Study of the Effects of the Age of the Trees on the Agro-Ecosystem in SRC Agro-Silvopastoral System

Total Page:16

File Type:pdf, Size:1020Kb

Study of the Effects of the Age of the Trees on the Agro-Ecosystem in SRC Agro-Silvopastoral System DUT Génie Biologique Option Agronomie Effects of Agroforestry on the agro-ecosystem: a study of the crops-soil-climate-biodiversity system in Short Rotation Coppice temperate agro-silvopastoral system Effects de l’Agrofrestery sur l’agro-écosystème : étude du système sol-climat-plante-biodiversité en agro-sylvipastoralisme en taillis à courte rotation Report of internship The Organic Research Centre 3rd April – 16th June 2017 Deremetz Valentin [email protected] Dr Jo Smith, Principal Researcher in Aroecology Année 2016 - 2017 2017 Study of the effects of the age of the trees on the agro-ecosystem in SRC agro-silvopastoral system VALENTIN DEREMETZ (1, 2) TUTOR OF INTERNSHIP: DR JO SMITH (1) TUTOR OF IUT: MR DAIGNY (2) THE ORGANIC RESEARCH CENTRE |IUT D’AMIENS (1) The Organic Research Centre (2) IUT Amiens Elm Farm Lieu-dit Le Bailly Hamstead Marshall Avenue des Facultés Newbury RG20 0HR 80 025 Amiens United Kingdom France Abstract I carried out my internship at the Organic Research Centre in the agroforestry department. I studied the effects of the SRC trees and their age on the agro-ecosystem in the agro- silvopastoral field of the Elm farm. I carried out the assessments of the oats, the weeds, the earthworms, the ground beetles and the soil. I found no significant effects on the oats concerning its cover, the timing of the growth stage. In this study, we have also shown an effect of the trees and the tree row covered by weed, woodchip, dead litter on the population and the richness of earthworms and on the activity, the diversity and the richness of the ground beetles. The study of the community of weeds showed any contamination from the tree row, an effect of the perennial weeds and the interest of the weeds of the tree row for Wildlife. The soil organic matter has been studied in aim to show or not an increase of this level by the tree. In this report, we present the state of the art about Agroforestry where we will focus on the interactions between the trees, the agro-ecosystem and the climate. We will try to give some tools and way of management of these interactions. Keys Word: Agro-silvopastoral, SRC, agroforestry, agro-ecosystem, age of the tree. Résumé J’ai réalisé mon stage de fin d’étude à The Organic Research Centre dans le département agroforestier. J’étais chargé d’étudier les effets des arbres et leur âge sur l’agro-système sur le champ expérimental de l’Elm Farm en agro-silvopastoralisme. L’étude s’est concentrée sur le suivi de l’avoine, la flore adventive, les lombrics, les carabes et le sol. J’ai montré aucun effet significatif des arbres sur l’avoine et notamment l’apparition des stades phénologiques et sa couverture. L’intérêt et l’effet de la couverture de la rangée d’arbres, par la végétation spontanée, du BRF et des résidus morts sur les populations de lombrics et de carabes, ont aussi été étudiés. Concernant la flore adventive, aucune contamination issue de la rangée des arbres n’a été prouvée. L’intérêt de cette flore a aussi démontré et particulièrement pour la biodiversité de la parcelle. Dans ce rapport, une partie est consacrée à l’établissement de l’état de l’art de l’agroforesterie en se concentrant sur l’interaction sol-climat-culture-arbres-biodiversité. Nous essaierons aussi de donner les outils les plus adaptés afin de manager ces interactions. Mots clés : Agro-silvopastoralisme, Taillis à courte rotation, Agroforesterie, agro-écosystème, âge des arbres Acknowledgement First, I would like to thank Dr Jo Smith and Dr Ambrogio Costanzo for their welcoming, trust and advises. Dr Jo Smith was always available to help me and advise me in aim to obtain successful assessments. I would like also to thank her for her objective lecture of this report. Dr Ambrogio Costanzo advised and accompanied me during the statistical analysis of my data and the crop assessments. I would like to thank him for this. Secondly, I would like to thank Prof. Nic Lamphill, Dr Bruce Pearce and the agroforestry team who welcome me in The Organic Research Centre and specifically in this team. I really enjoyed this three months at The Organic Research Centre and in the agroforestry team. They gave me the opportunity to carry out this study and I thank them for this. I would like to thank the ORC staff and the other interns for their welcoming and for all moments which I can spend with them during this internship. I will never forget this internship. Indeed, I would like to thank Rémi Cardinael for the sharing of knowledge. It was very useful in the constitution of important parts of my state of the art of Agroforestry. Then, I thank also my family who supported me during these three months. Specifically, my brother who advised me in the redaction of this report. Finally, I would like to thank Mrs Goullieux, Mr Maignez and Mr Daigny for their help and their support before and during this internship. Table of contents List of figures .......................................................................................................................................... 5 List of Tables ........................................................................................................................................... 5 Introduction ............................................................................................................................................. 1 I. The Organic Research Centre: a Progressive Farming Trust Ltd for organic farming development 1 1. General presentation .................................................................................................................... 1 2. ORC’s visions, missions and aims .............................................................................................. 2 3. Research at ORC ......................................................................................................................... 3 II. The state of the agroforestry’s art: Why agroforestry could be the future of Farming? .................. 4 1. What is agroforestry: definition of this traditional production system ........................................ 4 2. Agroforestry products and environmental benefits ..................................................................... 5 3. Diversity of agroforestry designs ................................................................................................ 6 4. Silvoarable system and productivity ........................................................................................... 7 5. Silvoarable: an association of trees and crops ............................................................................. 8 6. Silvoarable and microclimate: tree’s protection ........................................................................ 13 7. How to manage the competition in agroforestry system? ......................................................... 15 8. Silvoarable: when trees and microclimate modification change the global climate.................. 17 9. Silvoarable: trees-soil relationship ............................................................................................ 18 III. Study of effects of trees and their ages on the agro-ecosystem ................................................. 19 1. Materials and methods ............................................................................................................... 19 2. Results ....................................................................................................................................... 22 Conclusion ............................................................................................................................................. 30 Bibliography ............................................................................................................................................ 1 Glossary-Glossaire .................................................................................................................................. 3 Annexe 1: Photos of different kinds of agroforestry in Europe .............................................................. 4 Annexe 2: Scheme products from an agroforestry agro-ecosystem. (from Smith, J., 2011). .................. 5 Annexe 3: Impact of different species of trees on the corn’s NA (Reynolds, P.E. et al, 2006). ............. 6 Annexe 4: Evolution of the tree’s root system and the water storage in an agroforestry soil (Dupraz, C., et al, 2011) ......................................................................................................................................... 7 Annexe 5: Impacts of trees species on predator’s populations ................................................................ 8 Annexes 6: Effect of tree on the microclimate and smal water’s cycle ................................................... 9 Annexes 7: Scheme of the experimental field and the plantation of twin rows trees ............................ 10 Annexes 8: Statistic ............................................................................................................................... 11 3. Earthworms’ Assessments ......................................................................................................... 11 2. The assessment of the ground beetles ....................................................................................... 12 6. Weeds’ assessments .................................................................................................................. 34 Annexes 9: Scheme of the loacation of the pitfall
Recommended publications
  • Short Rotation Forestry, Short Rotation Coppice and Perennial Grasses in the European Union: Agro-Environmental Aspects, Present Use and Perspectives"
    "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. F. Dallemand , J.E. Petersen, A. Karp EUR 23569 EN - 2008 The Institute for Energy provides scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. Special emphasis is given to the security of energy supply and to sustainable and safe energy production. European Commission Joint Research Centre Institute for Energy Contact information Address: Joint Research Centre Institute for Energy Renewable Energy Unit TP 450 I-21020 Ispra (Va) Italy E-mail: [email protected] Tel.: 39 0332 789937 Fax: 39 0332 789992 http://ie.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 47547 EUR 23569 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Proceedings of the Expert Consultation: "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J.
    [Show full text]
  • Storage of Short Rotation Coppice Willow Fuel
    Harvesting / Transport No. 30 © COFORD 2012 • Willow short rotation coppice is difficult to store in large amounts, Storage of short rotation coppice because dry matter losses due to fungi will be high willow fuel Willow short rotation coppice whole • 1 shoots can be stored with success Pieter D. Kofman over a summer and will lose much water, making it a good fuel for small scale installations Background • If the willow is harvested as chips, The area of short rotation coppice (SRC) willow in Ireland is slowly increasing it should be delivered straight to the to meet local renewable energy demands, with some additional use in cofiring large scale consumer of peat for electricity generation. Increased demand for willow biomass poses a • Fungi and bacteria can cause huge problem: it can only be harvested when it is leaf-free, over the period from end of losses in dry matter, especially November-April, whereas cofiring and other applications generally need a year- in small chips, up to 30 % over 9 round fuel supply. Potentially, cofiring and CHP will require very large volumes months storage of wood fuel from forests and short rotation coppice, meaning that large volumes of fuel may have to be stored for prolonged periods of time, in some cases up to 8 months. Also, for small scale use, fuel has to be stored and probably also dried. Willow has a moisture content of 50-55% at harvest, but most small-scale boilers are only designed to combust fuel at maximum moisture content (MC) of 30%. Another factor to consider is that the bark:wood ratio of willow SRC is much higher than forest-derived wood chips.
    [Show full text]
  • Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada
    Chapter 17 Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada Werther Guidi, Frédéric E. Pitre and Michel Labrecque Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51111 1. Introduction The production of energy by burning biomass (i.e. bioenergy), either directly or through transformation, is one of the most promising alternative sources of sustainable energy. Contrary to fossil fuels, bioenergy does not necessarily result in a net long-term increase in atmospheric greenhouse gases, particularly when production methods take this concern into account. Converting forests, peatlands, or grasslands to production of food-crop based biofuels may release up to 400 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. On the other hand, biofuels from biomass grown on degraded and abandoned agricultural lands planted with perennials do not have a negative effect on carbon emissions [1]. In addition, when properly managed, bioenergy can enhance both agricultural and rural development by increasing agricultural productivity, creating new opportunities for revenue and employment, and improving access to modern energy services in rural areas, both in developed and developing countries [2]. Biofuels constitute a very broad category of materials that can be derived from sources including municipal by-products, food crops (e.g. maize, sugar cane etc.), agricultural and forestry by-products (straws, stalks, sawdust, etc.) or from specifically-conceived fuel crops. Our analysis focuses on agricultural biofuel crops that can be grown in temperate regions. These crops can be divided into four main categories (Table 1).
    [Show full text]
  • Mechanization in Short Rotation, Intensive Culture Forestry"; 1994 March 1-3; Mobile, AL
    Proceedings of the IEA/BA Task IX, Activity 1 International Conference Mobile, Alabama USA March 1-3, 1994 Edited by Bryce J. Stokes and Timothy P. McDonald U.S.D.A. Forest Service DeVall Drive Auburn University, Alabama 36849 Hosted by Scott Paper Company Sponsored by IEA/BA Task IX, Activity 1 Electric Power Research Institute Oak Ridge National Laboratory U.S. Department of Energy Southern Forest Engineering Center Auburn University Southern Forest Experiment Station U.S.D.A. Forest Service Southeastern Regional Biomass Energy Program Demonstration Sponsored by Morbark Industries Table Of Contents Foreward Session I (Moderator - Jim Decosmo) Industrial short rotation intensive culture operations,Thomas H. Morgan, Jr Harvesting costs and utilization of hardwood plantations, Timothy P. McDonald and Bryce J. Stokes Short rotation forestry in loblolly pine, Alan P. Bruce Utilization of cottonwood plantations, C. Jeffrey Portwood Stand Establishment and Culture of Hybrid Poplars, Charles E. Kaiser, Donald E. Rice, and Kirk R. Wallace Development of a flail harvester for small diameter brush and coppiced trees to produce energy/chemical feedstock, Robert A. McLauchlan, Andrew Conkey, Greg Scherer, Peter Felker, and Stan Brown Mechanization of short rotation intensive-culture wood crops, William B. Stuart Growing Eucalyptus for Pulp and Energy, James A. Rydelius Session II (Moderator - Sam Foster) Management of irrigated hybrid poplar plantations in the Pacific Northwest, Charles A. Wierman Mechanization potential for industrial-scale fiber and energy plantations, Bruce Hartsough and Randall Richter Establishing and tending poplar plantations in the North-Central U.S., Dan Netzer and Ed Ward Hansen Silvicultural techniques for short rotation Eucalyptus plantations in Brazil, Ken McNabb The effects of whole tree harvesting on fuel quality and coppicing ability of SRIC willow crops, Juha Nurmi and Jyrki Hytönen Utilization of short rotation forestry from an effluent disposal scheme, Hamish T.
    [Show full text]
  • Willow Short Rotation Coppice Trial in a Former Mining Area in Northern Spain: Effects of Clone, Fertilization and Planting Density on Yield After Five Years
    Article Willow Short Rotation Coppice Trial in a Former Mining Area in Northern Spain: Effects of Clone, Fertilization and Planting Density on Yield after Five Years María Castaño-Díaz *, Marcos Barrio-Anta, Elías Afif-Khouri and Asunción Cámara-Obregón ID GIS-Forest Research Group, Department of Organisms and Systems Biology, Polytechnic School of Mieres, University of Oviedo, Mieres, E-33600 Asturias, Spain; [email protected] (M.B.-A.); [email protected] (E.A.-K.); [email protected] (A.C.-O.) * Correspondence: [email protected]; Tel.: +34-985-458-049 Received: 5 February 2018; Accepted: 16 March 2018; Published: 20 March 2018 Abstract: A willow short rotation coppice (SRC) trial was conducted on former mining land in northern Spain over a period of five years, with the purpose of evaluating the effects on yield of two planting densities (9876 and 14,815 cuttings ha−1), three treatments (control, two levels of nitrogen, phosphorus and potassium compound fertilizer (NPK) plus weed control) and three willow clones (Björn, Inger, Olof). The area was subsoiled, ploughed, harrowed and fertilized with NPK before trial establishment. A randomized block design was applied, with three replications of each treatment in a total of 54 plots, each of an area of 400 m2. The effects of the interactions between the various factors on yield and other growth parameters were also studied. The clone factor significantly affected the number of shoots per stool (greatest for the Inger clone) and the Olof clone, which showed the lowest mortality rate and produced the largest trees and largest quantity of biomass.
    [Show full text]
  • Ecosystem Services in Short Rotation Coppice Forestry on Former Arable Land
    Ecosystem Services in Short Rotation Coppice Forestry on Former Arable Land Vita Krēsliņa Latvian State Forest Research Institute “Silava”, Salaspils, Rīgas iela 111, LV-2169 Dagnija Lazdiņa ( [email protected] ) Latvian State Forest Research Institute “Silava”, Salaspils, Rīgas iela 111, LV-2169 Guntis Brumelis University of Latvia, Rīga, Jelgavas iela 1, LV-1004 Research Article Keywords: ecosystem services, short rotation forestry, plant diversity, resources Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-127661/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/13 Abstract The rising global population size has placed increasing demands for acquisition and sustainable use of renewable resources and carbon sink. One of the ways to meet this demand and realise Green deal is by planting fast growing trees such as Alnus incana, Betula pendula, Salix sp., Populus tremuloides x Populus tremula for short rotation forestry (SRF) or short rotation coppice (SRC). The area of these plantations is increasing. The main benet of these plantations is renewable wood energy. There can be also additional benets for ecosystem services if the plantation is fully used. The aim of the study was to describe the ecosystem services offered by SRC and SRF in comparison to intensive agriculture. We studied the occurrence of herbaceous plant species in an experimental tree stand in Skriveri district in Latvia. The cover of plants was estimated in plots. The results showed a multitude of other ecosystem services offered by the plantation. In grassland belts between tree rows, provisioning ecosystem services included plants for medicinal purposes and teas, as well as forage species for livestock feed.
    [Show full text]
  • Growing Short Rotation Coppice
    Best Practice Guidelines For Applicants to Defra’s Energy Crops Scheme Growing Short Rotation Coppice Contents Introduction 4 Why grow energy crops? 5 What is SRC? 6 Where to grow SRC 7 Site selection 7 Plantation design 8 Land preparation 9 Planting material 10 Establishment 12 Planting 12 Establishment year management 13 Cutback 14 Calendar of activity 16 General management 18 Headlands and rides 18 Fertilisation 18 Nitrate Vulnerable Zones 19 Pests and diseases 19 Harvesting 22 Rod harvesting 22 Direct-chip harvesting 22 Billet harvesting 23 Yield 24 Biodiversity 25 Removal of SRC 26 Poplar SRC 27 Site 27 Planting material 27 Planting 27 Management 28 Yields 28 Harvesting 28 Removal 28 References 29 Contacts 30 3 Introduction This booklet has been produced by the Department of Environment, Food and Rural Affairs (Defra) to introduce farmers to a new crop. It provides guidance on the choice of site, planting techniques, crop management and harvesting methods required when growing short rotation willow or poplar coppice as an energy crop. The booklet summarises current agronomic techniques and, therefore, may need to be modified as further experience is gained. Please check that you have the latest copy of the booklet with the Defra office at Crewe. This booklet should be read in association with the Energy Crops Scheme booklet, “Establishment grants for short rotation coppice and miscanthus” which outlines the requirements for claiming grant to establish the crop. There is further information on short rotation coppice in the Forestry Commission Information Note “The establishment and management of short rotation coppice – a practitioner’s guide” (Tubby and Armstrong, 2002).
    [Show full text]
  • The Implications of Growing Short-Rotation Tree Species for Carbon Sequestration in Canada
    The Implications of Growing Short-Rotation Tree Species for Carbon Sequestration in Canada Final Report Prepared for The Joint Forest Sector Table/Sinks Table Afforestation #5 National Climate Change Process Solicitation No: 23103-8-0253/N Prepared by R. Samson, P. Girouard, C. Zan, B. Mehdi, R. Martin and J. Henning April 1999 Resource Efficient Agricultural Production (R.E.A.P.)-Canada 21,111 Lakeshore Road Glenaladale House, P.O. Box 125 Ste. Anne de Bellevue, Québec H9X 3V9 Telephone: (514) 398-7743; Fax: (514) 398-7972; E-mail: reap@ interlink.net E.ecutive Summary Short rotation forestry (SRF) plantations have been identified as a possible mitigation strategy for climate change. Short rotation trees reduce greenhouse gas (GHG) emissions in two direct ways: by afforestation, which has the potential to increase carbon storage in the landscape compared to growing agricultural crops, and by sustainably-produced plantations, which act as a closed-loop biofuel to substitute fossil fuels. Indirectly, the end use of the SR tree plantations as a fibre source could also reduce GHG emissions by relieving pressure on the intensity of natural forest harvesting in Canada, thereby leaving the standing carbon levels in the natural forests unscathed. The most important SRF species that have been identified to date are hybrid poplar (Populus sp.) and willow (Salix sp.). Poplar is typically grown on a 10-15 year rotation at densities of 1,100- 1,400 stems ha-1. The estimated yield ranges in Canada vary by region, with the southern mainland of British Columbia having the highest potential productivity (9-12 oven-dried megagrams per hectare (odMg ha-1yr-1)), followed by Ontario and Québec (2.5-7 odMg ha-1yr-1), the Atlantic provinces (2-6 odMg ha-1yr-1) and the Prairies (1-5 odMg ha-1yr-1).
    [Show full text]
  • Short Rotation Coppice
    EcoWillow – An Economic Analysis Tool for Willow Short-Rotation Coppice for Wood Chip Production Short Rotation Woody Crops (SRWC) are being maintaining over 500 acres of willow biomass crops in developed as a sustainable source of biomass for the Upstate New York. The model is flexible enough so it production of bioenergy, biofuels and bioproducts. can be applied across the range of sites where shrub SRWC are fast-growing, hardwood species with the willow might be grown. EcoWillow allows the user to ability to regrow after each harvest (coppice). Shrub vary input variables and to calculate cash flow and willow is an emerging SRWC for North America that has profits throughout the entire production chain from site been studied for more than then 20 years at the State preparation and crop establishment to the delivery of University of New York College of Environmental wood chips to an end user. EcoWillow runs in Microsoft Science and Forestry (SUNY-ESF) and over 30 years in Excel 2003 and consists of a tutorial sheet explaining Europe. The shrub willow cropping system that has the use of the model and nine other worksheets been developed involves establishing willow on including a Welcome sheet, Input/Output sheet, four marginal soils and growing it with low labor, machinery, sheets with output graphs, and three sheets with fertilizer, or herbicide input relative to traditional submodels on planting, harvesting, and transportation agricultural crops. After the establishment year, the costs. willow is cutback near the ground to promote sprouting Welcome and Input/Output sheet and then harvested during the dormant season every 3- 4 years.
    [Show full text]
  • Coppicing Evaluation of Short Rotation Coppice in the Southeast of the U.S
    Pub 800 Coppicing Evaluation of Short Rotation Coppice in the Southeast of the U.S. to Determine Appropriate Harvesting Methods Rafael Santiago1, Tom Gallagher2, Matthew Smidt3, Dana Mitchell4 Renewable fuels are being tested as an alternative for fossil fuels. For the Southeast U.S., the use of woody biomass has proven to be an excellent source of renewable energy in terms of cost- benefit and availability. Short rotation woody crops (SRWC) are timber plantations with exclusive characteristics that can meet the intensive demand for wood due to their fast growth and ability to coppice. Generally, SRWC require more maintenance than other popular woody crops, which might increase the cost of establishment for each new cycle of rotations. However, due to their coppicing ability, the same plantation may be harvested up to 5 times with no need of establishing a new one, which decreases costs. There are still uncertainties related to the best silviculture treatments at the harvesting stage and after the re-sprouting period in terms of optimizing the volume and vigor of SRWC stands. The species used in this experiment were Eucalypt (Eucalyptus urograndis) (Florida) and Cottonwood (Populus deltoides) (Arkansas). Plots were established in both locations and harvested in different seasons (summer and winter), and were revisited six months, and two years after harvesting to investigate re-growth and sprouting development. This study aims to explore the growth behavior of 2-year-old SRWC species by inspecting biomass gain over time, stem formation (stem crowding & dispersion), and mortality rates, in order to improve methods for harvesting multi-stem coppice stands.
    [Show full text]
  • Biochar Mineralization and Priming Effect on SOM Decomposition
    Geophysical Research Abstracts Vol. 18, EGU2016-9109, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. Biochar mineralization and priming effect on SOM decomposition. Results from a field trial in a short rotation coppice in Italy Maurizio Ventura (1), Giorgio Alberti (2,4), Pietro Panzacchi (1), Gemini Delle Vedove (2), Franco Miglietta (3,4,5), Giustino Tonon (1,4) (1) Faculty of Science and Technology, Libera Università di Bolzano, Bolzano/Bozen, Italy, (2) Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy, (3) IBIMET-CNR, National Research Council, Firenze, Italy, (4) MountFor Project Centre, San Michele all0Adige (Trento), Italy, (5) FoxLab Forest & Wood Science, Fondazione E.Mach, San Michele all0Adige (Trento), Italy Biochar application to soil has been proposed as a promising strategy for carbon (C) sequestration and climate change mitigation, helping at the same time to maintain soil fertility. However, most of the knowledge on biochar stability is based on short-term lab incubation experiments, as field studies are scarce. Therefore, little is known about the interactions between biochar and roots and the related effects on biochar stability in field conditions. The present study aimed to assess the stability of biochar, its effect on original soil organic matter (SOM) decom- position, and the effect of plant roots on biochar stability in field conditions in Northern Italy, for a three-year monitoring period within the EuroChar project. The experiment was conducted in a poplar short rotation coppice (SRC). Biochar produced from maize (δ13C = -13.8 ) silage pellets in a gasification plant was applied in a poplar short rotation coppice (SRC) plantation in Northernh Italy.
    [Show full text]
  • Short Rotation Wood Crops in Latin American: a Review on Status and Potential Uses As Biofuel
    energies Review Short Rotation Wood Crops in Latin American: A Review on Status and Potential Uses as Biofuel Róger Moya 1,* , Carolina Tenorio 1 and Gloria Oporto 2 1 Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, Cartago 159-7050, Costa Rica; [email protected] 2 Wood Science and Technology, Division of forestry and Natural Resources, West Virginia University, Morgatown, WV 26506-6125, USA; [email protected] * Correspondence: [email protected]; Tel.: +506-2550-9092 Received: 3 January 2019; Accepted: 17 February 2019; Published: 21 February 2019 Abstract: Studies related to biomass production, with a focus on energy uses for short-rotation woody crops (SRWCs), are limited in Latin America. The research that is available relates to a variety of tested SRWC species (50 species), however, the most important species are Populus, Salix, Eucalyptus, Acacia, and Gmelina arborea. In the existing studies, stocking densities varied from 1111 to 20,000 trees per hectare, with square or rectangular spacing. One important advantage of SRWC systems in this region, compared to most regions worldwide, is the predictability of biomass yields due to the tropical climate conditions of the majority of the Latin American countries. Rotations of three and four years can be projected to produce total biomass yields of 30–50 tons/ha, with increments of 10–20 tons/ha/yr. Fertilization is performed in SRWC with the aim of preventing soil degradation and maintaining further production. In regards to possible uses of biofuel generated from SRWC in Latin America, an inconvenience is that there are neither well-established harvesting systems nor conventional pre-treatments to process the biomass.
    [Show full text]