Neutron & Muon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neutron Stars
Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Photons from 252Cf and 241Am-Be Neutron Sources H
Neutronenbestrahlungsraum Calibration Laboratory LB6411 Am-Be Quelle [email protected] Photons from 252Cf and 241Am-Be neutron sources H. Hoedlmoser, M. Boschung, K. Meier and S. Mayer Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland At the accredited PSI calibration laboratory neutron reference fields traceable to the standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to H*(10) in the neutron fields of the 252Cf and 241Am-Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source involves considerable uncertainties due to the presence of neutrons, due to a non-zero neutron sensitivity of the photon detector and due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution as an average of the individual methods. For the 241Am-Be source a photon contribution of approximately 4.9% was determined and for the 252Cf source a contribution of 3.6%. 1) Photon detectors 2) Photons from 252Cf and 241Am-Be neutron sources Figure 1 252Cf decays through -emission (~97%) and through spontaneous fission (~3%) with a half-life of 2.65 y. Both processes are accompanied by photon radiation. Furthermore the spectrum of fission products contains radioactive elements that produce additional gamma photons. In the 241Am-Be source 241Am decays through -emission and various low energy emissions: 241Am237Np + + with a half life of 432.6 y. -
The Theoretical Foundation of Spin-Echo Small-Angle Neutron
The Theoretical Foundation of Spin‐Echo Small‐Angle Neutron Scattering (SESANS) Applied in Colloidal System Wei‐Ren Chen, Gregory S. Smith, and Kenneth W. Herwig (NSSD ORNL) Yun Liu (NCNR NIST & Chemistry, University of Delaware) Li (Emily) Liu (Nuclear Engineering, RPI) Xin Li, Roger Pynn (Physics, Indiana University) Chwen‐Yang Shew (Chemistry, CUNY) UCANS‐II Indiana University July 08th 2011 Bloomington, IN Outline 1. Motivation — why Spin-Echo Small-Angle Neutron Scattering (SESANS)? 2. Basic Theory — what does SESANS measure? 3. Results and Discussions — what can SESANS do? (1). Straightforward observation of potential (2). Sensitivity to the local structure (3). Sensitivity to the structural heterogeneity 4. Summary Outline 1. Motivation — why Spin-Echo Small-Angle Neutron Scattering (SESANS)? 2. Basic Theory — what does SESANS measure? 3. Results and Discussions — what can SESANS do? (1). Straightforward observation of potential (2). Sensitivity to the local structure (3). Sensitivity to the structural heterogeneity 4. Summary Neutron Scattering Structure (Elastic Scatt.) Dynamics (Inelastic Scatt.) Small‐Angle Neutron Quasi‐Elastic Neutron Unpolarized Scattering (SANS), Scattering (QENS), beam Neutron Diffraction, Inelastic Neutron Scattering Neutron Reflectometry (INS) Polarized Spin‐Echo Small‐Angle Neutron Spin‐Echo (NSE) beam Neutron Scattering (SESANS) Neutron Scattering Structure (Elastic Scatt.) Dynamics (Inelastic Scatt.) Small‐Angle Neutron Quasi‐Elastic Neutron Unpolarized Scattering (SANS), Scattering (QENS), beam Neutron -
Neutron Scattering
Neutron Scattering John R.D. Copley Summer School on Methods and Applications of High Resolution Neutron Spectroscopy and Small Angle Neutron Scattering NIST Center for NeutronNCNR Summer Research, School 2011 June 12-16, 2011 Acknowledgements National Science Foundation NIST Center for Neutron (grant # DMR-0944772) Research (NCNR) Center for High Resolution Neutron Scattering (CHRNS) 2 NCNR Summer School 2011 (Slow) neutron interactions Scattering plus Absorption Total =+Elastic Inelastic scattering scattering scattering (diffraction) (spectroscopy) includes “Quasielastic neutron Structure Dynamics scattering” (QENS) NCNR Summer School 2011 3 Total, elastic, and inelastic scattering Incident energy Ei E= Ei -Ef Scattered energy Ef (“energy transfer”) Total scattering: Elastic scattering: E = E (i.e., E = 0) all Ef (i.e., all E) f i Inelastic scattering: E ≠ E (i.e., E ≠ 0) D f i A M M Ef Ei S Ei D S Diffractometer Spectrometer (Some write E = Ef –Ei) NCNR Summer School 2011 4 Kinematics mv= = k 1 222 Emvk2m==2 = Scattered wave (m is neutron’s mass) vector k , energy E 2θ f f Incident wave vector ki, energy Ei N.B. The symbol for scattering angle in Q is wave vector transfer, SANS experiments is or “scattering vector” Q =Q is momentum transfer θ, not 2θ. Q = ki - kf (For x-rays, Eck = = ) (“wave vector transfer”) NCNR Summer School 2011 5 Elastic scattering Q = ki - kf G In real space k In reciprocal space f G G G kf Q ki 2θ 2θ G G k Q i E== 0 kif k Q =θ 2k i sin NCNR Summer School 2011 6 Total scattering, inelastic scattering Q = ki - kf G kf G Q Qkk2kkcos2222= +− θ 2θ G if if ki At fixed scattering angle 2θ, the magnitude (and the direction) of Q varies with the energy transfer E. -
Muon Decay 1
Muon Decay 1 LIFETIME OF THE MUON Introduction Muons are unstable particles; otherwise, they are rather like electrons but with much higher masses, approximately 105 MeV. Radioactive nuclear decays do not release enough energy to produce them; however, they are readily available in the laboratory as the dominant component of the cosmic ray flux at the earth’s surface. There are two types of muons, with opposite charge, and they decay into electrons or positrons and two neutrinos according to the rules + + µ → e νe ν¯µ − − µ → e ν¯e νµ . The muon decay is a radioactiveprocess which follows the usual exponential law for the probability of survival for a given time t. Be sure that you understand the basis for this law. The goal of the experiment is to measure the muon lifetime which is roughly 2 µs. With care you can make the measurement with an accuracy of a few percent or better. In order to achieve this goal in a conceptually simple way, we look only at those muons that happen to come to rest inside our detector. That is, we first capture a muon and then measure the elapsed time until it decays. Muons are rather penetrating particles, they can easily go through meters of concrete. Nevertheless, a small fraction of the muons will be slowed down and stopped in the detector. As shown in Figure 1, the apparatus consists of two types of detectors. There is a tank filled with liquid scintillator (a big metal box) viewed by two photomultiplier tubes (Left and Right) and two plastic scintillation counters (flat panels wrapped in black tape), each viewed by a photomul- tiplier tube (Top and Bottom). -
Optimizing Crystal Volume for Neutron Diffraction: D-Xylose Isomerase
Eur Biophys J (2006) 35:621–632 DOI 10.1007/s00249-006-0068-4 ARTICLE Optimizing crystal volume for neutron diffraction: D-xylose isomerase Edward H. Snell Æ Mark J. van der Woerd Æ Michael Damon Æ Russell A. Judge Æ Dean A. A. Myles Æ Flora Meilleur Received: 15 February 2006 / Revised: 27 March 2006 / Accepted: 4 April 2006 / Published online: 25 May 2006 Ó EBSA 2006 Abstract Neutron diffraction is uniquely sensitive to studies for a larger number of samples that require hydrogen positions and protonation state. In that information on hydrogen position and/or protonation context structural information from neutron data is state. complementary to that provided through X-ray dif- fraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, i.e. low flux and weak scattering. Several approaches are available to overcome these obstacles Introduction and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quan- Neutron diffraction tifiable metric that is well suited for experimental de- sign and optimization techniques. By using response X-ray structural crystallography is a powerful tech- surface methods we have optimized the xylose isom- nique to visualize the machinery of life on a molecular erase crystal volume, enabling neutron diffraction scale. However, hydrogen atoms are not usually seen while we determined the crystallization parameters because X-ray scattering from hydrogen atoms is weak with a minimum of experiments. Our results suggest a compared to other atoms. Knowledge of the location of systematic means of enabling neutron diffraction hydrogen atoms and water molecules is often necessary to completely understand the reaction mechanisms, pathways and structure–function relationships. -
Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)
Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS) Paper submitted for the 2008 Carolina International Symposium on Neutrino Physics Yu Efremenko1,2 and W R Hix2,1 1University of Tennessee, Knoxville TN 37919, USA 2Oak Ridge National Laboratory, Oak Ridge TN 37981, USA E-mail: [email protected] Abstract. In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions. 1. Introduction It seems that only yesterday we gathered together here at Columbia for the first Carolina Neutrino Symposium on Neutrino Physics. To my great astonishment I realized it was already eight years ago. However by looking back we can see that enormous progress has been achieved in the field of neutrino science since that first meeting. Eight years ago we did not know which region of mixing parameters (SMA. LMA, LOW, Vac) [1] would explain the solar neutrino deficit. We did not know whether this deficit is due to neutrino oscillations or some other even more exotic phenomena, like neutrinos decay [2], or due to the some other effects [3]. Hints of neutrino oscillation of atmospheric neutrinos had not been confirmed in accelerator experiments. Double beta decay collaborations were just starting to think about experiments with sensitive masses of hundreds of kilograms. Eight years ago, very few considered that neutrinos can be used as a tool to study the Earth interior [4] or for non- proliferation [5]. -
Neutron Scattering Facilities in Europe Present Status and Future Perspectives
2 ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group Neutron scattering facilities in Europe Present status and future perspectives ESFRI scrIPTa Vol. 1 ESFRI Scripta Volume I Neutron scattering facilities in Europe Present status and future perspectives ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group i ESFRI Scripta Volume I Neutron scattering facilities in Europe - Present status and future perspectives Author: ESFRI Physical Sciences and Engineering Strategy Working Group - Neutron Landscape Group Scientific editors: Colin Carlile and Caterina Petrillo Foreword Technical editors: Marina Carpineti and Maddalena Donzelli ESFRI Scripta series will publish documents born out of special studies Cover image: Diffraction pattern from the sugar-binding protein Gal3c with mandated by ESFRI to high level expert groups, when of general interest. lactose bound collected using LADI-III at ILL. Picture credits should be given This first volume reproduces the concluding report of an ad-hoc group to D. Logan (Lund University) and M. Blakeley (ILL) mandated in 2014 by the Physical Science and Engineering Strategy Design: Promoscience srl Work Group (PSE SWG) of ESFRI, to develop a thorough analysis of the European Landscape of Research Infrastructures devoted to Neutron Developed on behalf of the ESFRI - Physical Sciences and Engineering Strategy Scattering, and its evolution in the next decades. ESFRI felt the urgency Working Group by the StR-ESFRI project and with the support of the ESFRI of such analysis, since many reactor-based neutron sources will be closed Secretariat down in the next years due to national decisions, while the European The StR-ESFRI project has received funding from the European Union’s Spallation Source (ESS) in Lund will be fully operative only in the mid Horizon 2020 research and innovation programme under grant agreement or late 2020s. -
Muon Neutrino Mass Without Oscillations
The Distant Possibility of Using a High-Luminosity Muon Source to Measure the Mass of the Neutrino Independent of Flavor Oscillations By John Michael Williams [email protected] Markanix Co. P. O. Box 2697 Redwood City, CA 94064 2001 February 19 (v. 1.02) Abstract: Short-baseline calculations reveal that if the neutrino were massive, it would show a beautifully structured spectrum in the energy difference between storage ring and detector; however, this spectrum seems beyond current experimental reach. An interval-timing paradigm would not seem feasible in a short-baseline experiment; however, interval timing on an Earth-Moon long baseline experiment might be able to improve current upper limits on the neutrino mass. Introduction After the Kamiokande and IMB proton-decay detectors unexpectedly recorded neutrinos (probably electron antineutrinos) arriving from the 1987A supernova, a plethora of papers issued on how to use this happy event to estimate the mass of the neutrino. Many of the estimates based on these data put an upper limit on the mass of the electron neutrino of perhaps 10 eV c2 [1]. When Super-Kamiokande and other instruments confirmed the apparent deficit in electron neutrinos from the Sun, and when a deficit in atmospheric muon- neutrinos likewise was observed, this prompted the extension of the kaon-oscillation theory to neutrinos, culminating in a flavor-oscillation theory based by analogy on the CKM quark mixing matrix. The oscillation theory was sensitive enough to provide evidence of a neutrino mass, even given the low statistics available at the largest instruments. J. M. Williams Neutrino Mass Without Oscillations (2001-02-19) 2 However, there is reason to doubt that the CKM analysis validly can be applied physically over the long, nonvirtual propagation distances of neutrinos [2]. -
Muons: Particles of the Moment
FEATURES Measurements of the anomalous magnetic moment of the muon provide strong hints that the Standard Model of particle physics might be incomplete Muons: particles of the moment David W Hertzog WHEN asked what the most important strange, bottom and top; and six leptons, issue in particle physics is today, my ABORATORY namely the electron, muon and tau- colleagues offer three burning ques- L lepton plus their associated neutrinos. ATIONAL tions: What is the origin of mass? Why N A different set of particles is respon- is the universe made of matter and not sible for the interactions between these equal parts of matter and antimatter? ROOKHAVEN matter particles in the model. The elec- And is there any physics beyond the B tromagnetic interaction that binds elec- Standard Model? trons to nuclei results from the exchange The first question is being addressed of photons, whereas the strong force by a feverish quest to find the Higgs that binds quarks together inside neut- boson, which is believed to be respon- rons, protons and other hadrons is car- sible for the mass of fundamental par- ried by particles called gluons. The ticles. The Tevatron at Fermilab, which third force in the Standard Model – the is currently running, or the Large Had- weak nuclear interaction, which is re- ron Collider at CERN, which is due sponsible for radioactive decay – is car- to start experiments in 2007, should OWMAN ried by the W and Z bosons. B IPP eventually provide the answer to this R Physicists love the Standard Model, question by detecting the Higgs and but they do not like it. -
Improved Algorithms and Coupled Neutron-Photon Transport For
Submitted to ‘Chinese Physics C’ Improved Algorithms and Coupled Neutron-Photon Transport for Auto-Importance Sampling Method * Xin Wang(王鑫)1,2 Zhen Wu(武祯)3 Rui Qiu(邱睿)1,2;1) Chun-Yan Li(李春艳)3 Man-Chun Liang(梁漫春)1 Hui Zhang(张辉) 1,2 Jun-Li Li(李君利)1,2 Zhi Gang(刚直)4 Hong Xu(徐红)4 1 Department of Engineering Physics, Tsinghua University, Beijing 100084, China 2Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China 3 Nuctech Company Limited, Beijing 100084, China 4 State Nuclear Hua Qing (Beijing) Nuclear Power Technology R&D Center Co. Ltd., Beijing 102209, China Abstract: The Auto-Importance Sampling (AIS) method is a Monte Carlo variance reduction technique proposed for deep penetration problems, which can significantly improve computational efficiency without pre-calculations for importance distribution. However, the AIS method is only validated with several simple examples, and cannot be used for coupled neutron-photon transport. This paper presents improved algorithms for the AIS method, including particle transport, fictitious particle creation and adjustment, fictitious surface geometry, random number allocation and calculation of the estimated relative error. These improvements allow the AIS method to be applied to complicated deep penetration problems with complex geometry and multiple materials. A Completely coupled Neutron-Photon Auto-Importance Sampling (CNP-AIS) method is proposed to solve the deep penetration problems of coupled neutron-photon transport using the improved algorithms. The NUREG/CR-6115 PWR benchmark was calculated by using the methods of CNP-AIS, geometry splitting with Russian roulette and analog Monte Carlo, respectively.