Genetic Landscape of Sporadic Vestibular Schwannoma

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Landscape of Sporadic Vestibular Schwannoma LABORATORY INVESTIGATION J Neurosurg 128:911–922, 2018 Genetic landscape of sporadic vestibular schwannoma *Aril Løge Håvik,1–3 Ove Bruland, MSc, PhD,2 Erling Myrseth, MD, PhD,4 Hrvoje Miletic, MD, PhD,5–7 Mads Aarhus, MD, PhD,8 Per-Morten Knappskog, MSc, PhD,2,3 and Morten Lund-Johansen, MD, PhD1,4,6 Departments of 1Clinical Medicine, 3Clinical Science, and 7Biomedicine, and 6K.G. Jebsen Brain Tumor Research Center, University of Bergen; 2Center for Medical Genetics and Molecular Medicine, and Departments of 4Neurosurgery and 5Pathology, Haukeland University Hospital, Bergen; and 8Department of Neurosurgery, Oslo University Hospitals, Ullevål Sykehus, Oslo, Norway OBJECTIVE Vestibular schwannoma (VS) is a benign tumor with associated morbidities and reduced quality of life. Except for mutations in NF2, the genetic landscape of VS remains to be elucidated. Little is known about the effect of Gamma Knife radiosurgery (GKRS) on the VS genome. The aim of this study was to characterize mutations occurring in this tumor to identify new genes and signaling pathways important for the development of VS. In addition, the authors sought to evaluate whether GKRS resulted in an increase in the number of mutations. METHODS Forty-six sporadic VSs, including 8 GKRS-treated tumors and corresponding blood samples, were sub- jected to whole-exome sequencing and tumor-specific DNA variants were called. Pathway analysis was performed using the Ingenuity Pathway Analysis software. In addition, multiplex ligation-dependent probe amplification was performed to characterize copy number variations in the NF2 gene, and microsatellite instability testing was done to investigate for DNA replication error. RESULTS With the exception of a single sample with an aggressive phenotype that harbored a large number of muta- tions, most samples showed a relatively low number of mutations. A median of 14 tumor-specific mutations in each sample were identified. The GKRS-treated tumors harbored no more mutations than the rest of the group. A clustering of mutations in the cancer-related axonal guidance pathway was identified (25 patients), as well as mutations in the CDC27 (5 patients) and USP8 (3 patients) genes. Thirty-five tumors harbored mutations in NF2 and 16 tumors had 2 mutational hits. The samples without detectable NF2 mutations harbored mutations in genes that could be linked to NF2 or to NF2- related functions. None of the tumors showed microsatellite instability. CONCLUSIONS The genetic landscape of VS seems to be quite heterogeneous; however, most samples had mutations in NF2 or in genes that could be linked to NF2. The results of this study do not link GKRS to an increased number of mutations. https://thejns.org/doi/abs/10.3171/2016.10.JNS161384 KEY WORDS vestibular schwannoma; NF2; axonal guidance; next-generation sequencing; molecular biology; USP8; CDC27 ESTIBULAR schwannomas (VSs) make up 8% of in- ing VS pathobiology is the linkage of both sporadic VS tracranial tumors, with an annual incidence rate (sVS) and familial VS to a loss of the tumor suppressor ranging from 11 to 22 per million.10,58 They lead to protein merlin, which is encoded by the NF2 gene.49,62 Va set of well-characterized complaints. Affected individu- Merlin mediates contact inhibition and suppresses tumor- als report reduced quality of life, but the life expectancy of igenesis (both at the cell membrane and in the nucleus) patients with VSs is similar to that of the average popula- through its interaction with integrins and receptor tyrosine tion.8,37,56 kinases, among other proteins.28,41,69 The proportion of To date, the most important contribution to understand- sVSs harboring NF2 mutations ranges from 15% to 84%.13 ABBREVIATIONS GKRS = Gamma Knife radiosurgery; IPA = Ingenuity Pathway Analysis; LOH = loss of heterozygosity; MLPA = multiplex ligation-dependent probe amplification; MSI = microsatellite instability; PCR = polymerase chain reaction; SNV = single-nucleotide variant; sVS = sporadic VS; VS = vestibular schwannoma; WES = whole-exome sequencing. SUBMITTED May 30, 2016. ACCEPTED October 31, 2016. INCLUDE WHEN CITING Published online April 14, 2017; DOI: 10.3171/2016.10.JNS161384. * Drs. Knappskog and Lund-Johansen contributed equally to this work. ©AANS 2018, except where prohibited by US copyright law J Neurosurg Volume 128 • March 2018 911 Unauthenticated | Downloaded 09/29/21 09:50 AM UTC A. L. Håvik et al. This might indicate that alternative mechanisms for de- Mini Kit (QIAGEN). DNA from blood was extracted regulating NF2-related functions in schwannoma cells ex- using QIAsymphony (QIAGEN). The DNA quality and ist, leading us to search for mutations in genes linked to quantity were evaluated with 1% SeaKem gel electropho- merlin. resis and NanoDrop spectroscopy (Thermo Fisher Scien- In addition, we directed our attention toward another tific), respectively. tumor suppressor gene candidate, CAV1, to see whether mutations in this gene or in genes controlling its expres- Whole-Exome Sequencing sion can provide an explanation for its universal down- 1 WES was performed as a custom service (HudsonAl- regulation in sVSs. Except for the hereditary disease pha Institute for Biotechnology). The capture kit was Nim- associated with VS, neurofibromatosis Type 2, little is bleGen SeqCap EZ Exome Library v3.0, and sequencing known about the development of VS. Numerous studies was paired-end sequencing (2 × 100 bp) with approxi- have been conducted in the search for an etiology, but with × 15,43,51,53 mately 85 coverage on Illumina HiSeq. The resulting inconclusive findings. Recently, Agnihotri et al. se- reads were aligned to the GRCh37/hg19 reference genome quenced the exomes of a limited number of VSs and spi- 27 3 with Burrows-Wheeler transform, and the resulting bam- nal schwannomas. To gain a better understanding of the files were delivered to us. underlying pathogenesis of sVS formation, we performed whole-exome sequencing (WES) of sVSs and normal cells Bioinformatic Mutation Analyses to identify tumor-specific mutations. We applied the Genome Analysis Toolkit (version The increasing use of radiosurgery in treatment of VS 33 has raised concerns in the neurosurgical community about 3.2) base quality score recalibration, indel realignment, radiation-induced mutational events leading to malignant duplicate removal, and we performed single-nucleotide transformation.17,31,35,39,48,54 So far, a few cases of postir- polymorphism and INDEL calling across all 92 samples radiation malignant VSs have been described. Our study simultaneously using variant quality score recalibration therefore aimed not only to study sVS, but also in particu- according to Genome Analysis Toolkit Best Practices lar to study the mutational status of cases of VS where the recommendations.14,63 For detection of somatic point tumor had undergone radiosurgery. substitutions with low allelic fraction, we used MuTect.12 ANNOVAR64 was used for functional annotation of the variants called from the 46 tumor-normal pairs. Methods Candidate variants were filtered according to the fol- Patients and Specimen Collection lowing criteria: 1) allelic frequency < 0.05 in 1000 g, Samples of VS tissue and EDTA-treated blood were esp6500 and exac03; 2) repeated alleles < 5, evaluated obtained from 46 patients who underwent first-time sub- manually in borderline cases; 3) allelic frequency in tu- occipital resection of a unilateral VS at the Department mor > 0.05, allelic frequency in germline < 0.05, sequenc- of Neurosurgery, Haukeland University Hospital, between ing depth > 7, alternative allele > 1, evaluated manually in August 2003 and October 2014 (Table 1). Five pieces of borderline cases. The allelic frequency threshold was set viable tumor tissue with diameters of 3–5 mm were col- to exclude normal variants unlikely to be pathogenic. We lected from the intracapsular part of the tumor. This was excluded areas prone to segmental duplication by setting a done in 1 session, and the tissue was collected from 1 tu- cutoff value for mapping quality to 30 (phred score). mor area only. Routine histology was done in each case. To increase the likelihood of detecting mutations im- Eight patients had been treated with Gamma Knife radio- portant to tumorigenesis, we chose to evaluate nonsyn- surgery (GKRS) for the same VS. GKRS was performed onymous single-nucleotide variants (SNVs); frameshift according to a standardized protocol of 12 Gy to the tumor indels; and stop-gain, stop-loss, and splice-site mutations periphery at minimum 95% coverage. Six patients exhib- as predicted by ANNOVAR. The missense SNVs also had ited cystic VS. Dexamethasone 4 mg, administered orally to be predicted as deleterious/probably damaging/disease 4 times for 1 day preoperatively, was routinely given, start- causing/functional (positive prediction) by one of the fol- ing the day before surgery. Written informed consent was lowing prediction algorithms used in ANNOVAR: SIFT, received from all patients before tissue harvesting, and the PolyPhen 2 HDIV and HVAR, LRT, Mutation Taster, study was approved by the regional ethical committee for Mutation Assessor, FATHMM, MetaSVM, and MetaLR. medical research in Western Norway. The samples were GERP++, PhyloP, and SiPhy annotations were used to as- either immediately snap-frozen or stored at -80° and then sess how conserved the mutated sites were across different transferred to liquid nitrogen in the Bergen Neurosurgical species. Tissue Bank at Haukeland University Hospital. One tu- After filtering of variants, the remaining candidates mor-normal pair was found to be an outlier, accounting for were validated visually using the Integrative Genomics a large number of called variants, and was hence investi- Viewer.45,60 The outlier was subjected to stricter filtering gated with microsatellite-based polymerase chain reaction criteria to reduce the number of possible passenger mu- (PCR) profiling to confirm that the samples were matched. tations: ≥ 2 of the aforementioned prediction algorithms for nonsynonymous SNVs had to be positive. The variants DNA Extraction passing these filtering criteria were used for subsequent For DNA extraction, tumor tissue was first disrupted analyses.
Recommended publications
  • Human T-Cell Lymphotropic Virus Type II Infection (Letter to the Editor)
    HUMAN T-CELL L YMPHOTROPIC VIRUSES 1. Exposure Data 1.1 Structure, taxonomy and biology 1.1.1 Structure The structure of retroviruses is reviewed in the monograph on human immuno- deficiency viruses (HIV) in this volume. The human T-cell lymphotropic (T-cell Ieu- kaemia/lymphoma) viruses (HTL V) are enveloped viruses with a diameter of approxi- mately 80-100 nm (Figure 1). The HTLV virions contain two covalently bound genomic RNA strands, which are complexed with the viral enzymes reverse transcriptase (RT; with associated RNase H activity), integrase and protease and the capsid proteins. The outer part of the virions consists of a membrane-associated matrix protein and a lipid Iayer intersected by the envelope proteins (GeIderbIom, 1991). Figure 1. An electron micrograph of HTL V -1 virus Courtes y of Dr Bernard Kramarsky, Advanced Biotechnologies, Inc., Columbia, MD, USA 1.1.2 T axonomy and phylogeny Traditionally, retroviruses (family Retroviridae) have been cIassified according to a combination of criteria incIuding disease association, morphoIogy and cytopathic effects in vitro. On this basis three subfamiIies were defined. The oncoviruses (Greek, onkos = mass, swelling) consist of four morphological subtypes which are associated with tumours in naturally or experimentally infected animaIs, and non-oncogenic related viruses. The second group, the Ientiviruses (Latin, lentus = slow), cause a variety of diseases including immunodeficiency and wasting syndromes, usually after a long period -261- 262 IARC MONOGRAPHS VOLUME 67 of clinical latency. The third subfamily, the spumaviruses (Latin, spuma = foam), so called because of the characteristic 'foamy' appearance induced in infected cells in vitro, have not been conclusively 1inked to any disease.
    [Show full text]
  • Merlin Inhibits Wnt/Β-Catenin Signaling by Blocking LRP6 Phosphorylation
    Cell Death and Differentiation (2016) 23, 1638–1647 & 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/16 www.nature.com/cdd Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation M Kim1,6, S Kim1,6, S-H Lee2,3,6, W Kim1, M-J Sohn4, H-S Kim5, J Kim*,2 and E-H Jho*,1 Merlin, encoded by the NF2 gene, is a tumor suppressor that acts by inhibiting mitogenic signaling and is mutated in Neurofibromatosis type II (NF2) disease, although its molecular mechanism is not fully understood. Here, we observed that Merlin inhibited Wnt/β-catenin signaling by blocking phosphorylation of LRP6, which is necessary for Wnt signal transduction, whereas mutated Merlin in NF2 patients did not. Treatment with Wnt3a enhanced phosphorylation of Ser518 in Merlin via activation of PAK1 in a PIP2-dependent manner. Phosphorylated Merlin dissociated from LRP6, allowing for phosphorylation of LRP6. Tissues from NF2 patients exhibited higher levels of β-catenin, and proliferation of RT4-D6P2T rat schwannoma cells was significantly reduced by treatment with chemical inhibitors of Wnt/β-catenin signaling. Taken together, our findings suggest that sustained activation of Wnt/β-catenin signaling due to abrogation of Merlin-mediated inhibition of LRP6 phosphorylation may be a cause of NF2 disease. Cell Death and Differentiation (2016) 23, 1638–1647; doi:10.1038/cdd.2016.54; published online 10 June 2016 Wnt/β-catenin signaling has essential roles in the regulation of β-catenin is then translocated into nuclei to activate
    [Show full text]
  • The Role of the C-Terminus Merlin in Its Tumor Suppressor Function Vinay Mandati
    The role of the C-terminus Merlin in its tumor suppressor function Vinay Mandati To cite this version: Vinay Mandati. The role of the C-terminus Merlin in its tumor suppressor function. Agricultural sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112140. tel-01124131 HAL Id: tel-01124131 https://tel.archives-ouvertes.fr/tel-01124131 Submitted on 19 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 TABLE OF CONTENTS Abbreviations ……………………………………………………………………………...... 8 Resume …………………………………………………………………………………… 10 Abstract …………………………………………………………………………………….. 11 1. Introduction ………………………………………………………………………………12 1.1 Neurofibromatoses ……………………………………………………………………….14 1.2 NF2 disease ………………………………………………………………………………15 1.3 The NF2 gene …………………………………………………………………………….17 1.4 Mutational spectrum of NF2 gene ………………………………………………………..18 1.5 NF2 in other cancers ……………………………………………………………………...20 2. ERM proteins and Merlin ……………………………………………………………….21 2.1 ERMs ……………………………………………………………………………………..21 2.1.1 Band 4.1 Proteins and ERMs …………………………………………………………...21 2.1.2 ERMs structure ………………………………………………………………………....23 2.1.3 Sub-cellular localization and tissue distribution of ERMs ……………………………..25 2.1.4 ERM proteins and their binding partners ……………………………………………….25 2.1.5 Assimilation of ERMs into signaling pathways ………………………………………...26 2.1.5. A. ERMs and Ras signaling …………………………………………………...26 2.1.5. B. ERMs in membrane transport ………………………………………………29 2.1.6 ERM functions in metastasis …………………………………………………………...30 2.1.7 Regulation of ERM proteins activity …………………………………………………...31 2.1.7.
    [Show full text]
  • Missense Mutations in the NF2 Gene Result in the Quantitative Loss of Merlin Protein and Minimally Affect Protein Intrinsic Function
    Missense mutations in the NF2 gene result in the quantitative loss of merlin protein and minimally affect protein intrinsic function Chunzhang Yang, Ashok R. Asthagiri, Rajiv R. Iyer, Jie Lu, David S. Xu, Alexander Ksendzovsky, Roscoe O. Brady1, Zhengping Zhuang1, and Russell R. Lonser1 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 Contributed by Roscoe O. Brady, February 9, 2011 (sent for review December 29, 2010) Neurofibromatosis type 2 (NF2) is a multiple neoplasia syndrome Results and is caused by a mutation of the NF2 tumor suppressor gene Quantitative Tumor Suppressor Protein Levels and mRNA Expression. that encodes for the tumor suppressor protein merlin. Biallelic NF2 To assess the levels of merlin expression in NF2 tumors, we gene inactivation results in the development of central nervous quantitatively measured merlin expression in microdissected system tumors, including schwannomas, meningiomas, ependy- tumors from NF2 patients using Western blot analysis (Fig. 1A). momas, and astrocytomas. Although a wide variety of missense Quantitative protein analysis revealed a significant reduction in germline mutations in the coding sequences of the NF2 gene can merlin expression in NF2-associated meningiomas and schwan- cause loss of merlin function, the mechanism of this functional loss nomas (95% reduction in merlin expression; seven tumors) com- is unknown. To gain insight into the mechanisms underlying loss pared with normal adjacent central nervous system tissue. of merlin function in NF2, we investigated mutated merlin homeo- Consistent with Western blot analysis of merlin expression in NF2- stasis and function in NF2-associated tumors and cell lines.
    [Show full text]
  • AUSTRALIAN PATENT OFFICE (11) Application No. AU 199875933 B2
    (12) PATENT (11) Application No. AU 199875933 B2 (19) AUSTRALIAN PATENT OFFICE (10) Patent No. 742342 (54) Title Nucleic acid arrays (51)7 International Patent Classification(s) C12Q001/68 C07H 021/04 C07H 021/02 C12P 019/34 (21) Application No: 199875933 (22) Application Date: 1998.05.21 (87) WIPO No: WO98/53103 (30) Priority Data (31) Number (32) Date (33) Country 08/859998 1997.05.21 US 09/053375 1998.03.31 US (43) Publication Date : 1998.12.11 (43) Publication Journal Date : 1999.02.04 (44) Accepted Journal Date : 2001.12.20 (71) Applicant(s) Clontech Laboratories, Inc. (72) Inventor(s) Alex Chenchik; George Jokhadze; Robert Bibilashvilli (74) Agent/Attorney F.B. RICE and CO.,139 Rathdowne Street,CARLTON VIC 3053 (56) Related Art PROC NATL ACAD SCI USA 93,10614-9 ANCEL BIOCHEM 216,299-304 CRENE 156,207-13 OPI DAtE 11/12/98 APPLN. ID 75933/98 AOJP DATE 04/02/99 PCT NUMBER PCT/US98/10561 IIIIIIIUIIIIIIIIIIIIIIIIIIIII AU9875933 .PCT) (51) International Patent Classification 6 ; (11) International Publication Number: WO 98/53103 C12Q 1/68, C12P 19/34, C07H 2UO2, Al 21/04 (43) International Publication Date: 26 November 1998 (26.11.98) (21) International Application Number: PCT/US98/10561 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, (22) International Filing Date: 21 May 1998 (21.05.98) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, (30) Priority Data: TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO 08/859,998 21 May 1997 (21.05.97) US patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian 09/053,375 31 March 1998 (31.03.98) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, (71) Applicant (for all designated States except US): CLONTECH CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • The Nf2 Tumor Suppressor Gene Product IS Essential for Extraembryon.Lc Development Immediately Prior to Gastrulation
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The Nf2 tumor suppressor gene product IS essential for extraembryon.lc development immediately prior to gastrulation Andrea I. McClatchey, 1 Ichiko Saotome, 1"2 Vijaya Ramesh, s James F. Gnsella, s and Tyler Jacks 1'2'4 1Center for Cancer Research, 2Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA; SMolecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 USA The neurofibromatosis type II (NF2) tumor suppressor encodes a putative cytoskeletal associated protein, the loss of which leads to the development of Schwann cell tumors associated with NF2 in humans. The NF2 protein merlin belongs to the band 4.1 family of proteins that link membrane proteins to the cytoskeleton and are thought to be involved in dynamic cytoskeletal reorganization. Beyond its membership in this family, however, the function of merlin remains poorly understood. In order to analyze the function of merlin during embryogenesis and to develop a system to study merlin function in detail, we have disrupted the mouse Nf2 gene by homologous recombination in embryonic stem cells. Most embryos homozygous for a mutation at the Nf2 locus fail between embryonic days 6.5 and 7.0, exhibiting a collapsed extraembryonic region and the absence of organized extraembryonic ectoderm. The embryo proper continues to develop, but fails to initiate gastrulation. These observations are supported by the expression patterns of markers of the extraembryonic lineage and the lack of expression of mesodermal markers in the mutant embryos.
    [Show full text]
  • This Month in the Journal
    Am. J. Hum. Genet. 74:i–ii, 2004 This Month in the Journal This month in the Journal, Walter Nance and Michael 53 are known, and this limits the resolution that can be Kearsey provide their thoughts on the role of the con- achieved between lineages. Kayser et al. used the recently nexins in human evolution. Previous work from Dr. reported Y-chromosome sequence to find 166 novel mi- Nance’s group suggested that the frequency of mutations crosatellites, thereby quadrupling the number of avail- at the DFNB1 deafness locus, which includes the genes able markers. Of the novel markers, 139 were polymor- for connexins 26 and 30, has doubled in the United phic in a sample of eight chromosomes from different States in the past 200 years. Here, they performed simu- haplogroups. Comparisons of the markers through mul- lations indicating that a combination of relaxed selection tiple linear regressions allowed the authors to determine and assortative mating due to the development of sign that repeat count—or, in the case of complex repeats, language could have led to this rapid rise in the incidence the repeat count of the longest homogeneous array— of connexin-associated deafness. This got them to think- appears to explain a large proportion of the repeat vari- ing about the evolution of speech in general. They pro- ance in these markers. It is likely that the great majority pose that once the first mutations for oral communica- of useful microsatellites on the Y chromosome have now tion arose, assortative mating based on linguistic homog- been reported, thereby making it easier for researchers amy may have played a role in the accelerated fixation to select appropriate markers for high-resolution analy- of genes for speech.
    [Show full text]
  • Merlin Controls the Repair Capacity of Schwann Cells After Injury by Regulating
    Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. Thomas Mindos1, Xin-peng Dun1, Katherine North1,5, Robin D. S. Doddrell1, Alexander Schulz2, Philip Edwards3, James Russell1, Bethany Gray1,5, Sheridan Roberts1, Aditya Shivane3, Georgina Mortimer1 , Melissa Pirie1, Nailing Zhang4, Duojia Pan4, Helen Morrison2 and David B. Parkinson1. 1. Plymouth University Peninsula Schools of Medicine and Dentistry, Derriford, Plymouth, Devon, UK, PL6 8BU. 2. Leibniz Institute for Age Research-FLI Jena, Beutenbergstr. 11, D-07745, Jena, Germany. 3. Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, UK. 4. Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, United States. 5. University of Bath, Claverton Down, Bath, UK, BA2 7AY. Correspondence to: Prof. David Parkinson, Plymouth University Schools of Medicine and Dentistry, Derriford, Plymouth, Devon, UK PL6 8BU. Tel. 0044 (0)1752 431037; Fax 0044 (0)1752 517846 e-mail: [email protected] Condensed title: Schwann cell Merlin controls repair of the PNS. 1 eTOC: The regenerative capacity of Schwann cells in the PNS underlies functional repair following injury. Here, Mindos et al show a new function for the tumour suppressor Merlin and Hippo/YAP signalling in the generation of repair-competent Schwann cells following injury. Number of characters: 39,838 2 Abstract. Loss of the Merlin tumour suppressor and activation of the Hippo signalling pathway play major roles in the control of cell proliferation and tumourigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes Associated Protein or YAP in the control of Schwann cell plasticity and peripheral nerve repair following injury.
    [Show full text]
  • Merlin-Deficient Human Tumors Show Loss of Contact Inhibition And
    Volume 13 Number 12 December 2011 pp. 1101–1112 1101 www.neoplasia.com Merlin-Deficient Human Tumors Lu Zhou, Emanuela Ercolano, Sylwia Ammoun, M. Caroline Schmid, Magdalena A. Barczyk Show Loss of Contact Inhibition and Clemens Oliver Hanemann β and Activation of Wnt/ -Catenin Clinical Neurobiology, Peninsula College of Medicine Signaling Linked to the PDGFR/Src and Dentistry, University of Plymouth, Plymouth, UK and Rac/PAK Pathways1,2 Abstract Neurofibromatosis type 2 (NF2) is an inherited predisposition cancer syndrome characterized by the development of multiple benign tumors in the nervous system including schwannomas, meningiomas, and ependymomas. Using a disease model comprising primary human schwannoma cells, we previously demonstrated that adherens junctions (AJs) are impaired in schwannoma cells because of a ubiquitous, upregulated Rac activity. However, the mech- anism by which loss of contact inhibition leads to proliferation remains obscure in merlin-deficient tumors. In this study, we show that proliferative Wnt/β-catenin signaling is elevated as active β-catenin (dephosphorylated at serine 37 and threoine 41) localizes to the nucleus and the Wnt targets genes c-myc and cyclin D1 are upregulated in confluent human schwannoma cells. We demonstrate that Rac effector p21-activated kinase 2 (PAK2) is essential for the activation of Wnt/β-catenin signaling because depletion of PAK2 suppressed active β-catenin, c-myc, and cyclin D1. Most importantly, the link between the loss of the AJ complex and the increased proliferation in human schwannoma cells is connected by Src and platelet-derived growth factor receptor–induced tyrosine 654 phosphor- ylation on β-catenin and associated with degradation of N-cadherin.
    [Show full text]
  • Table S1. List of Modulated Genes in RUNT-KO Gene Name Fold Of
    Table S1. List of modulated genes in RUNT-KO Fold of expression in RUNT-KO Gene name WT adenomatous polyposis coli 1.44 breast cancer metastasis suppressor 1 1.48 caspase 8 1.16 cadherin 1 (E cadherin) 3.41 cyclin-dependent kinase inhibitor 2A (melanoma 0.73 carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein) 2.81 C-terminal binding protein 1 0.74 catenin (cadherin-associated protein) 1.27 cathepsin K 1.08 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1) 1 chemokine (C-X-C motif) receptor 4 1 death-associated protein kinase 1 3.41 deleted in colorectal carcinoma 6.96 EPH receptor B2 1 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 0.78 ets variant gene 4 (E1A enhancer binding protein 0.84 FAT tumor suppressor homolog 1 (Drosophila) 1.19 fibroblast growth factor 2 (basic) 1 fibroblast growth factor receptor 4 0.68 fibronectin 1 1 FXYD domain containing ion transport regulator 5 1.27 gonadotropin-releasing hormone 1 (luteinizing-releasing hormone) 0.46 hepatocyte growth factor (hepapoietin A; scatter factor) 1 heparanase 0.78 v-Ha-ras Harvey rat sarcoma viral oncogene homolog 0.81 HIV-1 Tat interactive protein 2 1.35 insulin-like growth factor 1 (somatomedin C) 0.67 interleukin 18 (interferon-gamma-inducing factor) 0.85 interleukin 1 2.01 integrin 1.89 KiSS-1 metastasis-suppressor 1 KISS1 receptor 1 v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 1.21 laminin 0.54 LY6/PLAUR domain containing 3 1 melanoma cell adhesion molecule 1.32 met proto-oncogene (hepatocyte growth factor
    [Show full text]
  • Chromosome Instability Drives Phenotypic Switching to Metastasis
    Chromosome instability drives phenotypic switching to metastasis ChongFeng Gaoa,1, Yanli Sua, Julie Koemanb, Elizabeth Haaka, Karl Dykemab, Curt Essenberga, Eric Hudsonb, David Petilloc, Sok Kean Khood, and George F. Vande Woudea,1 aLaboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, MI 49503; bCore Technologies and Services, Van Andel Research Institute, Grand Rapids, MI 49503; cLaboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI 49503; and dDepartment of Cell and Molecular Biology, Grand Valley State University, Grand Rapids, MI 49503 Contributed by George F. Vande Woude, November 3, 2016 (sent for review October 5, 2016; reviewed by Webster K. Cavenee and Peter K. Vogt) Chromosome instability (CIN) is the most striking feature of human successively isolating mesenchymal variants from clonal epithelial cancers. However, how CIN drives tumor progression to metastasis populations, and then isolating epithelial revertants of the mesen- remains elusive. Here we studied the role of chromosome content chymal variants. We have shown that generation of mesenchymal changes in generating the phenotypic dynamics that are required variants associated with loss of chromosome contents harbors genes for metastasis. We isolated epithelial and mesenchymal clones from encoding IJ protein, whereas generation of epithelial variants was human carcinoma cell lines and showed that the epithelial clones frequently caused by Zeb1 (zinc-finger E-box–binding homeobox 1) were able to generate mesenchymal variants, which had the haploinsufficiency through 10p loss. potential to further produce epithelial revertants autonomously. The successive acquisition of invasive mesenchymal and then Result and Discussion epithelial phenotypes recapitulated the steps in tumor progression OVCAR5 (OV5-P) cells growing in a Petri dish exhibited a het- to metastasis.
    [Show full text]
  • PAK Signaling in Oncogenesis
    Oncogene (2009) 28, 2545–2555 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc REVIEW PAK signaling in oncogenesis PR Molli1,3,DQLi1, BW Murray2, SK Rayala1 and R Kumar1 1Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC, USA and 2Pfizer Global Research and Development, La Jolla Laboratories, San Diego, CA, USA The p21-activated kinase (PAK) familyof serine/threo- cancer progression, designing a PAK-specific inhibitor nine kinases is important in physiological processes has been a challenge, in part owing to the functional including motility, survival, mitosis, transcription and similarities among the PAK family members. Effective translation. PAKs are evolutionallyconserved and targeting of PAKs will depend on our knowledge of widelyexpressed in a varietyof tissues and are often PAK’s activation and its impact on downstream overexpressed in multiple cancer types. Depending on signaling cascades leading to phenotypic changes structural and functional similarities, the six members of relevant to tumor development and progression. PAK familyare divided into two groups with three PAK was initially identified as a binding partner of the members in each group. Group I PAKs are activated by Rho GTPases Cdc42 and Rac1 (Manser et al., 1994). extracellular signals through GTPase-dependent and Thus far, six PAK family members have been identified in GTPase-independent mechanisms. In contrast, group II mammalian cells (Hofmann et al., 2004;Figure 1). On the PAKs are constitutivelyactive. Over the years,accumu- basis of structural and functional similarities, we can lating data from tissue culture models and human tumors categorize the PAK family into two subgroups, with three has increased our understanding about the biologyof PAK members in each.
    [Show full text]