The Laws of Sine and Cosine

Total Page:16

File Type:pdf, Size:1020Kb

The Laws of Sine and Cosine The Laws of Sine and Cosine Objectives: Given a triangle and three quantities (ASA, SAS, SSS, SSA, AAS) of data about the triangle, use the law of sines, or the law of cosines to determine the three remaining unknowns. Discussion Every triangle has three vertices and three sides. In the picture to the right the three vertices are A, B, and C, and the sides opposite these vertices are a, b, and c, respectively. The angle at each vertex is given the same name as the vertex. Therefore, the three angles are also named A, B, and C. The Law of Cosines states that: Use the law of cosines when you are given SAS, or SSS, quantities. For example: If you were given the lengths of sides b and c, and the measure of angle A, this would be SAS. SSS is when we know the lengths of the three sides a, b, and c. The Law of Sines states that Use the law of sines when you are given ASA, SSA, or AAS. An example of ASA is when you are given the measure of angles A, and C, and the length of side b. An example of SSA is when you are given the sides c, and a, and angle C. An example of AAS is when you are given angles C and A, and side c. Examples Example 1 Example 2 Notice that side a, angle B, and side c are given. This is SAS. We will need to begin the problem with the law of cosines. Notice that angles A and C are given, and side a. This is AAS. Lets begin the problem by finding angle B. Since B = 180 - A - C, and A = 43.202 degrees, and C = 111.622 degrees, then B = 25.176 degrees. Now lets find side b. By the law of sines: Now lets find angle C. Since we now know angle B, and sides b, and c, we will use the law of sines. Using the law of sines again to find side c: Since the sum of the three angles is 180, then A = 180 - B - C = 153.675 degrees. HW 7-1 and 7-2 DAY 1: pg 550-551 16, 20, AND pg 557-558 16, 18, 47 .
Recommended publications
  • Trigonometric Functions
    Trigonometric Functions This worksheet covers the basic characteristics of the sine, cosine, tangent, cotangent, secant, and cosecant trigonometric functions. Sine Function: f(x) = sin (x) • Graph • Domain: all real numbers • Range: [-1 , 1] • Period = 2π • x intercepts: x = kπ , where k is an integer. • y intercepts: y = 0 • Maximum points: (π/2 + 2kπ, 1), where k is an integer. • Minimum points: (3π/2 + 2kπ, -1), where k is an integer. • Symmetry: since sin (–x) = –sin (x) then sin(x) is an odd function and its graph is symmetric with respect to the origin (0, 0). • Intervals of increase/decrease: over one period and from 0 to 2π, sin (x) is increasing on the intervals (0, π/2) and (3π/2 , 2π), and decreasing on the interval (π/2 , 3π/2). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Cosine Function: f(x) = cos (x) • Graph • Domain: all real numbers • Range: [–1 , 1] • Period = 2π • x intercepts: x = π/2 + k π , where k is an integer. • y intercepts: y = 1 • Maximum points: (2 k π , 1) , where k is an integer. • Minimum points: (π + 2 k π , –1) , where k is an integer. • Symmetry: since cos(–x) = cos(x) then cos (x) is an even function and its graph is symmetric with respect to the y axis. • Intervals of increase/decrease: over one period and from 0 to 2π, cos (x) is decreasing on (0 , π) increasing on (π , 2π). Tutoring and Learning Centre, George Brown College 2014 www.georgebrown.ca/tlc Trigonometric Functions Tangent Function : f(x) = tan (x) • Graph • Domain: all real numbers except π/2 + k π, k is an integer.
    [Show full text]
  • Plane Trigonometry - Lecture 16 Section 3.2: the Law of Cosines
    Plane Trigonometry - Lecture 16 Section 3.2: The Law of Cosines Summary: http://www.math.ksu.edu/~gerald/math150/sum16.pdf Course page: http://www.math.ksu.edu/~gerald/math150/ Gerald Hoehn April 1, 2019 Law of cosines Theorem Let ∆ABC any triangle, then c2 = a2 + b2 − 2ab cos γ b2 = a2 + c2 − 2ac cos β a2 = b2 + c2 − 2bc cos α We may reformulate the statement also in word form. Theorem In any triangle, the square of the length of a side equals the sum of the squares of the length of the other two sides minus twice the product of the length of the other two sides and the cosine of the angle between them. Solving Triangles For solving triangles ∆ABC one needs at least three of the six quantities a, b, and c and α, β, γ. One distinguishes six essential different cases forming three classes: I AAA case: Three angles given. I AAS case: Two angles and a side opposite one of them given. I ASA case: Two angles and the side between them given. I SSA case: Two sides and an angle opposite one of them given. I SAS case: Two sides and the angle between them given. I SSS case: Three sides given. The case AAA cannot be solved. The cases AAS, ASA and SSA are solved by using the law of sines. The cases SAS, SSS are solved by using the law of cosines. Solving Triangles: the SAS case For the SAS case a unique solution always exists. Three steps: 1. Use the law of cosines to determine the length of the third side opposite to the given angle.
    [Show full text]
  • Lesson 6: Trigonometric Identities
    1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as a2 − b2 =(a − b)(a + b)or a3 + b3 =(a + b)(a2 − ab + b2): Identities such as these are used to simplifly algebriac expressions and to solve alge- a3 + b3 briac equations. For example, using the third identity above, the expression a + b simpliflies to a2 − ab + b2: The first identiy verifies that the equation (a2 − b2)=0is true precisely when a = b: The formulas or trigonometric identities introduced in this lesson constitute an integral part of the study and applications of trigonometry. Such identities can be used to simplifly complicated trigonometric expressions. This lesson contains several examples and exercises to demonstrate this type of procedure. Trigonometric identities can also used solve trigonometric equations. Equations of this type are introduced in this lesson and examined in more detail in Lesson 7. For student’s convenience, the identities presented in this lesson are sumarized in Appendix A 2. The Elementary Identities Let (x; y) be the point on the unit circle centered at (0; 0) that determines the angle t rad : Recall that the definitions of the trigonometric functions for this angle are sin t = y tan t = y sec t = 1 x y : cos t = x cot t = x csc t = 1 y x These definitions readily establish the first of the elementary or fundamental identities given in the table below. For obvious reasons these are often referred to as the reciprocal and quotient identities.
    [Show full text]
  • 6.2 Law of Cosines
    6.2 Law of Cosines The Law of Sines can’t be used directly to solve triangles if we know two sides and the angle between them or if we know all three sides. In this two cases, the Law of Cosines applies. Law of Cosines: In any triangle ABC , we have a2 b 2 c 2 2 bc cos A b2 a 2 c 2 2 ac cos B c2 a 2 b 2 2 ab cos C Proof: To prove the Law of Cosines, place triangle so that A is at the origin, as shown in the Figure below. The coordinates of the vertices BC and are (c ,0) and (b cos A , b sin A ) , respectively. Using the Distance Formula, we have a2( c b cos) A 2 (0 b sin) A 2 =c2 2bc cos A b 2 cos 2 A b 2 sin 2 A =c2 2bc cos A b 2 (cos 2 A sin 2 A ) =c22 2bc cos A b =b22 c 2 bc cos A Example: A tunnel is to be built through a mountain. To estimate the length of the tunnel, a surveyor makes the measurements shown in the Figure below. Use the surveyor’s data to approximate the length of the tunnel. Solution: c2 a 2 b 2 2 ab cos C 21222 388 2 212 388cos82.4 173730.23 c 173730.23 416.8 Thus, the tunnel will be approximately 417 ft long. Example: The sides of a triangle are a5, b 8, and c 12. Find the angles of the triangle.
    [Show full text]
  • 5.4 Law of Cosines and Solving Triangles (Slides 4-To-1).Pdf
    Solving Triangles and the Law of Cosines In this section we work out the law of cosines from our earlier identities and then practice applying this new identity. c2 = a2 + b2 − 2ab cos C: (1) Elementary Functions Draw the triangle 4ABC on the Cartesian plane with the vertex C at the Part 5, Trigonometry origin. Lecture 5.4a, The Law of Cosines Dr. Ken W. Smith Sam Houston State University 2013 In the drawing sin C = y and cos C = x : We may relabel the x and y Smith (SHSU) Elementary Functions 2013 1 / 22 Smith (SHSU) b Elementary Functionsb 2013 2 / 22 coordinates of A(x; y) as x = b cos C and y = b sin C: Solving Triangles and the Law of Cosines One Angle and the Law of Cosines We get information if we compute c2: By the Pythagorean theorem, c2 = (y2) + (a − x)2 = (b sin C)2 + (a − b cos C)2 = b2 sin2 C + a2 − 2ab cos C + b2 cos2 C: c2 = a2 + b2 − 2ab cos C: We use the Pythagorean identity to simplify b2 sin2 C + b2 cos2 C = b2 and so It is straightforward to use the law of cosines when we know one angle and c2 = a2 + b2 − 2ab cos C its two adjacent sides. This is the Side-Angle-Side (SAS) case, in which we may label the angle C and its two sides a and b and so we can solve for the side c. Or, if we have the Side-Side-Side (SSS) situation, in which we know all three sides, we can label one angle C and solve for that angle in terms of the sides a; b and c, using the law of cosines.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Derivation of Sum and Difference Identities for Sine and Cosine
    Derivation of sum and difference identities for sine and cosine John Kerl January 2, 2012 The authors of your trigonometry textbook give a geometric derivation of the sum and difference identities for sine and cosine. I find this argument unwieldy | I don't expect you to remember it; in fact, I don't remember it. There's a standard algebraic derivation which is far simpler. The only catch is that you need to use complex arithmetic, which we don't cover in Math 111. Nonetheless, I will present the derivation so that you will have seen how simple the truth can be, and so that you may come to understand it after you've had a few more math courses. And in fact, all you need are the following facts: • Complex numbers are of the form a+bi, where a and b are real numbers and i is defined to be a square root of −1. That is, i2 = −1. (Of course, (−i)2 = −1 as well, so −i is the other square root of −1.) • The number a is called the real part of a + bi; the number b is called the imaginary part of a + bi. All the real numbers you're used to working with are already complex numbers | they simply have zero imaginary part. • To add or subtract complex numbers, add the corresponding real and imaginary parts. For example, 2 + 3i plus 4 + 5i is 6 + 8i. • To multiply two complex numbers a + bi and c + di, just FOIL out the product (a + bi)(c + di) and use the fact that i2 = −1.
    [Show full text]
  • Complex Numbers and Functions
    Complex Numbers and Functions Richard Crew January 20, 2018 This is a brief review of the basic facts of complex numbers, intended for students in my section of MAP 4305/5304. I will discuss basic facts of com- plex arithmetic, limits and derivatives of complex functions, power series and functions like the complex exponential, sine and cosine which can be defined by convergent power series. This is a preliminary version and will be added to later. 1 Complex Numbers 1.1 Arithmetic. A complex number is an expression a + bi where i2 = −1. Here the real number a is the real part of the complex number and bi is the imaginary part. If z is a complex number we write <(z) and =(z) for the real and imaginary parts respectively. Two complex numbers are equal if and only if their real and imaginary parts are equal. In particular a + bi = 0 only when a = b = 0. The set of complex numbers is denoted by C. Complex numbers are added, subtracted and multiplied according to the usual rules of algebra: (a + bi) + (c + di) = (a + c) + (b + di) (1.1) (a + bi) − (c + di) = (a − c) + (b − di) (1.2) (a + bi)(c + di) = (ac − bd) + (ad + bc)i (1.3) (note how i2 = −1 has been used in the last equation). Division performed by rationalizing the denominator: a + bi (a + bi)(c − di) (ac − bd) + (bc − ad)i = = (1.4) c + di (c + di)(c − di) c2 + d2 Note that denominator only vanishes if c + di = 0, so that a complex number can be divided by any nonzero complex number.
    [Show full text]
  • Elementary Functions Triangulation and the Law of Sines Three Bits of A
    Triangulation and the Law of Sines A triangle has three sides and three angles; their values provide six pieces of information about the triangle. In ordinary geometry, most of the time three pieces of information are Elementary Functions sufficient to give us the other three pieces of information. Part 5, Trigonometry Lecture 5.3a, The Laws of Sines and Triangulation In order to more easily discuss the angles and sides of a triangle, we will label the angles by capital letters (such as A; B; C) and label the sides by small letters (such as a; b; c.) Dr. Ken W. Smith We will assume that a side labeled with a small letter is the side opposite Sam Houston State University the angle with the same, but capitalized, letter. For example, the side a is opposite the angle A. 2013 We will also use these letters for the values or magnitudes of these sides and angles, writing a = 3 feet or A = 14◦: Smith (SHSU) Elementary Functions 2013 1 / 26 Smith (SHSU) Elementary Functions 2013 2 / 26 Three Bits of a Triangle AA and AAA Suppose we have three bits of information about a triangle. Can we recover all the information? AAA If the 3 bits of information are the magnitudes of the 3 angles, and if we If we know the values of two angles then since the angles sum to π have no information about lengths of sides, then the answer is No. (= 180◦), we really know all 3 angles. Given a triangle with angles A; B; C (in ordinary Euclidean geometry) we can always expand (or contract) the triangle to a similar triangle which So AAA is really no better than AA! has the same angles but whose sides have all been stretched (or shrunk) by some constant factor.
    [Show full text]
  • Al-Kāshi's Law of Cosines
    THEOREM OF THE DAY al-Kashi’s¯ Law of Cosines If A is the angle at one vertex of a triangle, a is the opposite side length, and b and c are the adjacent side lengths, then a2 = b2 + c2 2bc cos A. − = Euclid Book 2, Propositions 12 and 13 + definition of cosine If a triangle has vertices A, B and C and side lengths AB, AC and BC, and if the perpendicular through B to the line through A andC meets this line at D, and if the angle at A is obtuse then BC2 = AB2 + AC2 + 2AC.AD, while if the angle at A is acute then the lastterm on the right-hand-side is subtracted. Euclid’s two propositions supply the Law of Cosines by observing that AD = AB cos(∠DAB) = AB cos 180◦ ∠CAB = AB cos(∠CAB); while in the acute angle − − case (shown above left as the triangle on vertices A, B′, C), the subtracted length AD′ is directly obtained as AB′ cos(∠D′AB′) = AB′ cos(∠CAB′). The Law of Cosines leads naturally to a quadratic equation, as illustrated above right. Angle ∠BAC is given as 120◦; the triangle ABC has base b = 1 and opposite 2 2 2 2 side length a = √2. What is the side length c = AB? We calculate √2 = 1 + c 2 1 c cos 120◦, which gives c + c 1 = 0, with solutions ϕ and 1/ϕ, where − × × − − ϕ = 1 + √5 /2 is the golden ratio. The positive solution is the length of side AB; the negative solution corresponds to the 2nd point where a circle of radius √2 meets the line through A and B.
    [Show full text]
  • The History of the Law of Cosine (Law of Al Kahsi) Though The
    The History of The Law of Cosine (Law of Al Kahsi) Though the cosine did not yet exist in his time, Euclid 's Elements , dating back to the 3rd century BC, contains an early geometric theorem equivalent to the law of cosines. The case of obtuse triangle and acute triangle (corresponding to the two cases of negative or positive cosine) are treated separately, in Propositions 12 and 13 of Book 2. Trigonometric functions and algebra (in particular negative numbers) being absent in Euclid's time, the statement has a more geometric flavor. Proposition 12 In obtuse-angled triangles the square on the side subtending the obtuse angle is greater than the squares on the sides containing the obtuse angle by twice the rectangle contained by one of the sides about the obtuse angle, namely that on which the perpendicular falls, and the straight line cut off outside by the perpendicular towards the obtuse angle. --- Euclid's Elements, translation by Thomas L. Heath .[1] This formula may be transformed into the law of cosines by noting that CH = a cos( π – γ) = −a cos( γ). Proposition 13 contains an entirely analogous statement for acute triangles. It was not until the development of modern trigonometry in the Middle Ages by Muslim mathematicians , especially the discovery of the cosine, that the general law of cosines was formulated. The Persian astronomer and mathematician al-Battani generalized Euclid's result to spherical geometry at the beginning of the 10th century, which permitted him to calculate the angular distances between stars. In the 15th century, al- Kashi in Samarqand computed trigonometric tables to great accuracy and provided the first explicit statement of the law of cosines in a form suitable for triangulation .
    [Show full text]
  • THE LAW of COSINES a Mathematical Vignette Ed Barbeau, University of Toronto a Key Difficulty with Any Syllabus Is Having It
    THE LAW OF COSINES A mathematical vignette Ed Barbeau, University of Toronto A key difficulty with any syllabus is having it come across to students as a collection of isolated facts and techniques. It is desirable to have topics that are central to the syllabus but are capable of making connections across it. A wonderful exmaple of this is based on the law of cosines and its use in connecting trigonometry, the theory of the quadratic and the ambiguous case in Euclidean geometry. Recall that the Cosine Law states that, if a; b; c are the sides of a triangle and A is the angle opposite side a, then a2 = b2 + c2 − 2bc cos A: This formula is often used to determine the third side when two sides and the contained angle is given, or to determine an angle of the triangle when the three sides are given. However, it is of more than passing interest when the third side to be determine is not opposite the given angle. Thus, suppose that we are given sides a and b, along with an angle A opposite to one of the given sides and are asked to find the third side. Then, according to the Cosine Law, we are being asked to solve the quadratic equation x2 − (2b cos A)x + (b2 − a2) = 0: The discriminant of this quadratic equation is 4(a2 − b2 sin2 A): The quadratic will have real solutions if and only if a ≥ b sin A. What does this correspond to geoemtrically? In a triangle ABC, b sin A is the length of the perpendicular dropped from C to the side AB, and for a viable triangle, this cannot be greater than the side opposite the angle A.
    [Show full text]