Induction of B-Chronic Lymphocytic Leukemia Cell Apoptosis by Arsenic Trioxide Involves Suppression of the Phosphoinositide 3-Kinase/Akt Survival Pathway Via

Total Page:16

File Type:pdf, Size:1020Kb

Induction of B-Chronic Lymphocytic Leukemia Cell Apoptosis by Arsenic Trioxide Involves Suppression of the Phosphoinositide 3-Kinase/Akt Survival Pathway Via Published OnlineFirst June 9, 2010; DOI: 10.1158/1078-0432.CCR-10-0072 Published OnlineFirst on August 24, 2010 as 10.1158/1078-0432.CCR-10-0072 Cancer Therapy: Preclinical Clinical Cancer See commentary p. 4311 Research Induction of B-Chronic Lymphocytic Leukemia Cell Apoptosis by Arsenic Trioxide Involves Suppression of the Phosphoinositide 3-Kinase/Akt Survival Pathway via c-jun-NH2 Terminal Kinase Activation and PTEN Upregulation Javier Redondo-Muñoz1, Elizabeth Escobar-Díaz1, Mercedes Hernández del Cerro1, Atanasio Pandiella3, María José Terol4, José A. García-Marco2, and Angeles García-Pardo1 Abstract Purpose: Arsenic trioxide (ATO) induces B-cell chronic lymphocytic leukemia (B-CLL) cell apoptosis in vitro. We sought to study the mechanism involved in this effect and whether ATO is suitable for com- bination therapies with protein kinase inhibitors. Experimental Design: B-CLL cells were isolated from the peripheral blood of 28 patients. Cell viability studies with ATO alone or in combination with kinase inhibitors were done by flow cytometry, Western blotting, and immunofluorescence analyses. Results: After 48 hours, 3 μmol/L ATO induced apoptosis (average 75%) in all B-CLL samples studied and with minimal effect on normal peripheral blood lymphocytes. Apoptosis entailed Akt and NF-κB inactivation, XIAP downregulation, and PTEN upregulation, thus implying inhibition of the phosphoi- nositide 3-kinase (PI3K) survival pathway. Indeed, the combination of ATO and PI3K inhibitors increased the apoptotic effect of either agent alone. ATO also induced c-jun-NH2 terminal kinase (JNK) activation, and this was crucial and required for subsequent apoptotic events, as inhibiting JNK activity by either gene silencing or specific inhibitors prevented Akt and NF-κB inactivation, caspase activation, and mito- chondrial damage. Moreover, JNK activation was the earliest response to ATO, preceding and determining reactive oxygen species production. Conclusions: We identified the mechanism involved in ATO action on B-CLL cells and show that the combination of low doses of ATO and PI3K inhibitors efficiently induces B-CLL cell death. ATO may therefore constitute an efficient treatment for B-CLL, particularly in combined therapies. Clin Cancer Res; 16(17); 4382–91. ©2010 AACR. B-cell chronic lymphocytic leukemia (B-CLL) is charac- IgVH unmutated status) seem to be associated with poor terized by the accumulation of malignant CD5+ B lympho- response to therapy and worse prognosis (1, 2). Most cur- cytes in the peripheral blood, and their progressive rent treatments for B-CLL consist in the administration of infiltration of lymphoid tissues (1, 2). The course of the the purine analogue fludarabine, either alone or in combi- disease is very heterogeneous, and several molecular mar- nation with other therapeutic drugs (3, 4). Although many kers (high CD38 or/and ZAP-70 expression, del17p13, patients respond well to these protocols and complete re- mission can be attained, patients eventually relapse and may die from the disease. It is therefore crucial to continue Authors' Affiliations: 1Departamento de Medicina Celular y Molecular, searching for new compounds that could be useful in the Centro de Investigaciones Biológicas, Consejo Superior de treatment of this type of leukemia, especially in the ad- Investigaciones Científicas and 2Servicio de Hematología, Hospital Universitario Puerta de Hierro, Madrid, Spain; 3Centro de Investigación vanced setting. del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain; and Arsenic trioxide (ATO) has been used in traditional 4Departamento de Hematología y Oncología Médica, Hospital Clínico, Valencia, Spain Chinese medicine and is currently successfully employed for the treatment of acute promyelocytic leukemia (APL; Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/). refs. 5–8). ATO is also being trialed for other hematologic J. Redondo-Muñoz and E. Escobar-Díaz contributed equally to this work. malignancies, including chronic myeloid leukemia, mye- lodysplastic syndrome, and non-M3 acute myelocytic leu- Corresponding Author: Angeles García-Pardo, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain. Phone: 34-91-837- kemia and multiple myeloma, either as monotherapy or 3112; Fax: 34-91-536-0432; E-mail: [email protected]. combined therapy (7, 9). The cytotoxic effect of ATO on doi: 10.1158/1078-0432.CCR-10-0072 these systems involves complex mechanisms that are not ©2010 American Association for Cancer Research. fully understood. In many cases, induction of apoptosis 4382 Clin Cancer Res; 16(17) September 1, 2010 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst June 9, 2010; DOI: 10.1158/1078-0432.CCR-10-0072 PTEN and JNK in ATO-Induced B-CLL Cell Apoptosis was >95% CD19+, >70% CD5+, considered suitable for Translational Relevance subsequent studies. Purified B-CLL cells were either used immediately or frozen and stored in liquid nitrogen. B-cell chronic lymphocytic leukemia (B-CLL) re- Peripheral blood lymphocytes (PBL; T plus B lympho- mains an incurable disease, making it crucial to con- cytes) from five adult healthy donors were obtained from tinue searching for novel therapies. Arsenic trioxide buffy coat preparations routinely used for monocytic cell (ATO) is an efficient treatment for acute promyelocytic purification. After Ficoll-Hypaque centrifugation, mono- leukemia, and it is being trialed for other hematologic cytic cells were removed using anti-CD14-conjugated malignancies. To explore the potential clinical use of microbeads and MACS separation columns (Miltenyi ATO in B-CLL we studied the mechanism by which Biotec). B-CLL and control cells were cultured at 1.5 × ATO induces apoptosis in B-CLL cells. We report that 106/mL in RPMI/10% fetal bovine serum, 100 μg/mL JNK and PTEN are crucial molecules and inhibit phos- gentamicin and penicillin, and 100 U/mL streptomycin phoinositide 3-kinase (PI3K) survival signaling in (Invitrogen Ltd.). response to ATO. Accordingly, PI3K inhibitors effi- Approval was obtained from the Consejo Superior de ciently enhanced the apoptotic effect of ATO. These ef- Investigaciones Científicas Bioethics Review Board for fects were observed at low, nontoxic ATO doses and in these studies. all cases studied. Our results strongly suggest that ATO alone or combined with PI3K inhibitors may be con- RNA interference experiments sidered an alternative therapy for B-CLL. The small interfering RNA (siRNA) sequence targeting JNK: sense 5′-CAAAGAUCCCUGACAAGCAdTT-3′ (s11153), and the control siRNA sequence: sense 5′-AUU- ′ by ATO involves the release of reactive oxygen species GUAUGCGAUCGCAGACdTT-3 , were custom-made (ROS), and experimental reduction of glutathione peroxi- by Ambion. For transfection of B-CLL cells, siRNAs μ dase increases the sensitivity to ATO (10, 11). Blocking (500 nmol/L final concentration) in 100 LRPMIwere the extracellular signal-regulated kinase (ERK)/ERK, phos- incubated at room temperature for 10 minutes with – 4.5 μL HiPerfect transfection reagent (Qiagen). The mixture phoinositide 3-kinase (PI3K)/Akt, or p38 mitogen-activated 6 protein kinase signaling pathways has also been shown to was added dropwise to 2 × 10 cells in RPMI/10% FCS, and enhance the apoptotic effect of ATO on APL, myeloma, transfected cells were used after 24 hours. The efficiency of and T-leukemia cells (10, 12–15). Additionally, ATO- gene silencing was analyzed by Western blotting. induced apoptosis of myeloma and APL cells involves the activation of c-jun-NH-kinase (JNK; refs. 16, 17). Analysis of apoptosis and mitochondrial membrane Δψ Very few studies have addressed the effect of ATO on potential ( m) 5 μ B-CLL cells. In analyses of a small number of B-CLL sam- B-CLL cells (1.5 × 10 ) in 100 L RPMI/10% fetal ples (18) or long exposure times (19), ATO was shown bovine serum were placed in 96-well plates and treated with various concentrations of ATO or vehicle (PBS). After to induce apoptosis of B-CLL cells, concomitant with 6 downregulation of Bcl-2. ATO also induced ROS genera- 24 to 48 hours cells were suspended (10 /mL) in 1× bind- μ tion and significantly enhanced the cytotoxic activity of ing buffer (Bender Medsystems), containing either 3 L μ 2-methoxyestradiol and ascorbic acid on B-CLL samples FITC-Annexin V and 50 g propidium iodide (PI), or (20, 21). It was recently reported that ATO preferentially PI alone. After 10 minutes, cells were analyzed by flow induced apoptosis in B-CLL cases with unfavorable prog- cytometry on a Coulter Epics XL. For combined treat- nosis (22). These previous studies strongly suggest that ments, B-CLL cells were incubated for 30 minutes with μ ATO, alone or in combination with other treatments, either SP600125 (10 mol/L), SB203580, BisI, UO126, μ could be an efficient therapeutic agent for B-CLL. The Tricirbine/API-2, LY294002 (all at 5 mol/L), Z-VAD- μ mechanism by which ATO induces B-CLL cell apoptosis FMK, or Z-IETD-FMK (both at 50 mol/L) prior to the ad- μ Δψ has not been established, and we have addressed this in dition of 2 mol/L ATO. For m measurements, B-CLL the present report. cells were incubated for 24 hours with or without 3 μmol/L ATO and treated for 20 minutes with 20 nmol/L DiOC6 (Cabiochem) at room temperature in the dark. Cells Materials and Methods were washed, resuspended in PBS, and analyzed by flow cytometry. Patients, B-CLL cell purification, and normal peripheral blood lymphocytes Measurement of intracellular ROS accumulation Following informed consent, B-CLL cells were purified B-CLL cells (5 × 105) were treated with or without from the peripheral blood of 28 patients (Table 1) by SP600125 (2-10 μmol/L), NAC (10 mmol/L), or MnTBAP Ficoll-Hypaque (Nycomed) centrifugation and anti-CD3- (50 μmol/L) for 30 minutes and cultured in the presence conjugated Dynabeads (Dynal Biotech ASA). Myeloid cells or absence of 3 μmol/L ATO.
Recommended publications
  • Fludarabine Phosphate Powder for Solution for Injection Or Infusion
    For the use only of a Registered Medical Practitioner or a Hospital or a Laboratory This package insert is continually updated. Please read carefully before using a new pack. Fludarabine Phosphate Powder for Solution for Injection or Infusion FLUDARA® NAME OF THE MEDICINAL PRODUCT Fludara 50 mg powder for solution for injection/infusion COMPOSITION Active ingredient: Each vial contains 50 mg fludarabine phosphate I.P. 1 ml of reconstituted solution for injection/infusion contains 25 mg fludarabine phosphate. Excipients: Mannitol, Sodium hydroxide (to adjust the pH to 7.7). INDICATIONS Fludara is indicated for the treatment of patients with B -cell chronic lymphocytic leukemia (CLL) who have not responded to at least one standard alkylating-agent containing regimen. DOSAGE AND METHOD OF ADMINISTRATION Method of administration Fludara must be administered only intravenously. No cases have been reported in which paravenously administered Fludara led to severe local adverse reactions. However, unintentional paravenous administration must be avoided. Dosage regimen Adults Fludara solution for injection/infusion should be administered under the supervision of a qualified physician experienced in the use of antineoplastic therapy. The recommended dose is 25 mg fludarabine phosphate/m² body surface given daily for 5 consecutive days every 28 days by the intravenous route. Each vial is to be made up in 2 ml water for injection. Each ml of the resulting solution for injection/infusion will contain 25 mg fludarabine phosphate (see section ‘Instructions for use/handling’). The required dose (calculated on the basis of the patient's body surface) is drawn up into a syringe. For intravenous bolus injection, this dose is further diluted into 10 ml of 0.9 % sodium chloride.
    [Show full text]
  • Fludarabine Phosphate (NSC 312878) Infusions for the Treatment of Acute Leukemia: Phase I and Neuropathological Study1
    [CANCER RESEARCH 46, 5953-5958, November 1986] Fludarabine Phosphate (NSC 312878) Infusions for the Treatment of Acute Leukemia: Phase I and Neuropathological Study1 David R. Spriggs,2 Edward Stopa, Robert J. Mayer, William Schoene, and Donald W. Kufe3 Dana Farber Cancer Institute [D. R. S., R. J. M.. D. W. K.J and Department ofPathology, Brigham and Women 's Hospital [E. S., W. SJ, Boston, Massachusetts 0211S ABSTRACT a relationship between dose and lethargy. The schedule of drug administration in these studies was not a 5-day infusion. A Fludarabine phosphate (NSC 312878), an adenosine deaminase resist ant analogue of 9-/9-D-arabinofuranosyladenine, has entered clinical trials. single bolus was used in one study while the other used a single bolus followed by a 48-h infusion. Eleven patients with acute leukemia in relapse received 14 courses of fludarabine phosphate as a 5-day continuous infusion administered at Based on the myelosuppressive effects of fludarabine phos doses of 40 to 100 mg/m2/day. Toxicity was characterized by uniform phate in Phase I testing, we instituted a Phase I and II trial to myelosuppression, as well as occasional nausea, vomiting, and hepato- identify the toxicity and efficacy of fludarabine phosphate in toxicity. Three episodes of metabolic acidosis and lactic acidemia were the treatment of acute leukemia. The drug was administered as noted. In addition, three patients suffered neurotoxicity. Two of these a 5-day continuous infusion at a starting dose equivalent to the three patients had a severe neurotoxicity syndrome characterized by maximum tolerated dose reached in patients with solid tumors.
    [Show full text]
  • Fludarabine-Based Versus Chop-Like Regimens with Or Without Rituximab in Patients with Previously Untreated Indolent Lymphoma
    OncoTargets and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Fludarabine-based versus CHOP-like regimens with or without rituximab in patients with previously untreated indolent lymphoma: a retrospective analysis of safety and efficacy Xiao-xiao Xu1 Abstract: Fludarabine-based regimens and CHOP (doxorubicin, cyclophosphamide, vincristine, Bei Yan2 prednisone)-like regimens with or without rituximab are the most common treatment modalities Zhen-xing Wang3 for indolent lymphoma. However, there is no clear evidence to date about which chemotherapy Yong Yu1 regimen should be the proper initial treatment of indolent lymphoma. More recently, the use of Xiao-xiong Wu2 fludarabine has raised concerns due to its high number of toxicities, especially hematological Yi-zhuo Zhang1 toxicity and infectious complications. The present study aimed to retrospectively evaluate both the efficacy and the potential toxicities of the two main regimens (fludarabine-based and CHOP-like 1 Department of Hematology, Tianjin regimens) in patients with previously untreated indolent lymphoma. Among a total of 107 patients Medical University Cancer Institute and Hospital, Tianjin Key Laboratory assessed, 54 patients received fludarabine-based regimens (FLU arm) and 53 received CHOP or of Cancer Prevention and Therapy, CHOPE (doxorubicin, cyclophosphamide, vincristine, prednisone, or plus etoposide) regimens Tianjin, 2Department of Hematology, (CHOP arm). The results demonstrated that fludarabine-based regimens could induce significantly First Affiliated Hospital of Chinese People’s Liberation Army General improved progression-free survival (PFS) compared with CHOP-like regimens. However, the Hospital, Beijing, 3Department of FLU arm showed overall survival, complete response, and overall response rates similar to those Stomach Oncology, Tianjin Medical University Cancer Institute and of the CHOP arm.
    [Show full text]
  • ©Ferrata Storti Foundation
    Lymphoproliferative Disorders original paper haematologica 2001; 86:1165-1171 Response to fludarabine in B-cell http://www.haematologica.it/2001_11/1165.htm chronic lymphocytic leukemia patients previously treated with chlorambucil as up-front therapy and a CHOP-like regimen as second line therapy VINCENZO LISO,* STEFANO MOLICA,# SILVANA CAPALBO,* ENRICO POGLIANI,@ COSIMA BATTISTA,* GIORGIO BROCCIA,^ MARCO MONTILLO,§ ANTONIO CUNEO,° PIETRO LEONI,** GIORGINA SPECCHIA,* GIANLUIGI CASTOLDI° *Institute of Hematology, University of Bari; °Section of Hematology, Department of Biomedical Sciences, University of Ferrara; #Division of Hematology and Clinical Oncology, “A. Pugliese” Hospital, Catanzaro; @Division of Hematology “San Gerardo dei Tintori” New Hospital, Monza; ^Division of Hema- tology, “A. Businco” Hospital, Cagliari; §Department of Hema- Correspondence: Vincenzo Liso, MD, Hematology, University of Bari, Policlinico, piazza G. Cesare 11, 70124 Bari, Italy. tology, Niguarda “Ca’ Granda” Hospital, Milan; Institute of Phone: international +39.080.5478711. Fax: international +39.080. Hematology, University of Ancona, Italy 5428978. E-mail: [email protected] Background and Objectives. Fludarabine (FAMP) is the response rate was 40.3% with FAMP (p = the most active single agent in relapsed and refrac- 0.037) and only 17.5% with CHOP (p = 1.0). Among tory patients with B-cell chronic lymphocytic 35 patients resistant to a CHOP-like regimen, the leukemia (B-CLL). However, it is not clear whether response rate was 29.8% (p = 0.066) after
    [Show full text]
  • Immune Recovery After Fludarabine–Cyclophosphamide
    Leukemia (2010) 24, 1310–1316 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 www.nature.com/leu ORIGINAL ARTICLE Immune recovery after fludarabine–cyclophosphamide–rituximab treatment in B-chronic lymphocytic leukemia: implication for maintenance immunotherapy L Ysebaert1,2,3,6, E Gross1,2,6,EKu¨hlein4, A Blanc1,2, J Corre5, JJ Fournie´1,2, G Laurent1,2,3 and A Quillet-Mary1,2 1Inserm U563, Toulouse F-31300, France; 2Universite´ Toulouse III Paul-Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France; 3CHU Toulouse, Hopital Purpan, Service d’He´matologie, Toulouse F-31300, France; 4CHU Toulouse, Hopital Rangueil, Laboratoire d’Immunologie, Toulouse F-31300, France and 5CHU Toulouse, Hopital Purpan, Laboratoire d’He´matologie, Toulouse F-31300, France Thirty B-cell chronic lymphocytic leukemia patients were during the post-treatment period.1 It has also been proposed that treated with fludarabine–cyclophosphamide–rituximab (FCR) immunosuppression could also contribute to the emergence of and immune cell counts (natural killer (NK) cells, CD4, CD8, Tcd second malignancies, including leukemia and Richter’s syn- and monocytes) were monitored from the end of treatment drome, which has been observed in the setting of both B-CLL (EOT) up to 36 months (M36). Moreover, nonleukemic peri- 3–5 pheral blood lymphocyte cytotoxicity (PBL/CTC) as well as and Waldenstro¨m’s disease. rituximab (RTX)-dependent PBL/CTC was also measured at the Whether FCR therapy could affect some specific immune cell initiation of therapy, EOT and M12. These parameters were population and natural effector cell function is unknown. This correlated with post-FCR monitoring of the minimal residual question is still of interest based on two considerations.
    [Show full text]
  • Prodrugs: a Challenge for the Drug Development
    PharmacologicalReports Copyright©2013 2013,65,1–14 byInstituteofPharmacology ISSN1734-1140 PolishAcademyofSciences Drugsneedtobedesignedwithdeliveryinmind TakeruHiguchi [70] Review Prodrugs:A challengeforthedrugdevelopment JolantaB.Zawilska1,2,JakubWojcieszak2,AgnieszkaB.Olejniczak1 1 InstituteofMedicalBiology,PolishAcademyofSciences,Lodowa106,PL93-232£ódŸ,Poland 2 DepartmentofPharmacodynamics,MedicalUniversityofLodz,Muszyñskiego1,PL90-151£ódŸ,Poland Correspondence: JolantaB.Zawilska,e-mail:[email protected] Abstract: It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor bio- logical activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) andgene-directedenzymeprodrugtherapy(GDEPT). Keywords: prodrugs,drugs’ metabolism,blood-brainbarrier,ADEPT,GDEPT
    [Show full text]
  • Sorafenib and Omacetaxine Mepesuccinate As a Safe and Effective Treatment for Acute Myeloid Leukemia Carrying Internal Tandem Du
    Original Article Sorafenib and Omacetaxine Mepesuccinate as a Safe and Effective Treatment for Acute Myeloid Leukemia Carrying Internal Tandem Duplication of Fms-Like Tyrosine Kinase 3 Chunxiao Zhang, MSc1; Stephen S. Y. Lam, MBBS, PhD1; Garret M. K. Leung, MBBS1; Sze-Pui Tsui, MSc2; Ning Yang, PhD1; Nelson K. L. Ng, PhD1; Ho-Wan Ip, MBBS2; Chun-Hang Au, PhD3; Tsun-Leung Chan, PhD3; Edmond S. K. Ma, MBBS3; Sze-Fai Yip, MBBS4; Harold K. K. Lee, MBChB5; June S. M. Lau, MBChB6; Tsan-Hei Luk, MBChB6; Wa Li, MBChB7; Yok-Lam Kwong, MD 1; and Anskar Y. H. Leung, MD, PhD 1 BACKGROUND: Omacetaxine mepesuccinate (OME) has antileukemic effects against acute myeloid leukemia (AML) carrying an internal tandem duplication of Fms-like tyrosine kinase 3 (FLT3-ITD). A phase 2 clinical trial was conducted to evaluate a combina- tion treatment of sorafenib and omacetaxine mepesuccinate (SOME). METHODS: Relapsed or refractory (R/R) or newly diagnosed patients were treated with sorafenib (200-400 mg twice daily) and OME (2 mg daily) for 7 (first course) or 5 days (second course on- ward) every 21 days until disease progression or allogeneic hematopoietic stem cell transplantation (HSCT). The primary endpoint was composite complete remission, which was defined as complete remission (CR) plus complete remission with incomplete hematologic recovery (CRi). Secondary endpoints were leukemia-free survival (LFS) and overall survival (OS). RESULTS: Thirty-nine R/R patients and 5 newly diagnosed patients were recruited. Among the R/R patients, 28 achieved CR or CRi. Two patients showed partial remission, and 9 patients did not respond.
    [Show full text]
  • Real Life Use of Bendamustine in Elderly Patients with Lymphoid Neoplasia
    Journal of Personalized Medicine Article Real Life Use of Bendamustine in Elderly Patients with Lymphoid Neoplasia Irene Dogliotti 1, Simone Ragaini 2 , Francesco Vassallo 3, Elia Boccellato 2, Gabriele De Luca 2, Francesca Perutelli 2 , Carola Boccomini 3, Michele Clerico 2, Barbara Botto 3, Daniele Grimaldi 2, Lorella Orsucci 3, Simone Ferrero 2 , Candida Vitale 2 , Dario Ferrero 2, Marta Coscia 2,† and Federica Cavallo 2,*,† 1 Stem Cell Transplant Unit, A.O.U., Città della Salute e della Scienza di Torino, 10126 Turin, Italy; [email protected] 2 Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, A.O.U., Città della Salute e della Scienza di Torino, 10126 Turin, Italy; [email protected] (S.R.); [email protected] (E.B.); [email protected] (G.D.L.); [email protected] (F.P.); [email protected] (M.C.); [email protected] (D.G.); [email protected] (S.F.); [email protected] (C.V.); [email protected] (D.F.); [email protected] (M.C.) 3 Division of Hematology, A.O.U., Città della Salute e della Scienza di Torino, 10126 Turin, Italy; [email protected] (F.V.); [email protected] (C.B.); [email protected] (B.B.); [email protected] (L.O.) * Correspondence: [email protected]; Tel.: +39-01-1633-4556; Fax: +39-01-1633-6507 † These authors equally contributed to the manuscript. Abstract: Background. Bendamustine is a cytotoxic alkylating drug with a broad range of indications as a single agent or in combination therapy in lymphoid neoplasia patients.
    [Show full text]
  • FLUDARABINE-IDARUBICIN (FLA-IDA) In-Patient Regimen
    Chemotherapy Protocol ACUTE MYELOID LEUKAEMIA CYTARABINE (2000)-FLUDARABINE-IDARUBICIN (FLA-IDA) In-Patient Regimen Regimen • Acute Myeloid Leukaemia – InP-Cytarabine (2000)-Fludarabine-Idarubicin (FLA-Ida) Indication • Induction chemotherapy for patients with acute myeloid leukaemia (AML). Its use is particularly for patients under 60 years of age but it can be applied to older patients according to clinician's assessment. Its use is often particularly in patients with relapsed or resistant AML or ALL. • The standard dose of cytarabine is 2000mg/m 2. The dose may be decreased to 1000mg/m 2 in those who are over the age of sixty or are less fit. Toxicity Drug Adverse Effect Cytarabine Nausea, vomiting, diarrhoea, fever, rash, itching, anorexia, oral and anal inflammation or ulceration, hepatic dysfunction, ocular pain, foreign body sensation, photophobia and blurred vision, dizziness, headache, confusion, cerebellar toxicity, myalgia and bone pain Fludarabine Transfusion related GVHD, neurotoxicity, opportunistic infections, GI disturbances Idarubicin Myelosuppression, cardiac toxicity (cardiac failure, arrhythmias or carcardiomyopathies), red discoloration of the urine, alopecia, nausea or vomiting, oral mucositis, elevation of liver enzymes and bilirubin Patients treated with fludarabine carry a lifelong risk of transfusion associated graft versus host disease (TA-GVHD). Where blood products are required these patients must receive only irradiated blood products for life. Local blood transfusion departments must be notified as soon as the decision to treat is made and the patient must be issued with an alert card to carry with them at all times. The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details.
    [Show full text]
  • Routine Use of Bendamustine in Patients with Chronic Lymphocytic Leukemia: an Observational Study
    ANTICANCER RESEARCH 35: 5129-5140 (2015) Routine Use of Bendamustine in Patients with Chronic Lymphocytic Leukemia: An Observational Study MARIJANA NINKOVIC1, MICHAEL FIEGL1, MICHAEL MIAN2, PATRIZIA MONDELLO3, FLORIAN KOCHER1, CHRISTIAN WALDTHALER1, IRMGARD VERDORFER4, MICHAEL STEURER1, GÜNTHER GASTL1 and ANDREAS PIRCHER1 1Department of Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria; 2Department of Hematology and CBMT, Hospital of Bolzano, Bolzano, Italy; 3Department of Human Pathology, University of Messina, Messina, Italy; 4Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria Abstract. Bendamustine is an established treatment option Chronic lymphocytic leukemia (CLL) is the most common in chronic lymphocytic leukemia (CLL) and frequently used type of adult leukemia in industrialized countries (1, 2). in Austria and Italy. Therefore, we analyzed 100 unselected, Despite the advent of new drugs (3, 4), it still remains an consecutive patients with CLL (treatment-naïve and incurable disease, except for the few patients who are able to relapsed/refractory) receiving bendamustine in a real-life undergo allogeneic stem-cell transplantation (5-8). Only setting. Most patients were treated with bendamustine in recently, bendamustine, first synthesized in the early 1960s, combination with rituximab (BR). However, bendamustine was to become an efficient treatment for hematological monotherapy was additionally evaluated. Patients treated malignancies and it was approved for rituximab-refractory with BR had a significantly higher overall response rate of indolent lymphoma (9), CLL (10) and multiple myeloma (11). 76% (complete response=22%) when compared to those Up until now, the use of bendamustine in CLL was mainly treated solely with bendamustine (overall response investigated in clinical trials in combination with rituximab rate=50%; complete response=13%).
    [Show full text]
  • Package Leaflet: Information for the User Fludarabine Phosphate 25 Mg/Ml Concentrate for Solution for Injection Or Infusion Fludarabine Phosphate
    Package leaflet: Information for the user Fludarabine phosphate 25 mg/ml Concentrate for Solution for Injection or Infusion Fludarabine phosphate The name of your medicine is Fludarabine phosphate 25 mg/ml Concentrate for Solution for Injection or Infusion. In the rest of this leaflet your medicine is called Fludarabine phosphate Injection. Read all of this leaflet carefully before you start using this medicine because it contains important information for you. Keep this leaflet. You may need to read it again. If you have any further questions, ask your doctor, or pharmacist or nurse. This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours If you get any side effects, talk to your doctor, or pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4 What is in this leaflet 1. What Fludarabine phosphate Injection is and what it is used for 2. What you need to know before you use Fludarabine phosphate Injection 3. How to use Fludarabine phosphate Injection 4. Possible side effects 5. How to store Fludarabine phosphate Injection 6. Contents of the pack and other information 1. What Fludarabine phosphate Injection is and what it is used for Fludarabine phosphate Injection contains the active substance fludarabine phosphate which stops the growth of new cancer cells. All cells of the body produce new cells like themselves by dividing. Fludarabine phosphate Injection is taken up by the cancer cells and stops them dividing.
    [Show full text]
  • Immunomodulatory Effects of Bendamustine in Hematopoietic Cell Transplantation
    cancers Review Immunomodulatory Effects of Bendamustine in Hematopoietic Cell Transplantation Jessica Stokes 1, Megan S. Molina 1,2 , Emely A. Hoffman 1, Richard J. Simpson 1,2,3,4 and Emmanuel Katsanis 1,2,4,5,6,* 1 Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA; [email protected] (J.S.); [email protected] (M.S.M.); [email protected] (E.A.H.); [email protected] (R.J.S.) 2 Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA 3 Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA 4 The University of Arizona Cancer Center, Tucson, AZ 85721, USA 5 Department of Medicine, University of Arizona, Tucson, AZ 85721, USA 6 Department of Pathology, University of Arizona, Tucson, AZ 85721, USA * Correspondence: [email protected]; Tel.: +1-520-626-7053 Simple Summary: Bendamustine is a chemotherapeutic agent used to treat a variety of cancers. It has recently been used in the context of allogeneic hematopoietic cell transplantation (HCT), a treatment mostly used to treat blood cancers. Given before or after transplantation of donor blood or bone marrow cells, bendamustine has been shown to reduce the side effects of the transplant, including graft-versus-host disease, where the donated cells attack the recipient’s tissues, while also promoting the anti-cancer effects of the transplant. These are exciting findings and show that bendamustine may be used to influence the immune system, called immunomodulation, in a beneficial manner. We report our research and review the available literature outlining these immunomodulatory effects of bendamustine, in hopes that it will promote further investigations utilizing this agent in allogeneic Citation: Stokes, J.; Molina, M.S.; transplants, ultimately improving patient outcomes.
    [Show full text]