Potato in the Age of Biotechnology

Total Page:16

File Type:pdf, Size:1020Kb

Potato in the Age of Biotechnology View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MURAL - Maynooth University Research Archive Library Review TRENDS in Plant Science Vol.11 No.5 May 2006 Potato in the age of biotechnology Ewen Mullins1, Dan Milbourne1, Carlo Petti1, Barbara M. Doyle-Prestwich2 and Conor Meade3 1Plant Biotechnology Unit, Teagasc Crops Research Centre, Oakpark, Carlow, Ireland 2Department of Zoology, Ecology and Plant Science, National University of Ireland Cork, Ireland 3Institute of Agroecology and Bioengineering, National University of Ireland, Maynooth, Ireland Biotechnology-based tools are now widely used to economic influence on society today, countries that wish to enhance and expand the traditional remit of potato in remain competitive in the emerging global potato market food production. By modifying its functionality, the must accelerate their development of yield-increasing capacity of the potato to produce, for example, technology (http://www.cipotato.org/market/potatofacts/ therapeutic or industrial compounds is now a reality, growprod.htm) and find ways of creating novel markets. and its ability to resist disease can also be radically improved. Two developments have been crucial to Genomics-based research initiatives expanding the role of potato: the recent advances in The emergence of molecular marker-based genetic map- the fields of structural and functional potato genomics ping in the mid-1980s represented an exciting step and the ability to integrate genes of interest into the forward in the ability to characterize the genomes of potato genome. In this review we discuss how both higher animals and plants. To date, molecular marker- developments have diversified the remit of this crop. based maps of potato have facilitated the identification of genetic loci underlying many important agronomic traits in potato. These include at least 19 major disease resistance genes and numerous quantitative trait loci Potato production (QTLs) for disease resistance (reviewed in [3]), morpho- In Europe in the 1700s it was believed that the logical, developmental and quality traits. These studies consumption of potatoes led to leprosy, cholera, rickets have served to confirm the long-standing hypothesis that and tuberculosis [1]. Today, potatoes are grown in w125 many of the most important agronomic traits in potato countries and more than a billion people worldwide (e.g. yield and dry matter content) are under the control of consume them on a daily basis. To support this demand, multiple genes, which exhibit a complex set of interactions a multitude of varieties have been developed to resist pre- with both each other and the environment. or post-harvest diseases, to target specific markets that Gaining a complete understanding of the genetics of require post-harvest processing (e.g. chipping) or to meet such complex traits is central to our ability to use the nutritional requirements at the community level. As biotechnology for the improvement of potato. Fuelled by well as providing starch, potatoes are rich in vitamin C, technological developments in the analysis of the human have high levels of potassium and are an excellent source genome, several high-throughput genomics programmes of fibre. Potato is an easy-to-grow plant and can provide have been established for potato (and many other plant more nutritious food faster and on less land than any other species). The ultimate goal of these initiatives is to food crop, and in almost any habitat. establish the identity and action of every gene in the Since the 1960s, global potato production has remained potato genome. In the USA, the National Science relativelystatic(285.4milliontonnes G0.19milliontonnes) Foundation (NSF) Potato Genome project (http://www. [2]. However, this does not reflect the dramatic rate of potatogenome.org) has enabled the sequencing of 130 000 increase in production across India, China and the African expressed sequence tags (ESTs) from seven potato cDNA continent, which have witnessed a nine-, five- and sixfold libraries (five core and two pathogen challenged), which increase in potato production, respectively [2] (Figure 1). has facilitated the production of a publicly available This is in contrast to a modest 1.6-fold increase across North 10 000 cDNA micro-array (http://www.tigr.org/tdb/potato/ America (USA and Canada) and a 54% decrease in SGED_index2.shtml). The Canadian Potato Genome production acrossthe European Union(pre-2004expansion Project (CPGP, http://www.cpgp.ca) has similar goals: (i) of member states) over the same period [2]. A shift towards to produce high-quality cDNA libraries for at least 100 000 the use of potato in convenience foods (e.g. potato chips and EST sequences from multiple libraries; (ii) to generate a fries) has been recorded in developed nations, but in micro-array consisting of at least 10 000 non-redundant developing economies the majority of the potato crop is genes; and (iii) to produce a large population of activation- still used for direct consumption [2]. Overall, potato is likely tagged mutant plants for trait screening. Novel to maintain, if not increase, its relative economic imp- approaches, such as activation tagging [4,5] and virus- ortance in the decades ahead.Aspotato exerts a majorsocio- induced gene silencing (VIGS) [6], are essential tools for a Corresponding author: Mullins, E. ([email protected]). heterozygous outbreeding autotetraploid such as potato Available online 18 April 2006 for which the development of traditional knockout www.sciencedirect.com 1360-1385/$ - see front matter Q 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tplants.2006.03.002 Review TRENDS in Plant Science Vol.11 No.5 May 2006 255 90 80 70 60 China 50 India 40 EU 30 Africa Million tonnes (Mt) Latin America 20 North America 10 0 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 Year TRENDS in Plant Science Figure 1. Timescale production (million tonnes, Mt) of potato across China, India, European Union (EU, pre-2004 expansion), Latin America, North America (Canada, USA) and the African continent between 1961 and 2003 (data collated from Food and Agricultural Organization of the United Nations Statistical Database [2]). mutants using chemical and/or radioactive mutagenesis is nature with a large environmental component. In this not feasible. scenario, the efficacy of QTL mapping is much reduced, Similar potato genomics programmes are underway in with the greatest difficulty being to develop markers that Europe, funded by both EU Framework Programmes and are diagnostic for (as opposed to just linked to) multiple individual national bodies. Under the auspices of The small-effect QTLs. However, it is anticipated that this Netherlands Genomics Initiative, the Centre for Bio- situation will be improved by the output of the aforemen- systems Genomics (http://www.cbsg.nl/) has been tasked tioned genomics-based studies, which will, in the longer with unravelling the genetic networks associated with term, allow the identification of many of the genes multi-factorial traits in potato (along with tomato and underlying the most important traits (e.g. carbohydrate Arabidopsis). The programme comprises nine projects and metabolism). Instances where MAS is currently being covers various aspects of disease resistance, tuber quality used in potato breeding are largely confined to single and genetic variation. The GABI-CONQUEST programme dominant genes, or to large-effect QTL. An excellent in Germany is a similar initiative that has focused illustration of this is the case of dominantly inherited primarily on the candidate gene approach for the dissection disease resistance and large-effect QTLs for disease of complex traits (http://www.gabi.de/21seiten/a_00_e. resistance, the majority of which have been found to be php). More recently, an international Potato Genomics mediated by a single class of genes sharing conserved Sequencing Consortium (http://www.potatogenome.net) nucleotide-binding-site (NBS) and leucine-rich repeat has been established with the primary objective of (LRR) motifs (reviewed in [3]). On the basis of their map elucidating the complete sequence of the potato genome location, several NBS-LRR-type disease resistance genes (840 Mb) by the end of 2008. This initiative, which is based have now been cloned and characterized to a level on the construction of a BAC-based physical map, is sufficient to offer real prospects for their MAS. Recently, grounded in a previously constructed ultra-high density Bernard Caromel et al. [9] showed the potential of MAS for (UHD) genetic linkage map of the parents of a diploid F1 the introgression of disease resistance genes in a potato- potato population, comprising 10 000 genetic markers [7] breeding scenario by demonstrating the effectiveness of (http://potatodbase.dpw.wau.nl/UHDdata.html). this approach for ‘stacking’ two separate QTL for potato cyst nematode resistance into individual genotypes, which Adopting biotechnology in potato breeding resulted in a more-robust resistance phenotype than It can take up to 15 years to develop a single potato would be obtained by the presence of a single QTL. cultivar through traditional breeding [8]. For the majority An alternative strategy for deploying resistance genes of the genetic mapping studies to date, the goal has been to is through their direct introduction into potato breeding provide a basis for marker assisted selection (MAS) material using a transgenic approach. Since the first strategies in breeding, where selection is practised on reports in 1986 [10,11], the successful nuclear integration genetic markers linked to genes conferring beneficial of a heterologous gene(s) into the potato genome has been phenotypes. This can permit early and efficient selection described for a range of starting tissues, including the for the traits of interest, allowing ‘stacking’ of genetically Agrobacterium tumefaciens-mediated transformation of distinct components of the same trait and potentially leaf tissue [12], tubers [13] and internodal segments [14], shortening the breeding process by several years.
Recommended publications
  • Functional Genomics of Phytophthora Infestans Effectors and Solanum Resistance Genes
    Functional Genomics of Phytophthora infestans Effectors and Solanum Resistance Genes Nicolas Champouret Thesis committee Thesis supervisors Prof. dr. Richard G.F. Visser Professor of Plant Breeding Wageningen University Prof. dr. Evert Jacobsen Professor of Plant Breeding Wageningen University Thesis co-supervisor Dr. Vivianne G.A.A. Vleeshouwers Researcher Wageningen University Other members Prof. Dr. Ir. Pierre J. G. M. de Wit, Wageningen University, The Netherlands Prof. Dr. Martien Groenen, Wageningen University, The Netherlands Prof. Dr. Ir. Corné Pieterse, Utrecht University, The Netherlands Dr. Brande Wulff, The Sainsbury Laboratory, Norwich, UK This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. II Functional Genomics of Phytophthora infestans Effectors and Solanum Resistance Genes Nicolas Champouret Thesis submitted in partial fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Wednesday 9 June 2010 at 4 p.m. in the Aula. III Nicolas Champouret Functional Genomics of Phytophthora infestans Effectors and Solanum Resistance Genes. 162 pages Thesis, Wageningen University, Wageningen, NL (2010) With references, with summaries in Dutch and English ISBN 978-90-8585-658-0 IV CONTENTS Abstract VII Chapter 1 1 General introduction Chapter 2 15 Phytophthora infestans Isolates Lacking Class I ipiO Variants Are Virulent on Rpi-blb1 Potato Chapter 3 43 Evolutionary and Functional Analyses Reveal a Diverse Family of R2 Late Blight Resistance Genes in Mexican Solanum Species Chapter 4 75 Diversity of PiAvr2/PexRD11 and R2 gene families underpins co-evolution between Phytophthora infestans and Mexican Solanum species Chapter 5 90 Functional allele-mining with Avr3a reveals active R3a in S.
    [Show full text]
  • Testing Taxonomic Predictivity of Foliar and Tuber Resistance to Phytophthora Infestans in Wild Relatives of Potato
    Genetics and Resistance Testing Taxonomic Predictivity of Foliar and Tuber Resistance to Phytophthora infestans in Wild Relatives of Potato A. Khiutti, D. M. Spooner, S. H. Jansky, and D. A. Halterman First author: All-Russian Institute for Plant Protection, Laboratory of Plant Immunity to Diseases, 3, Podbelsky shosse, St. Petersburg-Pushkin, 196608, Russia; second, third, and fourth authors: United States Department of Agriculture–Agricultural Research Service, Madison, WI, 53726; and second and third authors: Department of Horticulture, University of Wisconsin, Madison 53706. Accepted for publication 8 April 2015. ABSTRACT Khiutti, A., Spooner, D. M., Jansky, S. H., and Halterman, D. A. 2015. intensive. We tested the ability of taxonomy, ploidy, crossing group, Testing taxonomic predictivity of foliar and tuber resistance to Phytoph- breeding system, and geography to predict the presence of foliar and thora infestans in wild relatives of potato. Phytopathology 105:1198-1205. tuber late blight resistance in wild Solanum spp. Significant variation for resistance to both tuber and foliar late blight was found within and Potato late blight, caused by the oomycete phytopathogen Phytoph- among species but there was no discernable predictive power based on thora infestans, is a devastating disease found in potato-growing regions taxonomic series, clade, ploidy, breeding system, elevation, or geo- worldwide. Long-term management strategies to control late blight graphic location. We observed a moderate but significant correlation include the incorporation of host resistance to predominant strains. between tuber and foliar resistance within species. Although previously However, due to rapid genetic changes within pathogen populations, uncharacterized sources of both foliar and tuber resistance were rapid and recurring identification and integration of novel host resistance identified, our study does not support an assumption that taxonomic or traits is necessary.
    [Show full text]
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • Open Ohlsondissertation.Pdf
    The Pennsylvania State University The Graduate School Intercollege Graduate Degree Program in Genetics GENETIC CHARACTERIZATION AND MAPPING OF LATE BLIGHT RESISTANCE GENES IN THE WILD TOMATO ACCESSIONS PI 163245 AND PI 224710 A Dissertation in Genetics by Erik William Ohlson © 2015 Erik William Ohlson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 ii The dissertation of Erik William Ohlson was reviewed and approved* by the following: Majid R. Foolad Professor of Plant Genetics Dissertation Advisor David R. Huff Professor of Turfgrass Breeding and Genetics Chair of Committee Surinder Chopra Professor of Maize Genetics Beth K. Gugino Associate Professor of Vegetable Pathology Timothy W. McNellis Associate Professor of Plant Pathology Yinong Yang Associate Professor of Plant Pathology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Chair of the Intercollege Graduate Degree Program in Genetics *Signatures are on file in the Graduate School. iii ABSTRACT Late blight (LB), caused by the oomycete Phytophthora infestans (Mont.) de Bary is one of the most destructive diseases of tomato and potato worldwide. Development of fungicide resistant and more aggressive P. infestans clonal lineages has emphasized the importance of discovering and incorporating new genetic resistance in tomato cultivars. Although the cultivated tomato, Solanum lycopersicum L., contains limited genetic diversity, several related wild species of tomato are suitable for identification of new desirable traits. Previously, 67 S. pimpinellifolium accessions were screened for LB resistance in field, greenhouse and detached leaflet trials and 12 accessions with strong resistance to LB were identified. In this dissertation, two resistant accessions, PI 163245 and PI 224710, were selected for further genetic characterization.
    [Show full text]
  • Gene RB Cloned from Solanum Bulbocastanum Confers Broad Spectrum Resistance to Potato Late Blight
    Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight Junqi Song*†, James M. Bradeen†‡, S. Kristine Naess‡, John A. Raasch§, Susan M. Wielgus*‡, Geraldine T. Haberlach‡, Jia Liu¶, Hanhui Kuangʈ, Sandra Austin-Phillips§, C. Robin Buell¶, John P. Helgeson‡**, and Jiming Jiang*,** *Department of Horticulture, §Biotechnology Center, and ‡U.S. Department of Agriculture–Agricultural Research Service and Department of Plant Pathology, University of Wisconsin, Madison, WI 53706; ¶The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850; and ʈDepartment of Vegetable Crops, University of California, Davis, CA 95616 Communicated by S. J. Peloquin, University of Wisconsin, Madison, WI, June 6, 2003 (received for review March 1, 2003) Late blight, caused by the oomycete pathogen Phytophthora times sporulates on PT29-derived resistant materials. The resis- infestans, is the most devastating potato disease in the world. tance of the PT29-derived plants is manifested as a slow Control of late blight in the United States and other developed progression of lesion development that substantially decreases countries relies extensively on fungicide application. We previ- the rate of disease development in the plants. This phenotype of ously demonstrated that the wild diploid potato species Solanum general suppression but not elimination of symptom develop- bulbocastanum is highly resistant to all known races of P. infestans. ment has been consistently observed in field tests at various Potato germplasm derived from S. bulbocastanum has shown locations in the United States and in Toluca, Mexico, between durable and effective resistance in the field. Here we report the 1995 and 2002. The late blight resistance associated with the cloning of the major resistance gene RB in S.
    [Show full text]
  • Summary of Risk Assessment of a Deliberate Release
    Notification 6786-01-0191 Summary of the risk assessment carried out by the German competent authority on the genetically modified potato ( Solanum tuberosum ) with altered carbohydrate metabolism within the framework of a proposed deliberate release Berlin, 31 March 2008 Explanatory note to this document: The following text reflects the summary of the risk assessment of (a) genetically modified organism(s) to be used for experimental field trials (deliberate releases) in Germany. The text forms part of the offi- cial authorisation regarding applications for the permit of deliberate releases (field trials) of genetically modified organisms in Germany under the legal framework of Directive 2001/18/EC and the German Gene Technology Act (Gentechnikgesetz, GenTG). The authorisation is issued by the Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, BVL [Federal Office of Consumer Protection and Food Safety ], as the German Competent Authority. It comprises the chapters I. Consent [to the application] II. Provisions [to be respected in execution of the field trials] III. Justification III.1. Requirements for approval according to section 16 GenTG [German Gene Technology Act] III.1.1. Requirements for approval according to section 16 (1) Nr. 1 GenTG III.1.2. Requirements for approval according to section 16 (1) Nr. 3 GenTG III.1.3. Requirements for approval according to section 16 (1) Nr. 2 GenTG III.1.4. Formal requirements according to section 16 (4, 5) GenTG III.2 Appraisal of and reply to objections IV. Costs V. Legal instruction Only the original German document is legally binding. The following passage is a courtesy translation of the chapter III.1.2.
    [Show full text]
  • Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes
    Bot. Rev. (2014) 80:283–383 DOI 10.1007/s12229-014-9146-y Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes David M. Spooner1,6 & Marc Ghislain2 & Reinhard Simon3 & Shelley H. Jansky1 & Tatjana Gavrilenko4,5 1 USDA Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI 53706-1590, USA; e-mail: [email protected] 2 Genomics & Biotechnology Global Program, Centro International de la Papa (CIP), SSA Regional Office, CIP ILRI Campus, Old Naivasha Road, P.O. Box 25171, Nairobi 00603, Kenya; e-mail: [email protected] 3 Integrated IT and Computational Research Unit, International Potato Center, Avenida La Molina 1895, La Molina, Lima, Peru; e-mail: [email protected] 4 Department of Biotechnology, N.I. Vavilov Institute of Plant Industry (VIR), Bolshaya Morskaya Street, 42- 44, 190000 St. Petersburg, Russia; e-mail: [email protected] 5 St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia 6 Author for Correspondence; e-mail: [email protected] Published online: 19 December 2014 # The New York Botanical Garden (outside the USA) 2014 Abstract The common potato, Solanum tuberosum L., is the third most important food crop and is grown and consumed worldwide. Indigenous cultivated (landrace) potatoes and wild potato species, all classified as Solanum section Petota, are widely used for potato improvement. Members of section Petota are broadly distributed in the Americas from the southwestern United States to the Southern Cone of South America. The latest comprehensive taxonomic treatment of section Petota was pub- lished by John (Jack) Hawkes in 1990; it recognized seven cultivated species and 228 wild species, divided into 21 taxonomic series.
    [Show full text]
  • Stacking Resistance Genes in Multiparental Interspecific Potato
    agronomy Article Stacking Resistance Genes in Multiparental Interspecific Potato Hybrids to Anticipate Late Blight Outbreaks Elena V. Rogozina 1 , Mariya P. Beketova 2 , Oksana A. Muratova 2 , Mariya A. Kuznetsova 3 and Emil E. Khavkin 2,* 1 N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia; [email protected] 2 Institute of Agricultural Biotechnology, Moscow 127550, Russia; [email protected] (M.P.B.); [email protected] (O.A.M.) 3 Institute of Phytopathology, Bol’shiye Vyazemy, Moscow 143050, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-495-417-9262 Abstract: Stacking (pyramiding) several resistance genes of diverse race specificity in one and the same plant by hybridization provides for high and durable resistance to major diseases, such as potato late blight (LB), especially when breeders combine highly efficient genes for broad-spectrum resistance that are novel to the intruding pathogens. Our collection of potato hybrids manifesting long-lasting LB resistance comprises, as a whole, the germplasm of 26 or 22 Solanum species (as treated by Bukasov and Hawkes, respectively), with up to 8–9 species listed in the pedigree of an individual hybrid. This collection was screened with the markers of ten genes for race-specific resistance to Phytophthora infestans (Rpi genes) initially identified in S. demissum (R1, R2, R3a, R3b, and R8), S. bulbocastanum/S. stoloniferum (Rpi-blb1/ Rpi-sto1, Rpi-blb2, Rpi-blb3) and S. venturii (Rpi- vnt1). The hybrids comprised the markers for up to four-six Rpi genes per plant, and the number of markers was significantly related to LB resistance.
    [Show full text]
  • Redalyc.Subspecies Boundaries of the Wild Potatoes Solanum
    Acta Botánica Mexicana ISSN: 0187-7151 [email protected] Instituto de Ecología, A.C. México Rodríguez, Aarón; Spooner, David M. Subspecies boundaries of the wild potatoes Solanum bulbocastanum and S. Cardiophyllum based on morphological and nuclear RFLP data Acta Botánica Mexicana, núm. 61, diciembre, 2002, pp. 9 - 25 Instituto de Ecología, A.C. Pátzcuaro, México Available in: http://www.redalyc.org/articulo.oa?id=57406102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Botanica Mexicana (2002), 61: 9-25 SUBSPECIES BOUNDARIES OF THE WILD POTATOES SOLANUM BULBOCASTANUM AND S. CARDIOPHYLLUM BASED ON MORPHOLOGICAL AND NUCLEAR RFLP DATA AARÓN RODRÍGUEZ Departamento de Botánica y Zoología Centro Universitario de Ciencias Biológicas y Agropecuarias Universidad de Guadalajara Apartado postal 139 45101 Zapopan, Jalisco, México Y DAVID M. SPOONER Vegetable Crops Research Unit Agricultural Research Unit, U.S.D.A. Department of Horticulture University of Wisconsin Madison, Wisconsin, 53706-1590, U.S.A. ABSTRACT Morphological data and single- to low-copy nuclear DNA restriction enzyme site data were used to test subspecies circumscriptions of Solanum bulbocastanum and S. cardiophyllum. A prior chloroplast DNA analysis showed these species to be part of two main clades: 1. S. bulbocastanum subsp. bulbocastanum, S. bulbocastanum subsp. dolichophyllum, S. bulbocastanum subsp. partitum, S. cardiophyllum subsp. cardiophyllum and S. cardiophyllum subsp. lanceolatum, and 2. S. cardiophyllum subsp. ehrenbergii and other Mexican diploid species. The nuclear DNA and morphological data showed S.
    [Show full text]
  • Plant Inventory No. 155 UNITED STATES DEPARTMENT of AGRICULTURE
    Plant Inventory No. 155 UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D. C, September 1954 PLANT MATERIAL INTRODUCED BY THE SECTION OF PLANT INTRODUCTION, HORTICULTURAL CROPS RESEARCH BRANCH, AGRICULTURAL RESEARCH SERVICE, JANUARY 1 TO DECEMBER 31, 1947 (NOS. 157147 TO 161666) CONTENTS Page Inventory 3 Index of common and scientific names 123 This inventory, No. 155, lists the plant material (Nos. 157147 to 161666) received by the Section of Plant Introduction during the period from January 1 to December 31, 1947. It is a historical record of plant material introduced for Department and other specialists, and is not to be considered as a list of plant material for distribution. This unit prior to 1954 was known as the Division of Plant Explora- tion and Introduction, Bureau of Plant Industry, Soils, and Agricul- tural Engineering, Agricultural Kesearch Administration, United States Department of Agriculture. PAUL G. RUSSELL, Botanist. Plant Industry Station, Beltsville, Md. LIBRARY CURRENT SERJAL RECORD * SFP151954 * u. s. ocMimnr or MMMIUK i 291225—54 ' ?\ A n o J e: e i INVENTORY 157147. SACCHARUM SPONTANEUM L. Poaceae. From Tanganyika. Seeds presented by the Tanganyika Department of Agri- culture, Tukuyu. Received Jan. 1, 1947. 157148. VIGNA VEXILLATA (L.) Rich. Fabaceae. From Venezuela. Seeds presented by the Ministerio de Agricultura, Maracay* Received Jan. 7, 1947. 157149 to 157153. From Florida. Plants growing at the United States Plant Introduction Garden, Coconut Grove. Numbered Jan. 20, 1947. 157149. ANTHURIUM LONGILAMINATUM Engl. Araceae. A short-stemmed species from southern Brazil, with thick, leathery leaves about 2 feet long. The purplish spadix, up to 5 inches long, is borne on a stalk 1 foot long.
    [Show full text]
  • Comparison of Gene Expression in Solanum Bulbocastanum Infected with Virulent and Avirulent Isolates of Meloidogyne Chitwoodi
    Plant Protection Science – 2002 Comparison of Gene Expression in Solanum bulbocastanum Infected with Virulent and Avirulent Isolates of Meloidogyne chitwoodi J. WISHART*, M. S. PHILLIPS, A. PATERSON and V. C. BLOK Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland *E-mail: [email protected] Abstract Resistance to root knot nematode M. chitwoodi has been identified in the wild tuber-bearing Solanum species, S. bulbo- castanum. Three pathotypes were identified suggesting at least two different genetic factors for virulence and resistance in the pathogen and the host species, respectively. Roots of S. bulbocastanum were infested with two isolates of M. chitwoodi differing in virulence. The infection process was monitored by histological examination of roots allowing time points to be identified. cDNA libraries were constructed from infected root tissue using Suppression Subtractive Hybridisation (SSH) to enrich for transcripts from either compatible or incompatible interactions, at three days and seven days post infection. Both plant and nematode genes, which may be important during the host/parasite interaction, were identified. Keywords: Meloidogyne chitwoodi; Solanum bulbocastanum; suppression subtractive hybridisation; virulence genes INTRODUCTION of either the avirulent M. chitwoodi population Cbd-V5 or 800J2s of the virulent M. chitwoodi population Suppression subtractive hybridisation (DIATCHENKO Cbd-V6. After harvesting at 3 days, 7 days, 10 days, et al. 1996) is a powerful technique that enables re- 17 days and 21 days, roots of 3 plants were stained searchers to compare two populations of mRNA and with acid fuchsin (DAYKIN & HUSSEY 1985) and 7 roots obtain clones of genes that are expressed in one popu- were stored at –80°C.
    [Show full text]
  • Research Design and General Objectives
    Forest quality in the southwest of Mexico City. Assessment towards ecological restoration of ecosystem services Thesis submitted in partial fulfilment of the requirements of the degree Doctor rer. nat. of the Faculty of Forest and Environmental Sciences, Albert-Ludwigs-Universität Freiburg im Breisgau, Germany By Víctor Ávila-Akerberg Freiburg im Breisgau, Germany 2009 Dean: Prof. Dr. Heinz Rennenberg First supervisor: Prof. Dr. Werner Konold Second supervisor: Prof. Dr. Albert Reif Date of disputation: December 9th 2009 Acknowledgements This thesis is dedicated to the forests in the area under study and to my family and friends! Thanks to Dr. Werner Konold, for accepting me as a PhD student, having trusted on my research, for always being there whenever I needed him, and for encouraging and supporting my trips to courses and conferences around the world, vielen Dank! I would like to thank Dr. Albert Reif for being my second supervisor and for the given advice and comments on the thesis. I would like to thank Dr. Lucia Almeida, for having taught me so many things, for believing in me and together having achieved so much in the Magdalena river watershed. My great appreciation goes to Dr. Jorge Meave del Castillo, for advising me and have shared part of his enormous experience and patience on scientific writing. Special thanks go to Esther Muschelknautz, for always being there to answer the administrative questions, attending and organizing the milestones and the extra- curricular courses in the International PhD Program “Forestry in transition”. During the last three years of my life, I have met and shared moments with many wonderful persons.
    [Show full text]