The Cool Supergiant Population of the Massive Young Star Cluster RSGC1

Total Page:16

File Type:pdf, Size:1020Kb

The Cool Supergiant Population of the Massive Young Star Cluster RSGC1 The cool supergiant population of the massive young star cluster RSGC1 Ben Davies (RIT), Don F. Figer (RIT), Casey J. Law (Amsterdam), Rolf-Peter Kudritzki (IfA, Hawaii), Francisco Najarro (CSIC, Madrid), Artemio Herrero (IAC, Spain), John W. MacKenty (STScI) . We present new high-resolution near-IR spectroscopy and OH maser observations to investigate the population of cool luminous stars of the young massive Galactic cluster RSGC1. Using the 2.293micron CO-bandhead feature, we make high-precision radial velocity measurements of 16 of the 17 candidate Red Supergiants (RSGs) identified by Figer et al. We show that F16 and F17 are foreground stars, while we confirm that the rest are indeed physically-associated RSGs. We determine that Star F15, also associated with the cluster, is a Yellow Hypergiant based on its luminosity and spectroscopic similarity to $rho$~Cas. Using the cluster's radial velocity, we have derived the kinematic distance to the cluster and revisited the stars' temperatures and luminosities. We find a larger spread of luminosities than in the discovery paper, consistent with a cluster age 30% older than previously thought (12$pm$2Myr), and a total initial mass of $(3pm1) times 10^{4}$msun. The spatial coincidence of the OH maser with F13, combined with similar radial velocities, is compelling evidence that the two are related. Combining our results with recent SiO and H$_2$O maser observations, we find that those stars with maser emission are the most luminous in the cluster. From this we suggest that the maser-active phase is associated with the end of the RSG stage, when the luminosity-mass ratios are at their highest. Reference: astro-ph/0711.4757 Status: Manuscript has been accepted Weblink: http://arxiv.org/abs/0711.4757v1 Comments: Accepted for publication in ApJ Email: [email protected].
Recommended publications
  • GIANO-TNG Spectroscopy of Red Supergiants in the Young Star Cluster RSGC3 L
    A&A 585, A14 (2016) Astronomy DOI: 10.1051/0004-6361/201526649 & c ESO 2015 Astrophysics GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC3 L. Origlia1, E. Oliva2, N. Sanna2, A. Mucciarelli3, E. Dalessandro3, S. Scuderi4, C. Baffa2, V. Biliotti2, L. Carbonaro2, G. Falcini2, E. Giani2, M. Iuzzolino2, F. Massi2, M. Sozzi2, A. Tozzi2, A. Ghedina5, F. Ghinassi5, M. Lodi5, A. Harutyunyan5, and M. Pedani5 1 INAF–Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF–Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 3 University of Bologna, Physics & Astronomy Dept., Viale Berti Pichat 6-2, 40127 Bologna, Italy 4 INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 5 INAF–TNG, ORM Astronomical Observatory, 38787 Garafia, TF, Spain Received 1 June 2015 / Accepted 22 September 2015 ABSTRACT Aims. The Scutum complex in the inner disk of the Galaxy has a number of young star clusters dominated by red supergiants that are heavily obscured by dust extinction and observable only at infrared wavelengths. These clusters are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods. During the technical commissioning and as a first science verification of the GIANO spectrograph at the Telescopio Nazionale Galileo, we secured high-resolution (R ' 50 000) near-infrared spectra of five red supergiants in the young Scutum cluster RSGC3. Results. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several tens of atomic and molecular lines that were suitable for determining chemical abundances.
    [Show full text]
  • Sio and H2O Maser Observations of Red Supergiants in Star Clusters
    PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. SiO and H2O Maser Observations of Red Supergiants in Star Clusters Embedded in the Galactic Disk Shuji Deguchi1, Jun-ichi Nakashima2 Yong Zhang2, Selina S. N. Chong2, Kazutaka Koike1 and Sun Kwok2 1Nobeyama Radio Observatory, National Astronomical Observatory, and Graduate University for Advanced Studies, Minamimaki, Minamisaku, Nagano 384-1305 2Department of Physics, University of Hong Kong, Pokfulam Rd, Hong Kong, China (PASJ 62, No. 2, the April 25 2010 issue in press) (Received 2009 October 9; accepted 2010 February 1) Abstract We present the result of radio observations of red supergiants in the star cluster, Stephenson’s #2, and candidates for red supergiants in the star clusters, Mercer et al. (2005)’s #4, #8, and #13, in the SiO and H2O maser lines. The Stephenson’s #2 cluster and nearby aggregation at the South-West contain more than 15 red supergiants. We detected one at the center of Stephenson’s #2 and three in the south-west aggregation in the SiO maser line, and three of these 4 were also detected in the H2O maser line. The average radial velocity of the 4 detected objects is 96 km s−1, giving a kinematic distance of 5.5 kpc, which locates this cluster near the base of the Scutum-Crux spiral arm. We also detected 6 SiO emitting objects associated with the other star clusters. In addition, mapping observations in the CO J = 1–0 line toward these clusters revealed that an appreciable amount of molecular gas still remains around Stephenson’s #2 cluster in contrast to the prototypical red-supergiant cluster, Bica et al.’s #122.
    [Show full text]
  • Exploring the Mass Loss Histories of the Red Supergiants
    Draft version August 5, 2020 Typeset using LATEX preprint style in AASTeX62 Exploring the Mass Loss Histories of the Red Supergiants∗ Roberta M. Humphreys1 — Greta Helmel1 — Terry J. Jones1 — Michael S. Gordon2 — 1Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455, USA 2USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035, USA (Received; Revised; Accepted) Submitted to AJ ABSTRACT We report mid- to far-infrared imaging and photomety from 7 to 37µm with SOFIA/FORCAST and 2µm adaptive optics imaging with LBTI/LMIRCam of a large sample of red supergiants (RSGs) in four Galactic clusters; RSGC1, RSGC2=Stephenson 2, RSGC3, and NGC 7419. The red supergiants in these clus- ters cover their expected range in luminosity and initial mass from 9 to more than ≈ 25 M⊙. The population includes examples of very late-type RSGs such as MY Cep which may be near the end of the RSG stage, high mass losing maser sources, yellow hypergiants and post-RSG candidates. Many of the stars and almost all of the most luminous have spectral energy distributions (SEDs) with extended infrared excess ra- diation at the longest wavelengths. To best model their SEDs we use DUSTY with a variable radial density distribution function to estimate their mass loss rates. Our M˙ – luminosity relation for 42 RSGs basically follows the classical de Jager curve, but 5 at luminosities below 10 L⊙ we find a significant population of red supergiants with arXiv:2008.01108v1 [astro-ph.SR] 3 Aug 2020 5 M˙ below the de Jager relation. At luminosities above 10 L⊙ there is a rapid transi- tion to higher mass loss rates that approximates and overlaps the de Jager curve.
    [Show full text]
  • The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (As Supergigantes Vermelhas No Aglomerado Estelar Supermassivo Westerlund 1)
    Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Aura de las Estrellas Ram´ırezAr´evalo The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (As Supergigantes Vermelhas no Aglomerado Estelar Supermassivo Westerlund 1) S~aoPaulo 2018 Aura de las Estrellas Ram´ırezAr´evalo The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (As Supergigantes Vermelhas no Aglomerado Estelar Supermassivo Westerlund 1) Disserta¸c~aoapresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısica e Ci^enciasAtmosf´ericasda Universidade de S~aoPaulo como requisito parcial para a ob- ten¸c~aodo t´ıtulode Mestre em Ci^encias. Area´ de Concentra¸c~ao:Astronomia Orientador: Prof. Dr. Augusto Damineli Neto Vers~aoCorrigida. O original encontra- se dispon´ıvel na Unidade. S~aoPaulo 2018 To my parents, Eustorgio and Esmeralda, to whom I owe everything. Acknowledgements This dissertation was possible thanks to the support of many people, to whom I owe not only this manuscript and the work behind it, but many years of personal and professional growth. In the first place I thank my parents, Eustorgio and Esmeralda, for all the unconditional love and the sacrifices they have made to make me the woman I am today, for never leaving me alone no matter how far we are, and for all the support they have given me throughout the years, that has allowed me to fulfill my dreams. This accomplishment is theirs. Pap´a y mam´a,este logro es de ustedes. I thank Alex, my companion during this phase, for his love, patience and priceless support especially in those difficult times, when he would cheer me up.
    [Show full text]
  • Investigation of the Intermediate and High End Initial Mass Function As Probed by Near-Infrared Selected Stellar Clusters Christine Trombley
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 3-1-2013 Investigation of the intermediate and high end initial mass function as probed by near-infrared selected stellar clusters Christine Trombley Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Trombley, Christine, "Investigation of the intermediate and high end initial mass function as probed by near-infrared selected stellar clusters" (2013). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. INVESTIGATION OF THE INTERMEDIATE AND HIGH END INITIAL MASS FUNCTION AS PROBED BY NEAR-INFRARED SELECTED STELLAR CLUSTERS By Christine M. Trombley A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D. in Astrophysical Sciences and Technology, in the College of Science, Rochester Institute of Technology March 2013 Approved by ________________________________________________________________ Prof. Andrew Robinson Date Director, Astrophysical Sciences and Technology i ASTROPHYSICAL SCIENCES AND TECHNOLOGY COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph.D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of Christine M. Trombley has been examined and approved by the dissertation committee as satisfactory for the dissertation requirement for the Ph.D. degree in Astrophysical Sciences and Technology. Dr. Donald F. Figer, Thesis Advisor i Dr. Karl Hirschman, Committee Chair Dr. Judith L. Pipher Dr. Michael Richmond Date ___________________________________ ii Abstract Young stellar clusters serve as powerful natural laboratories for studying the intermediate to high mass end of the initial mass function.
    [Show full text]
  • The Main Sequence of Three Red Supergiant Clusters
    Mon. Not. R. Astron. Soc. 000, 1{8 (2012) Printed 3 August 2018 (MN LATEX style file v2.2) The Main Sequence of three Red Supergiant Clusters Dirk Froebrich1?, Alexander Scholz2;3 1Centre for Astrophysics and Planetary Science, University of Kent, Canterbury, CT2 7NH, United Kingdom 2Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland 3School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, United Kingdom Received today / Accepted tomorrow ABSTRACT Massive clusters in our Galaxy are an ideal testbed to investigate the properties and evolution of high mass stars. They provide statistically significant samples of massive stars of uniform ages. To accurately determine the intrinsic physical properties of these stars we need to establish the distances, ages and reddening of the clusters. One avenue to achieve this is the identification and characterisation of the main sequence members of red supergiant rich clusters. Here we utilise publicly available data from the UKIDSS galactic plane survey. We show that point spread function photometry in conjunction with standard photomet- ric decontamination techniques allows us to identify the most likely main sequence members in the 10-20 Myr old clusters RSGC 1, 2, and 3. We confirm the previous detection of the main sequence in RSGC 2 and provide the first main sequence detec- tion in RSGC 1 and RSGC 3. There are in excess of 100 stars with more than 8 M identified in each cluster. These main sequence members are concentrated towards the spectroscopically confirmed red supergiant stars. We utilise the J−K colours of the bright main sequence stars to determine the K-band extinction towards the clusters.
    [Show full text]
  • The Ṁass-‐Loss of Red Supergiants
    The Ṁass-loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline • IntroducJon • MoJvaon • Objects • Method • Need for SOFIA/FORCAST data • ReducJon 9/12/13 3 Red Supergiant (RSG) • Luminosity class I • K or M stars • Enormous radius • Likely to be supernova progenitor • Cool surface Temperature (3500-4500 K) • Extremely bright in near-IR 9/12/13 4 Object 1: RSGC1 14 RSGs Located at the base of the Scutum-Crux Galactic arm Figer et al. 2006 9/12/13 5 Object 2: RSGC 2 (Stephenson 2(1990)) 26 RSGs (RGB composite using 2MASS J (Blue) H (Green) K (Red) 3 bands) Red rectangles: SOFIA FOV Davies et al. 2007 (Spitzer/GLIMPSE data) 9/12/13 6 Properties of RSGC 1&2 Approximated location of RSGC 1&2 At the end of the MW long bar 9/12/13 7 Motivation • The mass-loss rate is the key ingredient to understand the end stages of massive stars. • The final stages of massive star evolution can enrich our knowledge about a multitude of astrophysical processes. 1. which stars produce neutron stars and black holes 2. how galaxies are seeded with heavy elements • Late-stage massive star evolution remains poorly understood. 9/12/13 8 Question • What is the mass-loss rate of RSGs as a funcJon of age and inial mass? • How much mass is lost in the RSG phase? 9/12/13 9 Difficulty in Observation • The steepness of the initial mass function and short lifetimes make massive stars rare.
    [Show full text]
  • Another Cluster of Red Supergiants Close to RSGC1
    Open Research Online The Open University’s repository of research publications and other research outputs Another cluster of red supergiants close to RSGC1 Journal Item How to cite: Negueruela, I.; González-Fernández, C.; Marco, A.; Clark, J. S. and Martínez-Núñez, S. (2010). Another cluster of red supergiants close to RSGC1. Astronomy & Astrophysics, 513, article no. A74. For guidance on citations see FAQs. c 2010 ESO Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1051/0004-6361/200913373 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk A&A 513, A74 (2010) Astronomy DOI: 10.1051/0004-6361/200913373 & c ESO 2010 Astrophysics Another cluster of red supergiants close to RSGC1 I. Negueruela1, C. González-Fernández1 ,A.Marco1,J.S.Clark2, and S. Martínez-Núñez1 1 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain e-mail: [email protected] 2 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK Received 29 September 2009 / Accepted 5 January 2010 ABSTRACT Context. Recent studies have revealed massive star clusters in a region of the Milky Way close to the tip of the Long Bar. These clusters are heavily obscured and are characterised by a population of red supergiants. Aims. We analyse a previously unreported concentration of bright red stars ∼16 away from the cluster RSGC1 Methods.
    [Show full text]
  • The Circumstellar Environment and Evolutionary Status of the Supergiant B\[E\] Star Wd1-9
    Astronomy & Astrophysics manuscript no. w9˙35 c ESO 2013 October 15, 2013 The circumstellar environment and evolutionary state of the supergiant B[e] star Wd1-9? J.S. Clark1, B. W. Ritchie1, and I. Negueruela2 1 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom 2 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Senal,˜ Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain Accepted ??? Received ??? ABSTRACT Context. Historically, supergiant (sg)B[e] stars have been difficult to include in theoretical schemes for the evolution of massive OB stars. Aims. The location of Wd1-9 within the coeval starburst cluster Westerlund 1 means that it may be placed into a proper evolutionary context and we therefore aim to utilise a comprehensive multiwavelength dataset to determine its physical properties and consequently its relation to other sgB[e] stars and the global population of massive evolved stars within Wd1. Methods. Multi-epoch R- and I-band VLT/UVES and VLT/FORS2 spectra are used to constrain the properties of the circumstellar gas, while an ISO-SWS spectrum covering 2.45–45µm is used to investigate the distribution, geometry and composition of the dust via a semi-analytic irradiated disk model. Radio emission enables a long term mass-loss history to be determined, while X-ray obser- vations reveal the physical nature of high energy processes within the system. Results. Wd1-9 exhibits the rich optical emission line spectrum that is characteristic of sgB[e] stars. Likewise its mid-IR spectrum resembles those of the LMC sgB[e] stars R66 and 126, revealing the presence of equatorially concentrated silicate dust, with a mass −4 −4 −1 of ∼10 M .
    [Show full text]
  • New Candidate Massive Clusters from 2MASS
    Mon. Not. R. Astron. Soc. 000, 1{7 (2012) Printed 29 March 2021 (MN LATEX style file v2.2) New Candidate Massive Clusters from 2MASS Dirk Froebrich1? 1 Centre for Astrophysics and Planetary Science, University of Kent, Canterbury, CT2 7NH, United Kingdom Accepted. Received. ABSTRACT Massive stars are important for the evolution of the interstellar medium. The detailed study of their properties (such as mass loss, rotation, magnetic fields) is enor- mously facilitated by samples of these objects in young massive galactic star clusters. Using 2MASS we have searched for so far unknown candidates of red supergiant clus- ters along the Galactic Plane. Utilising deep high resolution UKIDSS GPS and VISTA VVV data to study colour-magnitude diagrams, we uncover six new massive cluster candidates in the inner Galaxy. If spectroscopically confirmed as real clusters, two of them could be part of the Scutum-Complex. One cluster candidate has a number of potential red supergiant members comparable to RSGC 1 and 3. Our investigation of UKIDSS data reveals for the first time the main sequence of the massive cluster RSGC 2. The stars of the sequence show an increased projected density at the same position as the known red supergiants in the cluster and have E(J − K) = 1:6 mag. This either indicates an unusual extinction law along the line of sight or a much lower near infrared extinction to the cluster than previously estimated in the literature. We suggest that psf-photometry in UKIDSS images might be able to uncover the main sequence of other RSGC clusters. Key words: open clusters and associations: general; galaxies: star clusters: general 1 INTRODUCTION clusters are usually heavily obscured but have the advan- tage of being relatively nearby compared to extragalactic The pivotal role of massive stars in the evolution of galax- systems, hence allowing us to study individual stars (or sys- ies is undisputed.
    [Show full text]
  • Measuring the Binary Fraction of Massive Stars Using Young Star Clusters: the Resolved Cluster RSGC1
    MNRAS 000,1{9 (2017) Preprint 21 April 2017 Compiled using MNRAS LATEX style file v3.0 Measuring the binary fraction of massive stars using young star clusters: the resolved cluster RSGC1 Ben Davies1,? J.J. Eldridge2, Emma R. Beasor1, Nate Bastian1, Rolf-Peter Kudritzki3 1Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park ic2, 146 Brownlow Hill, Liverpool L3 5RF, UK 2Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand 3Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present a new method to measure the binary fraction of a star cluster by comparing its dynamical mass Mdyn to the photometric mass Mphot as determined from the near-infrared flux. The latter quantity is extremely dependent on the number of Red Supergiants (RSGs) per unit cluster mass, which itself is very sensitive to the binary fraction fbin of the stars in the cluster which had the same initial mass as those currently in the RSG phase. In this technique we employ two species of population synthesis models, one consisting of single stars and the other of binaries, to obtain two estimates of Mphot. We then combine the two populations, adjusting fbin to optimise the agreement between Mdyn and the total Mphot. In this paper we use the resolved Milky Way cluster RSGC1 as our first test object. Formally, the derived binary fraction +27 for the stars of the same mass as the RSGs, in this case ∼18M , is fbin=37−23.
    [Show full text]
  • Another Cluster of Red Supergiants Close to RSGC1
    Astronomy & Astrophysics manuscript no. aa13373 c ESO 2018 November 18, 2018 Another cluster of red supergiants close to RSGC1 I. Negueruela1, C. Gonz´alez-Fern´andez1 , A. Marco1, J. S. Clark2, and S. Mart´ınez-N´u˜nez1 1 Departamento de F´ısica, Ingenier´ıa de Sistemas y Teor´ıa de la Se˜nal, Universidad de Alicante, Apdo. 99, E03080 Alicante, Spain e-mail: [email protected] 2 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK Preprint online version: November 18, 2018 ABSTRACT Context. Recent studies have revealed massive star clusters in a region of the Milky Way close to the tip of the Long Bar. These clusters are heavily obscured and are characterised by a population of red supergiants. Aims. We analyse a previously unreported concentration of bright red stars ∼ 16′ away from the cluster RSGC1 Methods. We utilised near IR photometry to identify candidate red supergiants and then K-band spectroscopy of a sample to charac- terise their properties. Results. We find a compact clump of eight red supergiants and five other candidates at some distance, one of which is spectro- scopically confirmed as a red supergiant. These objects must form an open cluster, which we name Alicante 8. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or UKIDSS near-IR photometry. From the analysis of the red supergiants, we infer an extinction AKS = 1.9 and an age close to 20 Myr. Conclusions. Though this cluster is smaller than the three known previously, its properties still suggest a mass in excess of 10 000M⊙.
    [Show full text]