continuously developing morphological 25-27 °C, with variation between 18 and 32 °C throughout the year. identification keys o( ehl et al., 2006, 2012; lin et al., 2019). At time, Mean annual precipitation is approximately 1300 mm. already > 50 species are attributed to the Acaulosporaceae (lin et al., 2019). Especially some tropical areas are considered as hot-spots for Acau- AM fungal pot cultures losporaceae (SIEVERDING, 1991; PAGANO et al., 2013; PEREIRA et al., Bait cultures were established in the greenhouse under ambient tem- 2015; BONFIM et al., 2016; JOBIM et al., 2018; MARINHO et al., 2018). perature conditions, in cylindrical 3 L pots with 3 kg of substrate. The substrate consisted of a 1:1 mixture of collected field soil sam- * Corresponding author ples and coarse river sand. The substrate mixtures were autoclaved A new fungal species from rhizosphere soils of the inka nut in Peru 251 Figs. 1-12 Plukenetia volubilis: 1. Inka nut plantation at the type location in Palmiche (province Lamas, San Martín, Peru). The annual agricultural crops maize, peanuts and beans planted in the inter-rows had already been harvested at sampling time. 2-3. Inka nut plants grown at the University of San Martín in Tarapoto. The inka nut plantations in San Martín State last for 4-5 years in the same field and can be replaced by new plantations or other field crops. 4-6. Inka nut capsule fruits in different ripening stages. 7-9. Inka nut plants in different development stages, grown in the greenhouse of the University San Martín in Tarapoto. Inka nut is a semi-woody, climbing plant and need support for vertical growth at early stages, either abiotically or by living plants. 10. Decapsulation of a seed. 11. Dark brown, field collected seeds, each 1-2 cm in diam. 12. Toasted almonds of the inka nut, photographed at a local market in Lamas. at 121 °C for 60 min, three weeks before establishment of the bait the seeds were covered with the remaining 25% of the autoclaved cultures. At bait culture establishment, the pots were first filled to substrate. The cultures were maintained in the greenhouse of the 75% with the autoclaved substrate. Thereafter 100 g of rhizospheric Facultad de Ciencias Agrárias, Universidad Nacional de San Martín- soils were added to the substrate surface, and five seeds either of Tarapoto for eight months, with 21.4 °C, 29 °C and 38.2 ºC as mini- Sorghum vulgaris L., alfalfa (Medicago sativa L.), bread grass (Bra- mum, mean and maximum temperatures, respectively. The relative chiaria brizantha (Hochst. ex A. Rich.) R.Webster) and inka nut humidity was from 48 to 74% between April and November 2018. (Plukenetia volubilis L.) were seeded in order to establish the mycor- The pots were irrigated every other day and fertilized with a Long rhizal association and reproduce spores of the new fungal species Anston nutrient solution with reduced P contents (60% reduction; together with the native AMF communities. The seeds were surface hewitt, 1966) every two weeks. So far, the new fungal species has sterilized before seeding, using sodium hypochlorite (0.5%). Finally, not reproduced spores in single species cultures. 252 M. Anderson Corazon-Guivin, A. Cerna-Mendoza, J.C. Guerrero-Abad, A. Vallejos-Tapullima, G. Alves da Silva, F. Oehl Morphological analyses sporoid spore formation. Photographs (Figs. 13-17) were taken with AM fungal spores were obtained from the field soil and bait cul- a Leica DFC 290 digital camera on a Leitz Laborlux S compound ture samples by a wet sieving, density-gradient, centrifugation and microscope using the Leica Application Suite Version V 2.5.0 R1 decanting process as described by SIEVERDING (1991). The spore software. Specimens mounted in PVLG and PVLG+Melzer’s reagent morphological characteristics and their subcellular structures were were deposited at Z+ZT (ETH Zurich, Switzerland). described from specimens mounted in: (i) polyvinyl alcohol-lactic acid-glycerol (PVLG); (ii) a mixture (1:1) of PVLG and Melzer’s reagent; (iii) a mixture of lactic acid and water (1:1); (iv) Melzer’s Molecular analyses reagent; and (v) water. The spore structure terminology follows oehl Intact, healthy spores were isolated from field soil and bait culture et al. (2012) and Furrazola et al. (2013) for species with acaulo- samples, and superficially cleaned of soil particles by friction on Figs.
Recommended publications
  • The Obligate Endobacteria of Arbuscular Mycorrhizal Fungi Are Ancient Heritable Components Related to the Mollicutes
    The ISME Journal (2010) 4, 862–871 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes Maria Naumann1,2, Arthur Schu¨ ler2 and Paola Bonfante1 1Department of Plant Biology, University of Turin and IPP-CNR, Turin, Italy and 2Department of Biology, Inst. Genetics, University of Munich (LMU), Planegg-Martinsried, Germany Arbuscular mycorrhizal fungi (AMF) have been symbionts of land plants for at least 450 Myr. It is known that some AMF host in their cytoplasm Gram-positive endobacteria called bacterium-like organisms (BLOs), of unknown phylogenetic origin. In this study, an extensive inventory of 28 cultured AMF, from diverse evolutionary lineages and four continents, indicated that most of the AMF species investigated possess BLOs. Analyzing the 16S ribosomal DNA (rDNA) as a phylogenetic marker revealed that BLO sequences from divergent lineages all clustered in a well- supported monophyletic clade. Unexpectedly, the cell-walled BLOs were shown to likely represent a sister clade of the Mycoplasmatales and Entomoplasmatales, within the Mollicutes, whose members are lacking cell walls and show symbiotic or parasitic lifestyles. Perhaps BLOs maintained the Gram-positive trait whereas the sister groups lost it. The intracellular location of BLOs was revealed by fluorescent in situ hybridization (FISH), and confirmed by pyrosequencing. BLO DNA could only be amplified from AMF spores and not from spore washings. As highly divergent BLO sequences were found within individual fungal spores, amplicon libraries derived from Glomus etunicatum isolates from different geographic regions were pyrosequenced; they revealed distinct sequence compositions in different isolates.
    [Show full text]
  • Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
    Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels.
    [Show full text]
  • Acaulospora Baetica, a New Arbuscular Mycorrhizal Fungal Species from Two Mountain Ranges in Andalucía (Spain)
    Nova Hedwigia PrePub Article Cpublished online June 2015 Acaulospora baetica, a new arbuscular mycorrhizal fungal species from two mountain ranges in Andalucía (Spain) Javier Palenzuela1, Concepción Azcón-Aguilar1, José-Miguel Barea1, Gladstone Alves da Silva2 and Fritz Oehl2,3 1 Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain 2 Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Avenida da Engenharia s/n, Cidade Universitária, 50740-600, Recife, PE, Brazil 3 Agroscope, Federal Research Institute of Sustainability Sciences, Reckenholzstrasse 191, Plant-Soil-Interactions, CH-8046 Zürich, Switzerland With 11 figures and 1 table Abstract: A new Acaulospora species, A. baetica, was found in two adjacent mountain ranges in Andalucía (southern Spain), i.e. in several mountainous plant communities of Sierra Nevada National Park at 1580–2912 m asl around roots of the endangered and/or endemic plants Sorbus hybrida, Artemisia umbelliformis, Hippocrepis nevadensis, Laserpitium longiradium and Pinguicula nevadensis, and in two Mediterranean shrublands of Sierra de Baza Natural Park at 1380–1855 m asl around roots of Prunus ramburii, Rosmarinus officinalis, Thymus mastichina and Lavandula latifolia among others. The fungus produced spores in single species cultures, using Sorghum vulgare or Trifolium pratense as bait plant. The spores are 69–96 × 65–92 µm in diameter, brownish creamy to light brown, often appearing with a grayish tint in the dissecting microscope. They have a pitted surface (pit sizes about 0.8–1.6 × 0.7–1.4 µm in diameter and 0.6–1.3 µm deep), and are similar in size to several other Acaulospora species with pitted spore surfaces, such as A.
    [Show full text]
  • Acaulospora Sieverdingii, an Ecologically Diverse New Fungus In
    Journal of Applied Botany and Food Quality 84, 47 - 53 (2011) 1Agroscope Reckenholz-Tänikon Research Station ART, Ecological Farming Systems, Zürich, Switzerland 2Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic 3Department of Plant Protection, West Pomeranian University of Technology, Szczecin, Poland 4Université de Bourgogne, Plante-Microbe-Environnement, CNRS, UMR, INRA-CMSE, Dijon, France 5International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria 6Université de Lomé, Ecole Supérieure d’Agronomie, Département de la Production Végétale, Laboratoire de Virologie et de Biotechnologie Végétales (LVBV), Lomé, Togo 7International Institute of Tropical Agriculture (IITA), Cotonou, Benin 8University of Parakou, Ecole National des Sciences Agronomiques et Techniques, Parakou, Benin 9Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, Brazil Acaulospora sieverdingii, an ecologically diverse new fungus in the Glomeromycota, described from lowland temperate Europe and tropical West Africa Fritz Oehl1*, Zuzana Sýkorová2, Janusz Błaszkowski3, Iván Sánchez-Castro4, Danny Coyne5, Atti Tchabi6, Louis Lawouin7, Fabien C.C. Hountondji7, 8, Gladstone Alves da Silva9 (Received December 12, 2010) Summary Materials and methods From a survey of arbuscular mycorrhizal (AM) fungi in agro- Soil sampling and spore isolation ecosystems in Central Europe and West Africa, an undescribed Between March 2000 and April 2009, soil cores of 0-10 cm depth species of Acaulospora was recovered and is presented here under were removed from various agro-ecological systems. These were the epithet Acaulospora sieverdingii. Spores of A. sieverdingii are approximately 300 lowland, mountainous and alpine sites in 60-80 µm in diam, hyaline to subhyaline to rarely light yellow and Germany, France, Italy and Switzerland, and 24 sites in Benin have multiple pitted depressions on the outer spore wall similar (tropical West Africa).
    [Show full text]
  • Redalyc.ARBUSCULAR MYCORRHIZAL FUNGI
    Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Lara-Chávez, Ma. Blanca Nieves; Ávila-Val, Teresita del Carmen; Aguirre-Paleo, Salvador; Vargas- Sandoval, Margarita ARBUSCULAR MYCORRHIZAL FUNGI IDENTIFICATION IN AVOCADO TREES INFECTED WITH Phytophthora cinnamomi RANDS UNDER BIOCONTROL Tropical and Subtropical Agroecosystems, vol. 16, núm. 3, septiembre-diciembre, 2013, pp. 415-421 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93929595013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 16 (2013): 415 - 421 ARBUSCULAR MYCORRHIZAL FUNGI IDENTIFICATION IN AVOCADO TREES INFECTED WITH Phytophthora cinnamomi RANDS UNDER BIOCONTROL [IDENTIFICACIÓN DE HONGOS MICORRIZÓGENOS ARBUSCULARES EN ÁRBOLES DE AGUACATE INFECTADOS CON Phytophthora cinnamomi RANDS BAJO CONTROL BIOLÓGICO] Ma. Blanca Nieves Lara-Chávez1*, Teresita del Carmen Ávila-Val1, Salvador Aguirre-Paleo1 and Margarita Vargas-Sandoval1 1Facultad de Agrobiología “Presidente Juárez” Universidad Michoacana de San Nicolás de Hidalgo Paseo Lázaro Cárdenas Esquina Con Berlín S/N, Uruapan, Michoacán, México. E-mail [email protected] *Corresponding author SUMMARY second and third sampling, the presence of new kinds of HMA there was not observed but the number of Arbuscular mycorrhizal fungi presences in the spores increased (average 38.09% and 30% rhizosphere of avocado trees with symptoms of root respectively). The application of these species in the rot sadness caused by Phytophthora cinnamomi were genus Trichoderma to control root pathogens of determined.
    [Show full text]
  • 1 a Native and an Invasive Dune Grass Share
    A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities Renee B Johansen1, Peter Johnston2, Piotr Mieczkowski3, George L.W. Perry4, Michael S. Robeson5, 1 6 Bruce R Burns , Rytas Vilgalys 1: School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand 2: Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 3: Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, U.S.A. 4: School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand 5: Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA 6: Department of Biology, Duke University, Durham, NC 27708, USA Corresponding author: Renee Johansen, Ph: +64 21 0262 9143, Fax: +64 9 574 4101 Email: [email protected] For the published version of this article see here: https://www.sciencedirect.com/science/article/abs/pii/S1754504816300848 1 Abstract Fungi are ubiquitous occupiers of plant roots, yet the impact of host identity on fungal community composition is not well understood. Invasive plants may benefit from reduced pathogen impact when competing with native plants, but suffer if mutualists are unavailable. Root samples of the invasive dune grass Ammophila arenaria and the native dune grass Leymus mollis were collected from a Californian foredune. We utilised the Illumina MiSeq platform to sequence the ITS and LSU gene regions, with the SSU region used to target arbuscular mycorrhizal fungi (AMF). The two plant species largely share a fungal community, which is dominated by widespread generalists.
    [Show full text]
  • Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400-Million-Year-Old Rhynie Chert
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Acaulosporoid glomeromycotan spores with a germination shield from the 400-million- year-old Rhynie chert by Nora Dotzler, Christopher Walker, Michael Krings, Hagen Hass, Hans Kerp, Thomas N. Taylor, Reinhard Agerer 2009 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Dotzler, N., Walker, C., Krings, M., Hass, H., Kerp, H., Taylor, T., Agerer, R. 2009. Acaulosporoid glomeromycotan spores with a ger- mination shield from the 400-million-year-old Rhynie chert. Mycol Progress 8:9-18. Published version: http://dx.doi.org/10.1007/s11557-008-0573-1 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Mycol Progress (2009) 8:9–18 DOI 10.1007/s11557-008-0573-1 ORIGINAL ARTICLE Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert Nora Dotzler & Christopher Walker & Michael Krings & Hagen Hass & Hans Kerp & Thomas N. Taylor & Reinhard Agerer Received: 4 June 2008 /Revised: 16 September 2008 /Accepted: 30 September 2008 / Published online: 15 October 2008 # German Mycological Society and Springer-Verlag 2008 Abstract Scutellosporites devonicus from the Early Devo- single or double lobes to tongue-shaped structures usually nian Rhynie chert is the only fossil glomeromycotan spore with infolded margins that are distally fringed or palmate. taxon known to produce a germination shield.
    [Show full text]
  • Acaulospora Pustulata and Acaulospora Tortuosa, Two New Species in the Glomeromycota from Sierra Nevada National Park (Southern Spain)
    Nova Hedwigia Vol. 97 (2013) Issue 3–4, 305–319 Article published online July 5, 2013 Acaulospora pustulata and Acaulospora tortuosa, two new species in the Glomeromycota from Sierra Nevada National Park (southern Spain) Javier Palenzuela1, Concepción Azcón-Aguilar1, José-Miguel Barea1, Gladstone Alves da Silva2 and Fritz Oehl3* 1 Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain 2 Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Av. Prof. Nelson Chaves s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil 3 Federal Research Institute Agroscope Reckenholz-Tänikon ART, Organic Farming Systems, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland With 24 figures Abstract: Two new Acaulospora species were found in two wet mountainous grassland ecosystems of Sierra Nevada National Park (Spain), living in the rhizosphere of two endangered plants, Ophioglossum vulgatum and Narcissus nevadensis, which co-occurred with other plants like Holcus lanatus, Trifolium repens, Mentha suaveolens and Carum verticillatum, in soils affected by ground water flow. The two fungi produced spores in pot cultures, using O. vulgatum, N. nevadensis, H. lanatus and T. repens as bait plants. Acaulospora pustulata has a pustulate spore ornamentation similar to that of Diversispora pustulata, while A. tortuosa has surface projections that resemble innumerous hyphae-like structures that are more rudimentary than the hyphae-like structures known for spores of Sacculospora baltica or Glomus tortuosum. Phylogenetic analyses of sequences of the ITS and partial LSU of the ribosomal genes reveal that both fungi are new species within the Acaulosporaceae. They are most closely related to A.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi in Soil Aggregates from Fields of “Murundus” Converted to Agriculture
    Arbuscular mycorrhizal fungi in soil aggregates from fields of “murundus” converted to agriculture Marco Aurélio Carbone Carneiro(1), Dorotéia Alves Ferreira(2), Edicarlos Damacena de Souza(3), Helder Barbosa Paulino(4), Orivaldo José Saggin Junior(5) and José Oswaldo Siqueira(6) (1)Universidade Federal de Lavras, Departamento de Ciência do Solo, Caixa Postal 3037, CEP 37200‑000 Lavras, MG, Brazil. E‑mail: [email protected](2) Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo, Avenida Pádua Dias, no 11, CEP 13418‑900 Piracicaba, SP, Brazil. E‑mail: [email protected] (3)Universidade Federal de Mato Grosso, Campus de Rondonópolis, Instituto de Ciências Agrárias e Tecnológicas de Rondonópolis, Rodovia MT 270, Km 06, Sagrada Família, CEP 78735‑901 Rondonópolis, MT, Brazil. E‑mail: [email protected] (4)Universidade Federal de Goiás, Regional Jataí, BR 364, Km 192, CEP 75804‑020 Jataí, GO, Brazil. E‑mail: [email protected] (5)Embrapa Agrobiologia, BR 465, Km 7, CEP 23891‑000 Seropédica, RJ, Brazil. E‑mail: [email protected] (6)Instituto Tecnológico Vale, Rua Boaventura da Silva, no 955, CEP 66055‑090 Belém, PA, Brazil. E‑mail: [email protected] Abstract – The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of “murundus” (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro‑, meso‑, and microaggregates).
    [Show full text]
  • FUNGOS MICORRÍZICOS ARBUSCULARES NA CULTURA DO SISAL (Agave Sisalana): OCORRÊNCIA E DIVERSIDADE NA REGIÃO SEMIÁRIDA DA BAHIA
    UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA CENTRO DE CIÊNCIAS AGRÁRIAS AMBIENTAIS E BIOLÓGICAS EMBRAPA MANDIOCA E FRUTICULTURA TROPICAL PROGRAMA DE PÓS-GRADUAÇÃO EM MICROBIOLOGIA AGRÍCOLA CURSO DE MESTRADO FUNGOS MICORRÍZICOS ARBUSCULARES NA CULTURA DO SISAL (Agave sisalana): OCORRÊNCIA E DIVERSIDADE NA REGIÃO SEMIÁRIDA DA BAHIA ADRIANE FREIRE ARAÚJO CRUZ DAS ALMAS - BAHIA MARÇO - 2012 FUNGOS MICORRÍZICOS ARBUSCULARES NA CULTURA DO SISAL (Agave sisalana): OCORRÊNCIA E DIVERSIDADE NA REGIÃO SEMIÁRIDA DA BAHIA ADRIANE FREIRE ARAÚJO Bióloga Universidade Estadual da Bahia – UNEB, 2009 Dissertação submetida ao Colegiado do Programa de Pós-Graduação em Microbiologia Agrícola da Universidade Federal do Recôncavo da Bahia e Embrapa Mandioca e Fruticultura Tropical, como requisito parcial para obtenção do Grau de Mestre em Microbiologia Agrícola. Orientador: Drª. Ana Cristina Fermino Soares Co-Orientador: Drª. Carla da Silva Sousa Co-Orientador: Dr. Bruno Tomio Goto CRUZ DAS ALMAS - BAHIA MARÇO – 2012 FICHA CATALOGRÁFICA A663 Araújo, Adriane Freire. Fungos micorríziocos arbusculares na cultura do sisal (Agave sisalana): ocorrência e diversidade na Região Semiárida da Bahia / Adriane Freire Araújo._. Cruz das Almas, BA, 2012. 56f.; il. Orientadora: Ana Cristina Fermino Soares. Coorientadora: Carla da Silva Sousa e Bruno Tomio Goto. Dissertação (Mestrado) – Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas. 1.Sisal – Cultivo. 2.Sisal – Fungos fitopatogênicos. I.Universidade Federal do Recôncavo da Bahia,
    [Show full text]
  • Acaulospora Flava, a New Arbuscular Mycorrhizal Fungus from Coffea
    Journal of Applied Botany and Food Quality 94, 116 - 123 (2021), DOI:10.5073/JABFQ.2021.094.014 1Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Morales, Peru 2Centro Experimental La Molina. Dirección de Recursos Genéticos y Biotecnología. Instituto Nacional de Innovación Agraria (INIA), Lima, Perú 3Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil, 4Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Wädenswil, Switzerland Acaulospora fava, a new arbuscular mycorrhizal fungus from Coffea arabica and Plukenetia volubilis plantations at the sources of the Amazon river in Peru Mike Anderson Corazon-Guivin1*, Adela Vallejos-Tapullima1, Ana Maria de la Sota-Ricaldi1, Agustín Cerna-Mendoza1, Juan Carlos Guerrero-Abad1,2, Viviane Monique Santos3, Gladstone Alves da Silva3, Fritz Oehl4* (Submitted: May 17, 2021; Accepted: July 9, 2021) Summary In the rhizosphere of the inka nut, several Acaulospora species had A new arbuscular mycorrhizal fungus, Acaulospora fava, was already been found with spore surface ornamentations, for instance found in coffee (Coffea arabica) and inka nut (Plukenetia volubilis) A. aspera (Corazon-Guivin et al., 2019a). In our most recent survey plantations in the Amazonia region of San Martín State in Peru. from coffee and inka nut plantations in San Martín State of Peru, The fungus was propagated in bait cultures on Sorghum vulgare, we found spores and obtained sequences of three other Acaulospora Brachiaria brizantha and Medicago sativa as host plants. It dif- species. So far, two of these species had not yet been reported ferentiates typical acaulosporoid spores laterally on sporiferous from continental America or other continents by concomitant saccule necks.
    [Show full text]
  • Redalyc.Diversidad, Abundancia Y Variación Estacional En La
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Álvarez-Sánchez, Javier; Sánchez-Gallen, Irene; Hernández Cuevas, Laura; Hernández- Oro, Lilian; Meli, Paula Diversidad, abundancia y variación estacional en la comunidad de hongos micorrizógenos arbusculares en la selva Lacandona, Chiapas, México Revista Mexicana de Micología, vol. 45, junio, 2017, pp. 37-51 Sociedad Mexicana de Micología Xalapa, México Disponible en: http://www.redalyc.org/articulo.oa?id=88352759005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Scientia Fungorum vol. 45: 37-51 2017 Diversidad, abundancia y variación estacional en la comunidad de hongos micorrizógenos arbusculares en la selva Lacandona, Chiapas, México Diversity, abundance, and seasonal variation of arbuscular mycorrhizal fungi in the Lacandona rain forest, Chiapas, Mexico Javier Álvarez-Sánchez 1, Irene Sánchez-Gallen 1, Laura Hernández Cuevas 2, Lilian Hernández-Oro 1, Paula Meli 3 1 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria 04510, México, D.F. 2 Laboratorio de Micorrizas, Centro de Investigaciones en Ciencias Biológicas, Universidad Autónoma de Tlaxcala. Km 10.5 Carretera San Martín Texmeluca-Tlaxcala s/n, San Felipe Ixtacuixtla 90120, Tlaxcala, México. 3 Natura y Ecosistemas Mexicanos A.C. Plaza San Jacinto 23-D, Col. San Ángel, México DF, 01000, México. Dirección Actual: Escola Superior de Agricultura ‘Luiz de Queiroz’, Departamento de Ciências Florestais, Universidade de São Paulo, Brasil.
    [Show full text]