Lecture 2: March 20, 2015 2.1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 2: March 20, 2015 2.1 Introduction Automatic Software Verification Spring Semester, 2015 Lecture 2: March 20, 2015 Lecturer: Prof. Mooly Sagiv Scribe: Kalev Alpernas and Elizabeth Firman 2.1 Introduction In this lecture we will go over the subject of Satisfiability of Propositional For- mulas. The Satisfiability Problem Given a boolean formula in propositional logic, we would like to determine whether the formula: • is valid i.e. do all possible assignments satisfy the formula. In case the formula is not valid, we sometimes would also like to find a counterexample - a non-satisfying assignment. • is satisfiable i.e. there exists an assignment which satisfies the formula. In case there exists a satisfying assignment, we sometimes would also like to find that assignment. As we saw in last week's lecture, we use the result of this problem to verify program. We write the problem, and the negation of the invariant we would like to check as propositional formulas, and check whether they are satisfiable. If there exists a satisfying assignment, then we have found a bug in the program. Otherwise, we have proved that the invariant holds. Our input formula has 2n possible assignments, which means that exhaus- tively checking all assignments is not a feasible approach. In this lecture we will see a few different approaches to solving this problem. Example 1. We consider for example the following propositional formula: ' = (a _ b) ^ (:a _:b _ c) In Figure 2.1 we can see a tree representing the truth state of '. The colour Green represents a satisfying assignment, and Red represents a non-satisfying assignment. We can see that ' is not valid, for example since the assignment a = F; b = F; c = T is not a satisfying assignment. We can also see that the formula is satisfiable, since the assignment a = F; b = T; c = T is satisfying. 2 Automatic Software Verification c Tel Aviv Univ. Figure 2.1: The truth value search tree for ' Problem Representation While the input for the SAT problem is a propositional formula, we will work with formulas in Conjunctive Normal Form or CNF. A CNF formula is a con- junction of clauses, where each clause is a disjunction of Literals. A literal is a boolean variable, or its negation. We choose to represent the problem in CNF, as it allows us to represent the formula in a compact, simple data structure, it is compositional, and in addition the fact that each clause in the formula needs to be satisfied, lends itself to algorithms which are easier to grasp intuitively. Any propositional formula can be converted to CNF, and the conversion is a straightforward process, utilizing basic logic equivalences - De-Morgan, double negation, and distributivity. This process may cause the formula to grow, so in order to avoid a size explosion of the formula we might be required to add additional variables to the formula. Example 2. We consider the following conversion of the formula ' = a _ (b ^ :(c _:d)) to CNF: ' = a _ (b ^ :(c _:d)) ≡ (a _ (b ^ :c ^ ::d)) ≡ (2.1) (a _ (b ^ :c ^ d)) ≡ (a _ b) ^ (a _:c) ^ (a _ d) Complexity Results In [1] Cook showed that the Boolean Satisfiability Problem is NP-Complete, even if we limit the clause size to at most 3 literals1. Two noteworthy exceptions are 2-SAT, and Horn Satisfiability. These two problems have polynomial algorithms (in [3] and [4] respectively). 1Known as the 3-SAT problem. 2.2. RESOLUTION 3 2-SAT is the Boolean satisfiability problem where each clause is limited to at most 2 literals. Horn Satisfiability is the Boolean satisfiability problem where each clause has at most one positive literal2. What is it Good For? From the perspective of complexity analysis, the boolean satisfiability problem is a very useful tool for showing complexity results of many problems in CS. In [2] Karp uses the complexity result of [1] to show that 21 other problems3 are also NP-Complete, by showing a reduction from the Boolean Satisfiability problem to each of these problems. Many similar results have been shown for further problems since. From the perspective of verification, SAT solvers have proved to be very useful tools in solving problems in SW and HW verification, as well as in other fields such as AI. This is because despite the problem being NP-Complete in the worst case, there are many algorithms which are capable of solving the Boolean Satisfiability problem in many useful cases. This lecture will show us a few such algorithms, which solve the SAT problem with exponential worst case complexity, but work well on many useful instances. 2.2 Resolution The first approach to solving the SAT problem that we will see in this lecture is the Clause Resolution method. Clause Resolution Resolution of a pair of clauses with one incompatible variable, is a process where given two clauses, in which there is exactly one variable that has incompatible truth values, i.e. the variable appears in one clause, and its negation appears in the other, we derive a new clause, called the resolvent, which is the disjunction of the original two clauses, without the incompatible variable. Example 3. In Figure 2.2 we can see the resolution method applied to the clauses (a _ b _:c _ f) and (g _:h _ c _ f). The incompatible variable is c, and we can see that the resulting clause is a disjunction of (a _ b _ f) and (g _:h _ f)(f appears in both original clauses, so it only appears once in the resolvent). The following deduction is the formal justification for single variable applying resolution: A =) B :A =) C B _ C 2Known as Horn clause. 3Known as Karp's 21 NP-Complete problems. 4 Automatic Software Verification c Tel Aviv Univ. Figure 2.2: An example of resolution on the variable c Note that every clause is equivalent to an implication formula where the rhs of the implication is a disjunction of literals. Claim 1. The resolvent and the original clauses are equisatisfiable, i.e. the original clauses are satisfiable iff the resolvent is satisfiable. Furthermore, the same assignment satisfies both. Proof Sketch: Assume that some model M satisfies the initial two clauses, and we are resolving the variable a. We assume w.l.o.g that a holds in M. Hence, at least one of the literals in the clause that contains :a has to hold in M. The same literal will appear in the resolvant. We get that if the original clauses were satisfiable, the resolvant will be satisfiable as well. From Claim 1 we get that applying resolution on two clauses in a CNF formula preserves the satisfiability of the formula. In a similar sense we get that resolution preserves the validity of a formula, since validity of a formula is equivalent to the satisfiability of it's negation, and satisfiability is preserved under resolution. Davis-Putnam Algorithm In [5] Davis and Putnam proposed an algorithm for solving the SAT problem. The algorithm is shown in Figure 2.3. If the algorithm reaches an empty clause as a resolvent, then there is no satisfying assignment for the original formula, and we can say that the formula is not satisfiable (let alone valid). If, however, the algorithm terminated without reaching an empty clause, then the formula is satisfiable, and there are no incompatible variables remain- ing in any two clauses. Finding a satisfying assignment at this point is straight- forward. Example 4. In Figure 2.4 we see the application of the resolution method on the formula ' = (a _ b _ c) ^ (b _:c _:f) ^ (:b _ e). In the first iteration the 2.2. RESOLUTION 5 for all Variables in formula do Resolve all clauses for variable if Reached empty clause then Report UNSAT else Discard resolved clauses end if end for Figure 2.3: The Davis-Putnam Algorithm Figure 2.4: An example of resolution of the formula ' = (a _ b _ c) ^ (b _:c _ :f) ^ (:b _ e) variable b is chosen, and two resolvents are produced. In the second iteration the variable c is chosen and a single resolvent is produced. The algorithm terminated without reaching an empty clause, which means that this formula is satisfiable. Example 5. In Figure 2.5 we see the application of the resolution method on the formula ' = (a _ b) ^ (a _:b) ^ (:a _ c) ^ (:a _:c). In the first iteration the variable b is chosen, one resolvent is produced and two other clauses are carried without change. In the second iteration the variable a is chosen and two resolvents are produced. In the third iteration the variable c is chosen, and the empty clause is produced. The algorithm terminated after reaching an empty clause, which means that this formula is not satisfiable. This algorithm may potentially produce an exponential amount of clauses, since in the worst case in every iteration every pair of clauses is resolved, result- ing in an exponential space complexity. Example 6. Consider the following formula: ' = (a _ b1) ^ (a _ b2) ^ ::: ^ (a _ bn) ^ (:a _ c1) ^ ::: ^ (:a _ cn) After resolving all clauses for a we get: 1 ' = (b1 _ c1) ^ ::: ^ (b1 _ cn) ^ ::: ^ (bn _ c1) ^ ::: ^ (bn _ cn) 6 Automatic Software Verification c Tel Aviv Univ. Figure 2.5: An example of resolution of the formula ' = (a _ b) ^ (a _:b) ^ (:a _ c) ^ (:a _:c) ' had 2n clauses, whereas in '1 has n2 clauses. After i iterations we would nj−1 have 2 2j , i.e.
Recommended publications
  • Automated Theorem Proving Introduction
    Automated Theorem Proving Scott Sanner, Guest Lecture Topics in Automated Reasoning Thursday, Jan. 19, 2006 Introduction • Def. Automated Theorem Proving: Proof of mathematical theorems by a computer program. • Depending on underlying logic, task varies from trivial to impossible: – Simple description logic: Poly-time – Propositional logic: NP-Complete (3-SAT) – First-order logic w/ arithmetic: Impossible 1 Applications • Proofs of Mathematical Conjectures – Graph theory: Four color theorem – Boolean algebra: Robbins conjecture • Hardware and Software Verification – Verification: Arithmetic circuits – Program correctness: Invariants, safety • Query Answering – Build domain-specific knowledge bases, use theorem proving to answer queries Basic Task Structure • Given: – Set of axioms (KB encoded as axioms) – Conjecture (assumptions + consequence) • Inference: – Search through space of valid inferences • Output: – Proof (if found, a sequence of steps deriving conjecture consequence from axioms and assumptions) 2 Many Logics / Many Theorem Proving Techniques Focus on theorem proving for logics with a model-theoretic semantics (TBD) • Logics: – Propositional, and first-order logic – Modal, temporal, and description logic • Theorem Proving Techniques: – Resolution, tableaux, sequent, inverse – Best technique depends on logic and app. Example of Propositional Logic Sequent Proof • Given: • Direct Proof: – Axioms: (I) A |- A None (¬R) – Conjecture: |- ¬A, A ∨ A ∨ ¬A ? ( R2) A A ? |- A∨¬A, A (PR) • Inference: |- A, A∨¬A (∨R1) – Gentzen |- A∨¬A, A∨¬A Sequent (CR) ∨ Calculus |- A ¬A 3 Example of First-order Logic Resolution Proof • Given: • CNF: ¬Man(x) ∨ Mortal(x) – Axioms: Man(Socrates) ∀ ⇒ Man(Socrates) x Man(x) Mortal(x) ¬Mortal(y) [Neg. conj.] Man(Socrates) – Conjecture: • Proof: ∃y Mortal(y) ? 1. ¬Mortal(y) [Neg. conj.] 2. ¬Man(x) ∨ Mortal(x) [Given] • Inference: 3.
    [Show full text]
  • Logic and Proof Computer Science Tripos Part IB
    Logic and Proof Computer Science Tripos Part IB Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2015 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 2 3 Proof Systems for Propositional Logic 5 4 First-order Logic 8 5 Formal Reasoning in First-Order Logic 11 6 Clause Methods for Propositional Logic 13 7 Skolem Functions, Herbrand’s Theorem and Unification 17 8 First-Order Resolution and Prolog 21 9 Decision Procedures and SMT Solvers 24 10 Binary Decision Diagrams 27 11 Modal Logics 28 12 Tableaux-Based Methods 30 i 1 INTRODUCTION AND LEARNING GUIDE 1 1 Introduction and Learning Guide 2008 Paper 3 Q6: BDDs, DPLL, sequent calculus • 2008 Paper 4 Q5: proving or disproving first-order formulas, This course gives a brief introduction to logic, including • resolution the resolution method of theorem-proving and its relation 2009 Paper 6 Q7: modal logic (Lect. 11) to the programming language Prolog. Formal logic is used • for specifying and verifying computer systems and (some- 2009 Paper 6 Q8: resolution, tableau calculi • times) for representing knowledge in Artificial Intelligence 2007 Paper 5 Q9: propositional methods, resolution, modal programs. • logic The course should help you to understand the Prolog 2007 Paper 6 Q9: proving or disproving first-order formulas language, and its treatment of logic should be helpful for • 2006 Paper 5 Q9: proof and disproof in FOL and modal logic understanding other theoretical courses. It also describes • 2006 Paper 6 Q9: BDDs, Herbrand models, resolution a variety of techniques and data structures used in auto- • mated theorem provers.
    [Show full text]
  • A Horn Clause That Implies an Undecidable Set of Horn Clauses ?
    A Horn Clause that Implies an Undecidable Set of Horn Clauses ? Jerzy Marcinkowski Institute of Computer Science University of Wroc law, [email protected] Abstract In this paper we prove that there exists a Horn clause H such that the problem: given a Horn clause G. Is G a consequence of H ? is not recursive. Equivalently, there exists a one-clause PROLOG program such that there is no PROLOG im- plementation answering TRUE if the program implies a given goal and FALSE otherwise. We give a short survey of earlier results concerning clause implication and prove a classical Linial-Post theorem as a consequence of one of them. 1 Introduction 1.1 Introduction Our main interest is the analysis of the decidability of the implication problem H1 =)H2 where H1 and H2 are Horn clauses in the language of the first order logic without equality. We adopt the following taxonomy: A literal is an atomic formula (an atom) or its negation. An atom is of the form Q(t1; t2; : : : tk) where Q is a k-ary predicate symbol and t's are first order terms constructed from function symbols, variables and constants. A clause is a universal closure of a disjunction of literals. A Horn clause (or a program clause) is a clause with at most one positive (i.e. not negated ) literal. A Horn clause with k negative and one positive literal will be called a k-clause (here we do not obey the standard that a k- clause is a disjunction of k literals). A Horn clause can be in the usual way written in an implication form.
    [Show full text]
  • Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
    Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e.
    [Show full text]
  • 7. Logic Programming in Prolog
    Artificial Intelligence 7. Logic Programming in Prolog Prof. Bojana Dalbelo Baˇsi´c Assoc. Prof. Jan Snajderˇ University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2019/2020 Creative Commons Attribution{NonCommercial{NoDerivs 3.0 v1.10 Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 1 / 38 Outline 1 Logic programming and Prolog 2 Inference on Horn clauses 3 Programming in Prolog 4 Non-declarative aspects of Prolog Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 2 / 38 Outline 1 Logic programming and Prolog 2 Inference on Horn clauses 3 Programming in Prolog 4 Non-declarative aspects of Prolog Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 3 / 38 Logic programming Logic programming: use of logic inference as a way of programming Main idea: define the problem in terms of logic formulae, then let the computer do the problem solving (program execution = inference) This is a typical declarative programming approach: express the logic of computation, don't bother with the control flow We focus on the description of the problem (declarative), rather than on how the program is executed (procedural) However, we still need some flow control mechanism, thus: Algorithm = Logic + Control Different from automated theorem proving because: 1 explicit control flow is hard-wired into the program 2 not the full expressivity of FOL is supported Dalbelo Baˇsi´c, Snajderˇ (UNIZG FER) AI { Logic programming AY 2019/2020 4 / 38 Refresher: Declarative programming
    [Show full text]
  • Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies
    The University of Maine DigitalCommons@UMaine Honors College Spring 2019 Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies Stanley Small University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Computer Sciences Commons Recommended Citation Small, Stanley, "Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies" (2019). Honors College. 538. https://digitalcommons.library.umaine.edu/honors/538 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. EXPLORING SEMANTIC HIERARCHIES TO IMPROVE RESOLUTION THEOREM PROVING ON ONTOLOGIES by Stanley C. Small A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Computer Science) The Honors College University of Maine May 2019 Advisory Committee: Dr. Torsten Hahmann, Assistant Professor1, Advisor Dr. Mark Brewer, Professor of Political Science Dr. Max Egenhofer, Professor1 Dr. Sepideh Ghanavati, Assistant Professor1 Dr. Roy Turner, Associate Professor1 1School of Computing and Information Science ABSTRACT A resolution-theorem-prover (RTP) evaluates the validity (truthfulness) of conjectures against a set of axioms in a knowledge base. When given a conjecture, an RTP attempts to resolve the negated conjecture with axioms from the knowledge base until the prover finds a contradiction. If the RTP finds a contradiction between the axioms and a negated conjecture, the conjecture is proven. The order in which the axioms within the knowledge-base are evaluated significantly impacts the runtime of the program, as the search-space increases exponentially with the number of axioms.
    [Show full text]
  • Deduction and Resolution
    Lecture 12: Deduction and Resolution 1 Hilbert’s System Hilbert discovered a very elegant deductive system that is both sound and com- plete. His system uses only the connectives {¬, →}, which we know are an adequate basis. It has also been shown that each of the three axioms given below are necessary for the system to be sound and complete. Hilbert’s System consists of the following: • Three axioms (all are strongly sound): – A1: (p → (q → p)) Axiom of simplification. – A2: ((p → (q → r)) → ((p → q) → (p → r))) Frege’s axiom. – A3: ((¬p → q) → ((¬p → ¬q) → p)) Reductio ad absurdum. • Inference Rules: p,p→q – Modus Ponens: q (Strongly Sound) ϕ – Substitution: ϕ[θ] , where θ is a substitution (p → ψ). (Sound) The Substitution Inference Rule is shorthand for all sequences of the form hϕ, ϕ[θ]i. It is sometimes called a schema for generating inference rules. Note that in general, it is not the case that ϕ |= ϕ[θ], for example p 6|= q. However, in assignment 2, we showed that if |= ϕ, then |= ϕ[θ]. This is why this rule is sound but not strongly sound. Theorem 1. Hilbert’s system is sound, complete, and tractable. Proof. We prove each property separately. • Soundness: Since all axioms are strongly sound, and the two inference rules are sound, the whole system is sound. • Completeness: The proof of this property is fairly involved and thus it is outside the scope of the class. 1 + • Tractability: Given Γ ∈ Form and ϕ1, . , ϕn, is ϕ1, . , ϕn ∈ Deductions(Γ)? Clearly, < ϕ1 > is in Γ only if it is an axiom.
    [Show full text]
  • Inference (Proof) Procedures for FOL (Chapter 9)
    Inference (Proof) Procedures for FOL (Chapter 9) Torsten Hahmann, CSC384, University of Toronto, Fall 2011 85 Proof Procedures • Interestingly, proof procedures work by simply manipulating formulas. They do not know or care anything about interpretations. • Nevertheless they respect the semantics of interpretations! • We will develop a proof procedure for first-order logic called resolution . • Resolution is the mechanism used by PROLOG • Also used by automated theorem provers such as Prover9 (together with other techniques) Torsten Hahmann, CSC384, University of Toronto, Fall 2011 86 Properties of Proof Procedures • Before presenting the details of resolution, we want to look at properties we would like to have in a (any) proof procedure. • We write KB ⊢ f to indicate that f can be proved from KB (the proof procedure used is implicit). Torsten Hahmann, CSC384, University of Toronto, Fall 2011 87 Properties of Proof Procedures • Soundness • KB ⊢ f → KB ⊨ f i.e all conclusions arrived at via the proof procedure are correct: they are logical consequences. • Completeness • KB ⊨ f → KB ⊢ f i.e. every logical consequence can be generated by the proof procedure. • Note proof procedures are computable, but they might have very high complexity in the worst case. So completeness is not necessarily achievable in practice. Torsten Hahmann, CSC384, University of Toronto, Fall 2011 88 Forward Chaining • First-order inference mechanism (or proof procedure) that generalizes Modus Ponens: • From C1 ∧ … ∧ Cn → Cn+1 with C1, …, Cn in KB, we can infer Cn+1 • We can chain this until we can infer some Ck such that each Ci is either in KB or is the result of Modus Ponens involving only prior Cm (m<i) • We then have that KB ⊢ Ck.
    [Show full text]
  • An Introduction to Prolog
    Appendix A An Introduction to Prolog A.1 A Short Background Prolog was designed in the 1970s by Alain Colmerauer and a team of researchers with the idea – new at that time – that it was possible to use logic to represent knowledge and to write programs. More precisely, Prolog uses a subset of predicate logic and draws its structure from theoretical works of earlier logicians such as Herbrand (1930) and Robinson (1965) on the automation of theorem proving. Prolog was originally intended for the writing of natural language processing applications. Because of its conciseness and simplicity, it became popular well beyond this domain and now has adepts in areas such as: • Formal logic and associated forms of programming • Reasoning modeling • Database programming • Planning, and so on. This chapter is a short review of Prolog. In-depth tutorials include: in English, Bratko (2012), Clocksin and Mellish (2003), Covington et al. (1997), and Sterling and Shapiro (1994); in French, Giannesini et al. (1985); and in German, Baumann (1991). Boizumault (1988, 1993) contain a didactical implementation of Prolog in Lisp. Prolog foundations rest on first-order logic. Apt (1997), Burke and Foxley (1996), Delahaye (1986), and Lloyd (1987) examine theoretical links between this part of logic and Prolog. Colmerauer started his work at the University of Montréal, and a first version of the language was implemented at the University of Marseilles in 1972. Colmerauer and Roussel (1996) tell the story of the birth of Prolog, including their try-and-fail experimentation to select tractable algorithms from the mass of results provided by research in logic.
    [Show full text]
  • Propositional Logic. Inferences
    CS 1571 Introduction to AI Lecture 12 Propositional logic Milos Hauskrecht [email protected] 5329 Sennott Square CS 1571 Intro to AI M. Hauskrecht Logical inference problem Logical inference problem: • Given: – a knowledge base KB (a set of sentences) and – a sentence (called a theorem), • Does a KB semantically entail ? KB | ? In other words: In all interpretations in which sentences in the KB are true, is also true? CS 1571 Intro to AI M. Hauskrecht 1 Sound and complete inference Inference is a process by which conclusions are reached. • We want to implement the inference process on a computer !! Assume an inference procedure i that KB • derives a sentence from the KB : i Properties of the inference procedure in terms of entailment • Soundness: An inference procedure is sound • Completeness: An inference procedure is complete CS 1571 Intro to AI M. Hauskrecht Sound and complete inference. Inference is a process by which conclusions are reached. • We want to implement the inference process on a computer !! Assume an inference procedure i that KB • derives a sentence from the KB : i Properties of the inference procedure in terms of entailment • Soundness: An inference procedure is sound If KB then it is true that KB | i • Completeness: An inference procedure is complete If then it is true that KB KB | i CS 1571 Intro to AI M. Hauskrecht 2 Solving logical inference problem In the following: How to design the procedure that answers: KB | ? Three approaches: • Truth-table approach • Inference rules • Conversion to the inverse SAT problem – Resolution-refutation CS 1571 Intro to AI M.
    [Show full text]
  • Lecture 8: Rule-Based Reasoning
    Set 6: Knowledge Representation: The Propositional Calculus ICS 271 Fall 2013 Kalev Kask Outline • Representing knowledge using logic – Agent that reason logically – A knowledge based agent • Representing and reasoning with logic – Propositional logic • Syntax • Semantic • validity and models • Rules of inference for propositional logic • Resolution • Complexity of propositional inference. • Reading: Russel and Norvig, Chapter 7 Knowledge bases • Knowledge base = set of sentences in a formal language • • Declarative approach to building an agent (or other system): – Tell it what it needs to know – • Then it can Ask itself what to do - answers should follow from the KB • • Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented • Or at the implementation level – i.e., data structures in KB and algorithms that manipulate them – Knowledge Representation Defined by: syntax, semantics Computer Inference Assertions Conclusions (knowledge base) Semantics Facts Imply Facts Real-World Reasoning: in the syntactic level Example:x y, y z | x z The party example • If Alex goes, then Beki goes: A B • If Chris goes, then Alex goes: C A • Beki does not go: not B • Chris goes: C • Query: Is it possible to satisfy all these conditions? • Should I go to the party? Example of languages • Programming languages: – Formal languages, not ambiguous, but cannot express partial information. Not expressive enough. • Natural languages: – Very expressive but ambiguous: ex: small dogs and cats. • Good representation language:
    [Show full text]
  • My Slides for a Course on Satisfiability
    Satisfiability Victor W. Marek Computer Science University of Kentucky Spring Semester 2005 Satisfiability – p.1/97 Satisfiability story ie× Á Satisfiability - invented in the ¾¼ of XX century by philosophers and mathematicians (Wittgenstein, Tarski) ie× Á Shannon (late ¾¼ ) applications to what was then known as electrical engineering ie× ie× Á Fundamental developments: ¼ and ¼ – both mathematics of it, and fundamental algorithms ie× Á ¼ - progress in computing speed and solving moderately large problems Á Emergence of “killer applications” in Computer Engineering, Bounded Model Checking Satisfiability – p.2/97 Current situation Á SAT solvers as a class of software Á Solving large cases generated by industrial applications Á Vibrant area of research both in Computer Science and in Computer Engineering ¯ Various CS meetings (SAT, AAAI, CP) ¯ Various CE meetings (CAV, FMCAD, DATE) ¯ CE meetings Stressing applications Satisfiability – p.3/97 This Course Á Providing mathematical and computer science foundations of SAT ¯ General mathematical foundations ¯ Two- and Three- valued logics ¯ Complete sets of functors ¯ Normal forms (including ite) ¯ Compactness of propositional logic ¯ Resolution rule, completeness of resolution, semantical resolution ¯ Fundamental algorithms for SAT ¯ Craig Lemma Satisfiability – p.4/97 And if there is enough of time and will... Á Easy cases of SAT ¯ Horn ¯ 2SAT ¯ Linear formulas Á And if there is time (but notes will be provided anyway) ¯ Expressing runs of polynomial-time NDTM as SAT, NP completeness ¯ “Mix and match” ¯ Learning in SAT, partial closure under resolution ¯ Bounded Model Checking Satisfiability – p.5/97 Various remarks Á Expected involvement of Dr. Truszczynski Á An extensive set of notes (> 200 pages), covering most of topics will be provided f.o.c.
    [Show full text]