Limitations of Partially Premixed Combustion

Total Page:16

File Type:pdf, Size:1020Kb

Limitations of Partially Premixed Combustion Limitations of partially premixed combustion Citation for published version (APA): Wang, S. (2017). Limitations of partially premixed combustion. Technische Universiteit Eindhoven. Document status and date: Published: 17/10/2017 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 24. Sep. 2021 Limitations of Partially Premixed Combustion PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door het College voor Promoties, in het openbaar te verdedigen op dinsdag 17 oktober 2017 om 16.00 uur door Shuli Wang geboren te Heilongjiang, China Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt: voorzitter: prof.dr.ir. M.G.D. Geers 1e promotor: prof.dr. L.P.H. de Goey copromotor: dr.ir. L.M.T. Somers leden: prof.dr. Ö. Andersson (Lund University) prof.dr. H.B. Levinsky (University of Groningen) prof.dr. D.J.E.M. Roekaerts adviseur: dr.ir. C.A.J. Leermakers (DAF Trucks NV) Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening. Shuli Wang (2017). Limitations of Partially Premixed Combustion. Ph.D. thesis, Eindhoven University of Technology, Eindhoven, the Netherlands. Copyright © 2017 by Shuli Wang. All rights reserved. No part of the material protected by this copyright notice may be produced or utilised in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without the prior written permission of the author. A catalogue record is available from the Eindhoven University of Technology Library ISBN: 978-90-386-4349-6 Cover design by Tao Yan and Shuli Wang. PPC chemiluminescence images by the courtesy of Zhenkan Wang. Printed by Ipskamp Printing, Enschede. To my family... Contents Nomenclature v Summary vii 1 Introduction 1 1.1 Background . .1 1.2 Combustion Engine Concepts . .3 1.2.1 Diesel Combustion . .3 1.2.2 Homogeneous Charge Compression Ignition . .4 1.2.3 Reactivity Controlled Compression Ignition . .5 1.2.4 Partially Premixed Combustion . .6 1.3 Fuel Appetite for Partially Premixed Combustion . .7 1.3.1 PPC with Diesel-like Fuels . .7 1.3.2 PPC with Gasoline-like Fuels . .7 1.4 Objective and Contributions . .9 1.5 Outline of the Thesis . 10 2 Experimental Apparatus 11 2.1 The Engine . 11 2.2 Emission Measurement Systems . 14 2.2.1 Horiba Measurement System (Gases) . 14 2.2.2 Smoke Meter (Soot) . 14 2.2.3 Engine Exhaust Particle Sizer (Particle Distribution) . 15 2.2.4 Transmission Electron Microscopy (Particle Morphology) . 17 2.3 Data Acquisition System . 19 2.4 Definition of Related Parameters . 20 2.5 Conclusions . 24 3 Partially Premixed Combustion with RON70 Fuels 25 3.1 Comparison of Injectors . 25 3.1.1 Experimental Details . 26 3.1.2 Differences between the Three Injectors . 26 3.2 Effect of Air-excess . 29 i Contents 3.2.1 Experimental details . 29 3.2.2 Major Combustion Characteristics . 33 3.2.3 Soot and NOx Emissions . 38 3.3 Limitations of PPC at higher loads . 39 3.3.1 Experimental details . 39 3.3.2 Combustion Characteristics . 40 3.3.3 NOx-Soot Trade-off . 41 3.4 Conclusions . 43 4 Low Load Tests with High-octane Fuels 45 4.1 Experimental Details . 45 4.1.1 Test Fuels . 46 4.1.2 Test Conditions — Effects of Intake temperature and CA50 . 46 4.1.3 Test Conditions — Optimize NOx Emissions . 48 4.2 Results and Analysis — Effects of Intake temperature and CA50 . 49 4.2.1 Load I . 49 4.2.2 Load II . 58 4.3 Results and Analysis — Optimize NOx Emissions . 64 4.3.1 Load I . 64 4.3.2 Load II . 67 4.4 Conclusions . 70 5 Particulate Matter Emissions 71 5.1 Introduction . 71 5.2 Tests with Ternary Blends . 73 5.2.1 Test Fuels . 73 5.2.2 Test Conditions . 74 5.2.3 Comparison of Blends of RON70 and Diesel . 75 5.2.4 Comparison of TRF and CRF . 79 5.3 PRF Blends Mix with Different Volumes of Ethanol . 83 5.3.1 Test Fuels . 83 5.3.2 Test Conditions . 84 5.3.3 Major Results and Discussion . 84 5.4 Tests with Binary Blends . 91 5.4.1 Test Fuels . 92 5.4.2 Test Conditions . 92 5.4.3 Effect of 2-EHN on Combustion Controllability . 94 5.4.4 Physical and Chemical Effects on PM . 97 5.5 Characterization of Agglomerates’ Morphology . 103 5.5.1 Test Conditions . 103 5.5.2 Major Results and Discussion . 104 5.6 Conclusions . 109 6 Conclusions and Outlook 111 Bibliography 115 ii Contents A Engine Exhaust Particle Sizer 127 A.1 How does EEPS works? . 127 A.2 Secondary Dilution Factor . 129 A.3 Normalized Concentrations: dN/dlogDp . 129 Acknowledgement 131 Curriculum Vitae 133 iii Nomenclature AD Aerodynamic diameter AFst Stoichiometric air fuel ratio AM Accumulation mode ATDC After top dead center BD Burn duration BDC Bottom dead center BEV Battery electric vehicles BMEP Brake mean effective pressure BTDC Before top dead center CAD Crank angle degree CA10 The crank angle where 10% of the heat has been released CA50 The crank angle where 50% of the heat has been released CA90 The crank angle where 90% of the heat has been released CI Compression ignition CN Cetane number CO Carbon monoxide CO2 Carbon dioxide COV Coefficient of variation DOC Diesel oxidation catalyst DPF Diesel particulate filter EC Elemental carbon EEPS Engine exhaust particle sizer EGR Exhaust gas recirculation EOI End of injection EVC Exhaust valve close EVO Exhaust valve open FSN Filter smoke number HC Hydrocarbons HCCI Homogeneous charge compression ignition HDDI Heavy duty direct injection v Nomenclature HFR Hydraulic flow rate ID Ignition delay IDw Ignition dwell IMEP Indicated mean effective pressure IMEPg Gross indicated mean effective pressure IMEPn Net indicated mean effective pressure ISFC Indicated specific fuel consumption IVC Intake valve close IVO Intake valve open LHV Lower heating value NM Nucleation mode MON Motor octane number NOx Nitrogen oxides NVO Negative valve overlap ON Octane number PAH Polycyclic aromatic hydrocarbon PF Premixed fraction PM Particulate matter PPC Partially premixed combustion PRF Primary reference fuel PRR Pressure rise rate RCCI Reactivity controlled compression ignition RoHR Rate of heat release RON Research octane number rpm Revolutions per minute SCR Selective catalytic reduction SMPS Scanning mobility particle sizer SOI Start of injection SSCI Spark assisted compression ignition TDC Top dead center TEM Transmission electron microscopy λ Air fuel ratio 2-EHN 2-ethylhexyl nitrate vi Summary The diesel engine is widely used in many applications due to its high efficiency, high stability, and also having an extreme flexibility for a variety of operating conditions. Despite the numerous advantages of diesel engines, society is increasingly concerned about the pollutants emitted by diesel engines. One way to address the pollution problem is to alter the combustion so that less pollutants are created in the first place. Low-temperature combustion is a leading strategy designed to reduce or eliminate the two most problematic pollutants emitted by diesel engines, nitrogen oxides (NOx) and particulate matter (PM). One such combustion concept is Homogeneous Charge Compression Ignition (HCCI), which typically employs long in-cylinder mixing times prior to combustion to produce relatively uniform and lean fuel/air mixtures. As the technique has matured, HCCI has evolved toward Partially Premixed Combustion (PPC) which has a more inhomogeneous fuel/air mixture and temperature field to better control the heat release rate. However, there are still many limitations in the practical application of PPC engines. The Chapter 1 and 2 introduces the research background and experimental equipment, respectively. The Chapter 3 begins with the tests using three injectors with different nozzle geometries to compare their combustion and emission characteristics. Then, the in-cylinder emission control parameter air-excess was investigated under PPC mode to get knowledge about the influences of in-cylinder density and oxygen concentration on exhaust emissions.
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • Small Engine Parts and Operation
    1 Small Engine Parts and Operation INTRODUCTION The small engines used in lawn mowers, garden tractors, chain saws, and other such machines are called internal combustion engines. In an internal combustion engine, fuel is burned inside the engine to produce power. The internal combustion engine produces mechanical energy directly by burning fuel. In contrast, in an external combustion engine, fuel is burned outside the engine. A steam engine and boiler is an example of an external combustion engine. The boiler burns fuel to produce steam, and the steam is used to power the engine. An external combustion engine, therefore, gets its power indirectly from a burning fuel. In this course, you’ll only be learning about small internal combustion engines. A “small engine” is generally defined as an engine that pro- duces less than 25 horsepower. In this study unit, we’ll look at the parts of a small gasoline engine and learn how these parts contribute to overall engine operation. A small engine is a lot simpler in design and function than the larger automobile engine. However, there are still a number of parts and systems that you must know about in order to understand how a small engine works. The most important things to remember are the four stages of engine operation. Memorize these four stages well, and everything else we talk about will fall right into place. Therefore, because the four stages of operation are so important, we’ll start our discussion with a quick review of them. We’ll also talk about the parts of an engine and how they fit into the four stages of operation.
    [Show full text]
  • Property of ICOM North America
    Property of ICOM North America First: Propane can reduce emissions by up to 60% & ZERO Particular matter Second: The USA and CANADA have abundant Propane and Natural Gas Resources! Third: NO WARS!!! Energy Security Fleets can often dramatically reduce their fuel costs by using propane autogas! $$$savings$$$ $$$ Substantial fuel cost savings as compared to gasoline or diesel Reduce emissions of toxins by up to 30-90% compared to gasoline Domestic – Propane is produced in North America, with large reserves in the U.S. and Canada $$$ Lower maintenance cost Greenhouse gas emissions are reduced approximately 20% Maintains the torque, horsepower, and drivability you would feel in a gasoline vehicle Courtesy of PERC For some more information on propane please visit the U.S. Department of Energy, Energy Efficiency and Renewable Energy website or contact your local American Lung Association office. What is Propane? Propane is liquefied petroleum gas that consists of propane, propylene, butane, and butylenes in various mixtures. In the United States, propane is the primary ingredient. Propane is a by-product of natural gas processing and petroleum refining and it is stored under moderate pressure to maintain its liquid state. Why is Propane a Clean Air Choice? Propane vehicles produce less tailpipe emissions of virtually all pollutants associated with automobile vehicles that use gasoline or diesel. According to the U.S. Environmental Protection Agency, a typical four-horsepower gasoline lawnmower engines generates almost six times as much volatile organic compound (VOCs) per hour of use as a typical car. Converting small utility engines such as lawnmowers to burn propane can reduce emissions of ozone precursors by one third and increase fuel economy by 14 percent.
    [Show full text]
  • Installation Instructions Two Barrel, Throttle Body Fuel Injection for Oldsmobile V­8 Engines in Gmc Motor Homes
    6201 Industrial Way * Marine City, MI 48039 * Phone 810­765­5100 * Fax 810­765­1503 INSTALLATION INSTRUCTIONS TWO BARREL, THROTTLE BODY FUEL INJECTION FOR OLDSMOBILE V­8 ENGINES IN GMC MOTOR HOMES KIT COMPONENTS: 1. Two barrel TBI unit with integral TPS and Idle Air Control. 2. Electronic control Module (ECM) GM PN 1227747. 3. Howell wiring harness connecting engine to vehicle ECM. 4. Calibration Prom matching TBI to Olds 455 or 403 engine. 5. Cal­pack (V­8), for limp­home operation. 6. Manifold vacuum sensor (MAP). 7. Engine coolant sensor & 3/8” to ½” NPT bushing adaptor. 8. Exhaust Oxygen sensor & 18MM mounting bung. 9. Electric fuel pump—high pressure, in­line. 10. High flow fuel filter, in­line. 11. Fuel line kit. 12. Fuel pump relay. 13. Small parts kit for routing and mounting components. 14. Service manual­basic troubleshooting and operating information. THIS SYSTM IS BASED ON THE PRODUCTION GM (Chevrolet or GMC) THROTTLE BODY FUEL INJECTION AND ELECTRONICS USED FROM 1987­1989, ON 454 CID V­8 ENGINES. ALL BACKUP SYSTEMS AND “ON VEHICLE” DIAGNOSTICS FUNCTION SIMILAR TO THOSE MODEL YEAR PACKAGES. THIS SYSTEM DOES NOT CONTROL SPARK TIMING AS ON 87­89 GM ENGINES, BUT RELIES ON A TACH SIGNAL FROM THE PRODUCTION OLDS HEI ELECTRONIC IGNITION FOR RPM INPUT TO THE ECM. Installation procedure will be separated into the following categories: 1. Preparation of motor home for TBI installation. 2. Removal of non­required parts from carbureted engine. 3. Installation of TBI and engine hardware. 4. Installation of Electronic components and wiring harness. 5.
    [Show full text]
  • Within the Industry
    GROWING GALLONS WITHIN THE INDUSTRY Propane autogas is the leading alternative fuel in world — powering more than 25 million vehicles worldwide. The U.S. propane-autogas-powered vehicle market lags in acceptance with just over 200,000 vehicles. The propane industry fleet accounts for a small, but growing, percentage of the overall population. Thanks to recent improvements in propane autogas fuel system technology, a growing number of propane marketers are choosing propane autogas rather than diesel and gasoline powered engines when they specify and purchase vehicles. The original objective of this paper was to define the status of converting the propane industry’s fleet to our fuel and identify barriers that were obstructing growth in this industry and others. In this edition, we want to share an industry status update as well as recent successes in the expansion of propane autogas. Today, more marketers are choosing propane autogas for their fleets. As this report outlines, propane autogas is providing significant overall total cost-of-ownership (TCO) savings that translates into profits for all marketers regardless of fleet size. PROPANE AUTOGAS VEHICLES of the current propane vehicles requires an investment, but that Like other transportation markets, the propane industry follows investment is paying off in many ways. Pickup trucks, manager and standard practices when specifying and purchasing class 1-8 service vehicles, bobtails, and cylinder rack trucks all are available vehicles to safely transport payload, optimize vehicle performance, from multiple brands in both dedicated and bi-fuel models. These and provide the highest possible returns for their stakeholders. options provide comparable performance to conventional fuels with Propane autogas is becoming the choice for many marketer fleets a much lower TCO and much quicker ROI.
    [Show full text]
  • Renewable Diesel Fuel
    Renewable Diesel Fuel Robert McCormick and Teresa Alleman July 18, 2016 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Diesel Fuel Nomenclature • Renewable diesel goes by many names: o Generic names – Hydrogenated esters and fatty acids (HEFA) diesel – Hydrogenation derived renewable diesel (HDRD) – Green diesel (colloquialism) o Company trademark names – Green Diesel™ (Honeywell/UOP) – NExBTL® (Neste) – SoladieselRD® (Solazyme) – Biofene® (Amyris) – HPR Diesel (Propel branded product) – REG-9000™/RHD • Not the same as biodiesel, may be improperly called second generation biodiesel, paraffinic biodiesel – but it is incorrect and misleading to refer to it as biodiesel 2 RD is a Very Broad Term • Renewable diesel (RD) is essentially any diesel fuel produced from a renewable feedstock that is predominantly hydrocarbon (not oxygenates) and meets the requirements for use in a diesel engine • Today almost all renewable diesel is produced from vegetable oil, animal fat, waste cooking oil, and algal oil o Paraffin/isoparaffin mixture, distribution of chain lengths • One producer ferments sugar to produce a hydrocarbon (Amyris – more economical to sell this hydrocarbon into other markets) o Single molecule isoparaffin product 3 RD and Biodiesel • Biodiesel is solely produced through esterification of fats/oils • RD can be produced through multiple processes o Hydrogenation (hydrotreating) of fats/oils/esters o Fermentation
    [Show full text]
  • Fuel System Delivery Overview — Guide to Successful Fuel System Repairs 2 1 10 3
    Fuel System Delivery Overview — Guide To Successful Fuel System Repairs 2 1 10 3 9 5 4 8 6 7 1 Fuel Filler Cap responsible for 20% of fuel pump product Tight seal is critical to proper OBD system failures. operation. A loose cap can lead to a DTC that will set the “Check Engine” light. 6 Supply and Return Lines Deliver fuel to and from the engine. Check 2 Fuel Tank Pressure Sensor for kinks or restrictions. Monitors fuel tank evaporative pressure for emissions control purposes. 7 Fuel Filter Protects injectors and engine from con- 3 Fuel Pump tamination not caught by the fuel pump The heart of the fuel delivery system, the fuel strainer. Important to replace as a part of pump delivers fuel to the engine. Airtex fuel routine maintenance as well as with any pumps are designed to meet or beat OE specs fuel system service. and are 100% tested to ensure performance and long-life. 8 Oxygen (02) Sensor Checks exhaust gases and sends signal to 4 Fuel Strainer ECM to adjust fuel mixture for emissions The pump’s first line of defense against con- control purposes. taminated fuel. Failure to replace the fuel strainer will void fuel pump warranty. 9 Fuel Pressure Regulator Controls fuel pressure to fuel injectors. 5 Fuel Tank The fuel pump on most modern vehicles is 10 Fuel Injectors housed in the fuel tank. Tanks must be clean Deliver fuel to engine combustion and free of contamination before a new fuel chambers. pump is installed. Contaminated fuel is It's important to note that the fuel pump is one part of a complex fuel delivery system.
    [Show full text]
  • Move Forward with NEXBTL Renewable Diesel
    Move Forward with Did you know that… NEXBTL renewable diesel As a drop-in biofuel, NEXBTL renewable diesel behaves exactly like fossil diesel. Because of its diesel-like behavior, quality-related blending limitations do not apply to NEXBTL renewable diesel. NEXBTL renewable diesel offers 40–90% CO2 reduction compared to fossil diesel. Neste Corporation Keilaranta 21 Cover image: Shutterstock PO Box 95 FI-00095 Neste, Finland Tel. +358 (0)10 45811 www.neste.com 2015 High performance from NEXBTL renewable diesel “Our experience has been extremely positive in our own fleet. We have experienced zero customer complaints or Premium-quality NEXBTL renewable diesel outperforms both issues.” conventional biodiesel and fossil diesel by a clear margin. Pat O’Keefe, Vice President, Golden Gate Petroleum, US Unlike conventional biodiesel, Neste’s NEXBTL NEXBTL renewable diesel is unique. Proprietary renewable diesel has no blending wall, and therefore hydrotreating technology converts vegetable oil it also offers greater possibilities for meeting biofuel and waste fats into premium-quality fuel. mandates. Therefore, NEXBTL renewable diesel is a pure hydrocarbon with significant performance and emission benefits. Benefits in brief 100% renewable and sustainable Lower operating costs Produced from waste fats, residues and vegetable oils, Other biofuels may increase the need for vehicle classified as hydrotreated vegetable oil (HVO) maintenance, for example through reduced oil change intervals, but with NEXBTL renewable diesel there is no Smaller environmental
    [Show full text]
  • A Two-Point Vehicle Classification System
    178 TRANSPORTATION RESEARCH RECORD 1215 A Two-Point Vehicle Classification System BERNARD C. McCULLOUGH, JR., SrAMAK A. ARDEKANI, AND LI-REN HUANG The counting and classification of vehicles is an important part hours required, however, the cost of such a count was often of transportation engineering. In the past 20 years many auto­ high. To offset such costs, many techniques for the automatic mated systems have been developed to accomplish that labor­ counting, length determination, and classification of vehicles intensive task. Unfortunately, most of those systems are char­ have been developed within the past decade. One popular acterized by inaccurate detection systems and/or classification method, especially in Europe, is the Automatic Length Indi­ methods that result in many classification errors, thus limiting cation and Classification Equipment method, known as the accuracy of the system. This report describes the devel­ "ALICE," which was introduced by D. D. Nash in 1976 (1). opment of a new vehicle classification database and computer This report covers a simpler, more accurate system of vehicle program, originally designed for use in the Two-Point-Time­ counting and classification and details the development of the Ratio method of vehicle classification, which greatly improves classification software that will enable it to surpass previous the accuracy of automated classification systems. The program utilizes information provided by either vehicle detection sen­ systems in accuracy. sors or the program user to determine the velocity, number Although many articles on vehicle classification methods of axles, and axle spacings of a passing vehicle. It then matches have appeared in transportation journals within the past dec­ the axle numbers and spacings with one of thirty-one possible ade, most have dealt solely with new types, or applications, vehicle classifications and prints the vehicle class, speed, and of vehicle detection systems.
    [Show full text]
  • A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines
    energies Review A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines T. M. Yunus Khan 1,2 1 Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia; [email protected] 2 Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia Received: 1 August 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The ever-increasing demand for transport is sustained by internal combustion (IC) engines. The demand for transport energy is large and continuously increasing across the globe. Though there are few alternative options emerging that may eliminate the IC engine, they are in a developing stage, meaning the burden of transportation has to be borne by IC engines until at least the near future. Hence, IC engines continue to be the prime mechanism to sustain transportation in general. However, the scarcity of fossil fuels and its rising prices have forced nations to look for alternate fuels. Biodiesel has been emerged as the replacement of diesel as fuel for diesel engines. The use of biodiesel in the existing diesel engine is not that efficient when it is compared with diesel run engine. Therefore, the biodiesel engine must be suitably improved in its design and developments pertaining to the intake manifold, fuel injection system, combustion chamber and exhaust manifold to get the maximum power output, improved brake thermal efficiency with reduced fuel consumption and exhaust emissions that are compatible with international standards. This paper reviews the efforts put by different researchers in modifying the engine components and systems to develop a diesel engine run on biodiesel for better performance, progressive combustion and improved emissions.
    [Show full text]
  • Revisiting the Compcars Dataset for Hierarchical Car Classification
    sensors Article Revisiting the CompCars Dataset for Hierarchical Car Classification: New Annotations, Experiments, and Results Marco Buzzelli * and Luca Segantin Department of Informatics Systems and Communication, University of Milano-Bicocca, 20126 Milano, Italy; [email protected] * Correspondence: [email protected] Abstract: We address the task of classifying car images at multiple levels of detail, ranging from the top-level car type, down to the specific car make, model, and year. We analyze existing datasets for car classification, and identify the CompCars as an excellent starting point for our task. We show that convolutional neural networks achieve an accuracy above 90% on the finest-level classification task. This high performance, however, is scarcely representative of real-world situations, as it is evaluated on a biased training/test split. In this work, we revisit the CompCars dataset by first defining a new training/test split, which better represents real-world scenarios by setting a more realistic baseline at 61% accuracy on the new test set. We also propagate the existing (but limited) type-level annotation to the entire dataset, and we finally provide a car-tight bounding box for each image, automatically defined through an ad hoc car detector. To evaluate this revisited dataset, we design and implement three different approaches to car classification, two of which exploit the hierarchical nature of car annotations. Our experiments show that higher-level classification in terms of car type positively impacts classification at a finer grain, now reaching 70% accuracy. The achieved performance constitutes a baseline benchmark for future research, and our enriched set of annotations is made available for public download.
    [Show full text]
  • And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
    DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13.
    [Show full text]