Control Cockroaches in and Around Your Home the Information Given Here Is for Educational Purposes Only
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Restricted Use Product Summary Report
Page 1 of 17 Restricted Use Product Summary Report (January 19, 2016) Percent Active Registration # Name Company # Company Name Active Ingredient(s) Ingredient 4‐152 BONIDE ORCHARD MOUSE BAIT 4 BONIDE PRODUCTS, INC. 2 Zinc phosphide (Zn3P2) 70‐223 RIGO EXOTHERM TERMIL 70 VALUE GARDENS SUPPLY, LLC 20 Chlorothalonil 100‐497 AATREX 4L HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 42.6 Atrazine 100‐585 AATREX NINE‐O HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 88.2 Atrazine 100‐669 CURACRON 8E INSECTICIDE‐MITICIDE 100 SYNGENTA CROP PROTECTION, LLC 73 Profenofos 100‐817 BICEP II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 33; 26.1 Atrazine; S‐Metolachlor 100‐827 BICEP LITE II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 28.1; 35.8 Atrazine; S‐Metolachlor 100‐886 BICEP MAGNUM 100 SYNGENTA CROP PROTECTION, LLC 33.7; 26.1 Atrazine; S‐Metolachlor 100‐898 AGRI‐MEK 0.15 EC MITICIDE/INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2 Abamectin 100‐903 DENIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2.15 Emamectin benzoate 100‐904 PROCLAIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 5 Emamectin benzoate 100‐998 KARATE 1EC 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1075 FORCE 3G INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 3 Tefluthrin Acetochlor; Carbamothioic acid, dipropyl‐ 100‐1083 DOUBLEPLAY SELECTIVE HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 16.9; 67.8 , S‐ethyl ester 100‐1086 KARATE EC‐W INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1088 SCIMITAR GC INSECTICIDE 100 SYNGENTA CROP PROTECTION, -
New Aspects About Supella Longipalpa (Blattaria: Blattellidae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Asian Pac J Trop Biomed 2016; 6(12): 1065–1075 1065 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Review article http://dx.doi.org/10.1016/j.apjtb.2016.08.017 New aspects about Supella longipalpa (Blattaria: Blattellidae) Hassan Nasirian* Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Article history: The brown-banded cockroach, Supella longipalpa (Blattaria: Blattellidae) (S. longipalpa), Received 16 Jun 2015 recently has infested the buildings and hospitals in wide areas of Iran, and this review was Received in revised form 3 Jul 2015, prepared to identify current knowledge and knowledge gaps about the brown-banded 2nd revised form 7 Jun, 3rd revised cockroach. Scientific reports and peer-reviewed papers concerning S. longipalpa and form 18 Jul 2016 relevant topics were collected and synthesized with the objective of learning more about Accepted 10 Aug 2016 health-related impacts and possible management of S. longipalpa in Iran. Like the Available online 15 Oct 2016 German cockroach, the brown-banded cockroach is a known vector for food-borne dis- eases and drug resistant bacteria, contaminated by infectious disease agents, involved in human intestinal parasites and is the intermediate host of Trichospirura leptostoma and Keywords: Moniliformis moniliformis. Because its habitat is widespread, distributed throughout Brown-banded cockroach different areas of homes and buildings, it is difficult to control. -
Cypermethrin
International Environmental Health Criteria 82 Cypermethrin Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization WORLD HEALTH ORGANIZATION GENEVA 1989 Other titles available in the ENVIRONMENTAL HEALTH CRITERIA series include: 1. Mercury 2. Polychlorinated Biphenyls and Terphenyls 3. Lead 4. Oxides of Nitrogen 5. Nitrates, Nitrites, and N-Nitroso Compounds 6. Principles and Methods for Evaluating the Toxicity of Chemicals, Part 1 7. Photochemical Oxidants 8. Sulfur Oxides and Suspended Particulate Matter 9. DDT and its Derivatives 10. Carbon Disulfide 11. Mycotoxins 12. Noise 13. Carbon Monoxide 14. Ultraviolet Radiation 15. Tin and Organotin Compounds 16. Radiofrequency and Microwaves 17. Manganese 18. Arsenic 19. Hydrogen Sulfide 20. Selected Petroleum Products 21. Chlorine and Hydrogen Chloride 22. Ultrasound 23. Lasers and Optical Radiation 24. Titanium 25. Selected Radionuclides 26. Styrene 27. Guidelines on Studies in Environmental Epidemiology 28. Acrylonitrile 29. 2,4-Dichlorophenoxyacetic Acid (2,4-D) 30. Principles for Evaluating Health Risks to Progeny Associated with Exposure to Chemicals during Pregnancy 31. Tetrachloroethylene 32. Methylene Chloride 33. Epichlorohydrin 34. Chlordane 35. Extremely Low Frequency (ELF) Fields 36. Fluorine and Fluorides 37. Aquatic (Marine and Freshwater) Biotoxins 38. Heptachlor 39. Paraquat and Diquat 40. Endosulfan 41. Quintozene 42. Tecnazene 43. Chlordecone 44. Mirex continued on p. 156 -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Research/Investigación Effect of Dinotefuran
RESEARCH/INVESTIGACIÓN EFFECT OF DINOTEFURAN, INDOXACARB, AND IMIDACLOPRID ON SURVIVAL AND FITNESS OF TWO ARIZONA-NATIVE ENTOMOPATHOGENIC NEMATODES AGAINST HELICOVERPA ZEA (LEPIDOPTERA: NOCTUIDAE) P. D. Navarro, J. G. McMullen II, and S. P. Stock* University of Arizona, Department of Entomology, 1140 E South Campus Dr., Tucson, AZ 85721-0036. *Corresponding author: [email protected] ABSTRACT Navarro, P. D., J. G. McMullen II, and S. P. Stock. 2014. Effect of dinotefuran, indoxacarb, and imidacloprid on survival and fitness of two Arizona-native entomopathogenic nematodes against Helicoverpa zea (Lepidoptera: Noctuidae). Nematropica 44:64-73. The effect of three insecticides commonly used in Arizona, dinotefuran, indoxacarb, and imidacloprid, was evaluated on two Arizona-native entmopathogenic nematodes (EPN), Heterorhabditis sonorensis (Caborca strain) and Steinernema riobrave (SR-5 strain), using Helicoverpa zea (Lepidoptera: Noctuidae) as the insect host. Specifically, we assessed their effect on EPN survival and fitness (virulence and reproduction). Three application timings were considered: i) EPN applied first, insecticide applied 24 h later, ii) insecticide applied first, EPN applied 24 h later, and iii) simultaneous application of EPN and insecticide. Our results showed that infective juvenile (IJ) survival of S. riobrave and H. sonorensis was not significantly affected by the application of the selected insecticides. Indoxacarb had an ambiguous effect on the S. riobrave life cycle showing a synergistic effect in the virulence of this nematode but reducing its progeny production by two-fold. Similar results were observed for nematode progeny production when H. sonorensis and indoxacarb were applied simultaneously. All combinations of imidacloprid were antagonistic to the virulence of S. riobrave but additive with respect to the virulence of H. -
Effects of House and Landscape Characteristics on the Abundance and Diversity of Perimeter Pests Principal Investigators: Arthur G
Project Final Report presented to: The Pest Management Foundation Board of Trustees Project Title: Effects of house and landscape characteristics on the abundance and diversity of perimeter pests Principal Investigators: Arthur G. Appel and Xing Ping Hu, Department of Entomology and Plant Pathology, Auburn University Date: June 17, 2019 Executive Summary: The overall goal of this project was to expand and refine our statistical model that estimates Smokybrown cockroach abundance from house and landscape characteristics to include additional species of cockroaches, several species of ants as well as subterranean termites. The model will correlate pest abundance and diversity with house and landscape characteristics. These results could ultimately be used to better treat and prevent perimeter pest infestations. Since the beginning of the period of performance (August 1, 2017), we have hired two new Master’s students, Patrick Thompson and Gökhan Benk, to assist with the project. Both students will obtain degrees in entomology with a specialization in urban entomology with anticipated graduation dates of summer-fall 2019. We have developed and tested several traps designs for rapidly collecting sweet and protein feeding ants, purchased and modified traps for use during a year of trapping, and have identified species of ants, cockroaches, and termites found around homes in Auburn Alabama. House and landscape characteristics have been measured at 62 single-family homes or independent duplexes. These homes range in age from 7 to 61 years and include the most common different types of siding (brick, metal, stone, vinyl, wood), different numbers/types of yard objects (none to >15, including outbuildings, retaining walls, large ornamental rocks, old trees, compost piles, etc.), and different colors. -
Cockroach Marion Copeland
Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right. -
Follow-Up Studies After Withdrawal of Deltamethrin Spraying Against Anopheles Culicifacies and Malaria Incidence
Journal of the American Mosquito contror Association, 2o(4):424-42g,2004 Copyright @ 2OO4 by the American Mosquito Control Association, Inc. FOLLOW-UP STUDIES AFTER WITHDRAWAL OF DELTAMETHRIN SPRAYING AGAINST ANOPHELES CULICIFACIES AND MALARIA INCIDENCE MUSHARRAF ALI ANSARI eNo RAMA KRISHNA RAZDAN Malaria Research Centre (ICMR), 2}-Madhuban, Delhi_ll0 092, India ABSTRACT. Follow-up studies were carried out from 1989 to 1998 after withdrawal of deltamethrin indoor spraying to evaluate the-recovery rate of a population of Anopheles culicifacies resistant to dichlorodiphenyltri- chloroethane (DDT) and hexachlorocyclohexane (HCH) in selected villages in Uttar pradesh State, I;dia. The study revealed 82.4-96.5Ea reduction in adult density of An. culicifacies and 72.7-967o reduction in malaria incidence in the area sprayed with deltamethrin at 20 mg/m, as compared to a control area sprayed with HCH, for 5 successive years even after withdrawal of deltamethrin spray. The impact was very clear when the annual falciparum incidence was compared with that of the control area. The vector population gradually started re- covering after 5 years. However, the slide falciparum rate remained below 4 even after 10 years of withdrawal of spraying. The study revealed that indoor residual spraying of deltamethrin would be cost-effective, at least in areas where malaria is transmitted by An. culicifacies, which is primarily a zoophilic species and associated with malaria epidemics. In view of this, a review of the insecticide policy and strategy of vector control is urgently needed because of the possible risks associated with the presence of nonbiodegradable insecticide in the environment, as well as to minimize the costs of operation and to enhance the useful life of insecticides. -
Developing Baits for the Control of Yellowjackets in California
Final Report 2010 STRUCTURAL PEST CONTROL BOARD GRANT No. 041-04 Developing Baits for the Control of Yellowjackets in California Michael K. Rust, Donald A. Reierson, and Rick Vetter Department of Entomology University of California, Riverside Riverside, CA Table of Contents Executive Summary……………………………………………………………………3 Introduction.....................................................................................................................4 2006 Research…………………………………………………………………………..4 2007 Research….………………………………………………………………………12 2008 Research..…………………………………………………………………………19 2009 Research….……………………………………………………………………......25 Acknowledgments………………………………………………………………………29 Appendix I……………………………………………………………………………….30 2 Executive Summary . Monitoring with traps is an essential element in the pest management of yellowjackets. In addition to locating areas of high foraging activity, traps help quantify the foraging activity and establish when baiting programs should begin. The most useful traps collect yellowjackets in a preserving fluid such as ethyl alcohol (ETOH) or propylene glycol antifreeze. However, antifreeze was chosen for our trapping because it is cheaper than alcohol and has fewer restrictions when mailing specimens. The western yellowjacket, Vespula pensylvancia, was the most frequently encountered species. V. atropilosa and V. sulphurea are sometimes sympatric with V. pensylvanica but are nearly always less abundant in the specific locations where the species are encountered. Intensive trapping with heptyl butyrate attractant can reduce the numbers of foraging yellowjackets, but trapping alone will not provide area-wide control. Placing rings of traps surrounding picnic areas or pool areas (interceptive trapping strategies) did reduce the number of stings reported park users. A prototype Contech heptyl butyrate flexible bag wet trap was a good monitoring tool. Sterling and other kinds of dry traps are effective at attracting and capturing yellowjackets, but live trapped wasps tend to dismember others in the trap. -
Transfer of Ingested Insecticides Among Cockroaches: Effects of Active Ingredient, Bait Formulation, and Assay Procedures
HOUSEHOLD AND STRUCTURAL INSECTS Transfer of Ingested Insecticides Among Cockroaches: Effects of Active Ingredient, Bait Formulation, and Assay Procedures 1 2 1, 3 GRZEGORZ BUCZKOWSKI, ROBERT J. KOPANIC, JR., AND COBY SCHAL J. Econ. Entomol. 94(5): 1229Ð1236(2001) ABSTRACT Foraging cockroaches ingest insecticide baits, translocate them, and can cause mor- tality in untreated cockroaches that contact the foragers or ingest their excretions. Translocation of eight ingested baits by adult male Blattella germanica (L.) was examined in relation to the type of the active ingredient, formulation, and foraging area. Ingested boric acid, chlorpyrifos, Þpronil, and hydramethylnon that were excreted by adults in small dishes killed 100% of Þrst instars within 10 d and Ͼ50% of second instars within 14 d. Residues from these ingested baits were also highly effective on nymphs in larger arenas and killed 16Ð100% of the adults. However, when the baits and dead cockroaches were removed from the large arenas and replaced with new cockroaches, only residues of the slow-acting hydramethylnon killed most of the nymphs and adults, whereas residues of fast acting insecticides (chlorpyrifos and Þpronil) killed fewer nymphs and adults. Excretions from cockroaches that ingested abamectin baits failed to cause signiÞcant mortality in cockroaches that contacted the residues. These results suggest that hydramethylnon is highly effective in these assays because cockroaches that feed on the bait have ample time to return to their shelter and defecate insecticide-laden feces. The relatively high concentration of hydramethylnon in the bait (2.15%) and its apparent stability in the digestive tract and feces probably contribute to the efÞcacy of hydra- methylnon. -
Failing Health: Pesticide Use in California Schools. CPR Series Report
DOCUMENT RESUME ED 450 558 EF 005 939 AUTHOR Kaplan, Jonathan; Marquardt, Sandra; Barber, Wendy TITLE Failing Health: Pesticide Use in California Schools. CPR Series Report. INSTITUTION Californians for Pesticide Reform, San Francisco.; California Public Interest Research Group, San Francisco. Charitable Trust. SPONS AGENCY Pew Charitable Trusts, Philadelphia, PA.; Mott (C.S.) Foundation, Flint, MI.; Richard and Rhoda Goldman Fund, San Francisco, CA. PUB DATE 1998-00-00 NOTE 36p.; Funding also received by True North Foundation, Columbia Foundation, and the Foundation for Ecology and Development. For another CPR report on pesticide use in California schools, see EF 005 790. AVAILABLE FROM For full text: http://www.pirg.org/calpirg/reports/toxics.html. PUB TYPE Reports Evaluative (142) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Elementary Secondary Education; *Pesticides; *Pests; Poisons; *Public Schools; Surveys IDENTIFIERS *California; *Health Hazards; Policy Issues ABSTRACT This report presents a statewide assessment of pesticides used in California's school system. Of the 46 school districts responding to the statewide survey, 40 claimed using one or more of 27 particularly hazardous pesticides that can cause cancer, affect the reproductive system, mimic the endocrine system, or act as nerve toxins. Forty-three school districts reported routinely using pesticides. The report suggests that not only have California school districts not embraced opportunities for using least-toxic methods to combat pests, but that the state also has no law requiring notification of parents or teachers before applying pesticides in schools. The report recommends: that state policymakers eliminate the use of pesticides that cause cancer; that school managers take the initiative from state agencies to implement reforms; and that teachers, parents, and students request information about pesticides used in and around schools and participate in school pest management decision- making to ensure that least-toxic pest management is practiced. -
The American Cockroach, Periplaneta Americana Linnaeus, As a Disseminator of Some Salmonella Bacteria
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations 1896 - February 2014 1-1-1943 The American cockroach, Periplaneta americana Linnaeus, as a disseminator of some Salmonella bacteria. Arnold Erwin Fischman University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1 Recommended Citation Fischman, Arnold Erwin, "The American cockroach, Periplaneta americana Linnaeus, as a disseminator of some Salmonella bacteria." (1943). Doctoral Dissertations 1896 - February 2014. 5573. https://scholarworks.umass.edu/dissertations_1/5573 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. 3120bfc. 0230 2b3D b '! HE AMERICAN COCKROACH, ITiRIPEANETA AMERICANA LINNAEUS AS A DISSEMINATOR OF SOME SAl_.MONEL.LA BACTERIA — 111 F1SCHMAN - 1843 MORR LD 3234 ! M267 11943 F529 THK A&SBiCAjf cockroach, mSSSABk NKEJBUk ummxjs AS A PISSE’CHATOR CHP SO* RkUKMSUL BACTERIA Arnold Erwin Plachaan Thesis subaittetf in partial fulfill wont of the requirements for the degree of Doctor of Riiloeophy Shseaohuaetta State College May, 1943 TABLE OP COSmtrs Jhge X. INTKGfUCTIGN .... 1 1. Origin, I-iatribution and Abundance of the Cockroach 1 2. Importance of the Cockroach •••••••••••••• 2 II. RETIES OP LITERATURE .. 6 1. Morphology of the Cockroach •••••••••••••• 7 2. Pevelopment of the Cockroach •••••••••••.. 7 3* Biology of the American Cockroach, Perl- nlcrmt* aaarloana Linnaeus •••••••••••• 8 4* Control .. 10 5. Bacteria and the Cockroach .. 12 6. Virus and the Cockroach 25 7. FUngi and the Cockroach ••»•••••••••••.••• 25 8.