A Dolichoderine Ant That Constructs Traps to Ambush Prey Collectively: Convergent Evolution with a Myrmicine Genus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Community Analysis of Microbial Sharing and Specialization in A
Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity. -
Redalyc.Nidification of Polybia Rejecta (Hymenoptera: Vespidae)
Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Magalhães de Souza, Marcos; Porfiro Pires, Epifânio; Prezoto, Fábio Nidification of Polybia rejecta (Hymenoptera: Vespidae) associated to Azteca chartifex (Hymenoptera: Formicidae) in a fragment of Atlantic Forest, in the state of Minas Gerais, southeastern Brazil Biota Neotropica, vol. 13, núm. 3, julio-septiembre, 2013, pp. 390-392 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199128991038 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 13, no. 3 Nidification of Polybia rejecta (Hymenoptera: Vespidae) associated to Azteca chartifex (Hymenoptera: Formicidae) in a fragment of Atlantic Forest, in the state of Minas Gerais, southeastern Brazil Marcos Magalhães de Souza1, Epifânio Porfiro Pires2,4 & Fábio Prezoto3 1Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas – IFSULDEMINAS, Campus Inconfidentes, CEP 37576-000, Inconfidentes, MG, Brazil 2Departamento de Entomologia, Universidade Federal de Lavras – UFLA, CEP 37200-000, Lavras, MG, Brazil 3Departamento de Zoologia, Universidade Federal de Juiz de Fora – UFJF, CEP 36036-900, Juiz de Fora, MG, Brazil 4Corresponding author: Epifânio Porfiro Pires, e-mail: [email protected] -
DACETON Armigerum. Formica Armigera Latreille, 1802C: 244, Pl. 9, Fig
BARRY BOLTON’S ANT CATALOGUE, 2020 DACETON armigerum. Formica armigera Latreille, 1802c: 244, pl. 9, fig. 58 (w.) (no state data, probably Brazil). Type-material: syntype? workers (number not stated). Type-locality: Brazil: (no further data) (“collection du Stathouder”). Type-depository: MNHN? (not confirmed). Smith, F. 1853: 226 (q.m.); Wheeler, G.C. & Wheeler, J. 1955a: 122 (l.). Combination in Atta: Guérin-Méneville, 1844a: 421; combination in Daceton: Perty, 1833: 136; Smith, F. 1853: 226. Status as species: Perty, 1833: 136; Guérin-Méneville, 1844a: 421; Smith, F. 1853: 226; Smith, F. 1858b: 160; Roger, 1862c: 290; Roger, 1863b: 40; Mayr, 1884: 38; Mayr, 1886c: 360; Dalla Torre, 1893: 149; Emery, 1894c: 140; Forel, 1895b: 136; Forel, 1907e: 3; Crawley, 1916b: 372; Mann, 1916: 452; Wheeler, W.M. 1916c: 9; Wheeler, W.M. 1923a: 4; Emery, 1924d: 316; Borgmeier, 1927c: 120; Borgmeier, 1934: 103; Kempf, 1961b: 514; Wilson, 1962b: 403; Kempf, 1970b: 335; Kempf, 1972a: 95; Bolton, 1995b: 168; Gronenberg, 1996: 2012; Bolton, 1999: 1655; Bolton, 2000: 18; Azorsa & Sosa- Calvo, 2008: 30; Sosa-Calvo, et al. 2010: 39 (in key); Bezděčková, et al. 2015: 117; Fernández & Serna, 2019: 851. Senior synonym of cordata: Roger, 1862c: 290; Mayr, 1863: 406; Roger, 1863b: 40; Dalla Torre, 1893: 149; Forel, 1895b: 136; Emery, 1924d: 317; Borgmeier, 1927c: 120; Kempf, 1972a: 95; Bolton, 1995b: 168. [Note: Mayr, 1863: 406, gives cordata as senior synonym, but armigerum has priority (Roger, 1863b: 40).] Distribution: Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, Trinidad, Venezuela. boltoni. Daceton boltoni Azorsa & Sosa-Calvo, 2008: 32, figs. 2, 4, 6, 8-16, 20-22 (w.) PERU, BRAZIL (Amazonas). -
Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check list of ground-dwelling ants (Hymenoptera: PECIES S Formicidae) of the eastern Acre, Amazon, Brazil OF Patrícia Nakayama Miranda 1,2*, Marco Antônio Oliveira 3, Fabricio Beggiato Baccaro 4, Elder Ferreira ISTS 1 5,6 L Morato and Jacques Hubert Charles Delabie 1 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza. BR 364 – Km 4 – Distrito Industrial. CEP 69915-900. Rio Branco, AC, Brazil. 2 Instituo Federal do Acre, Campus Rio Branco. Avenida Brasil 920, Bairro Xavier Maia. CEP 69903-062. Rio Branco, AC, Brazil. 3 Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG 818, Km 6. CEP 35690-000. Florestal, MG, Brazil. 4 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ecologia. CP 478. CEP 69083-670. Manaus, AM, Brazil. 5 Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau, Laboratório de Mirmecologia – CEPEC/CEPLAC. Caixa Postal 07. CEP 45600-970. Itabuna, BA, Brazil. 6 Universidade Estadual de Santa Cruz. CEP 45650-000. Ilhéus, BA, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The ant fauna of state of Acre, Brazilian Amazon, is poorly known. The aim of this study was to compile the species sampled in different areas in the State of Acre. An inventory was carried out in pristine forest in the municipality of Xapuri. This list was complemented with the information of a previous inventory carried out in a forest fragment in the municipality of Senador Guiomard and with a list of species deposited at the Entomological Collection of National Institute of Amazonian Research– INPA. -
Biodiversity of the Southern Rupununi Savannah World Wildlife Fund and Global Wildlife Conservation
THIS REPORT HAS BEEN PRODUCED IN GUIANAS COLLABORATION VERZICHT APERWITH: Ç 2016 Biodiversity of the Southern Rupununi Savannah World Wildlife Fund and Global Wildlife Conservation 2016 WWF-Guianas Global Wildlife Conservation Guyana Office PO Box 129 285 Irving Street, Queenstown Austin, TX 78767 USA Georgetown, Guyana [email protected] www.wwfguianas.org [email protected] Text: Juliana Persaud, WWF-Guianas, Guyana Office Concept: Francesca Masoero, WWF-Guianas, Guyana Office Design: Sita Sugrim for Kriti Review: Brian O’Shea, Deirdre Jaferally and Indranee Roopsind Map: Oronde Drakes Front cover photos (left to right): Rupununi Savannah © Zach Montes, Giant Ant Eater © Gerard Perreira, Red Siskin © Meshach Pierre, Jaguar © Evi Paemelaere. Inside cover photo: Gallery Forest © Andrew Snyder. OF BIODIVERSITYTHE SOUTHERN RUPUNUNI SAVANNAH. Guyana-South America. World Wildlife Fund and Global Wildlife Conservation 2016 This booklet has been produced and published thanks to: 1 WWF Biodiversity Assessment Team Expedition Southern Rupununi - Guyana. The Southern Rupununi Biodiversity Survey Team / © WWF - GWC. Biodiversity Assessment Team (BAT) Survey. This programme was created by WWF-Guianas in 2013 to contribute to sound land- use planning by filling biodiversity data gaps in critical areas in the Guianas. As far as possible, it also attempts to understand the local context of biodiversity use and the potential threats in order to recommend holistic conservation strategies. The programme brings together local knowledge experts and international scientists to assess priority areas. With each BAT Survey, species new to science or new country records are being discovered. This booklet acknowledges the findings of a BAT Survey carried out during October-November 2013 in the southern Rupununi savannah, at two locations: Kusad Mountain and Parabara. -
Hymenoptera: Formicidae)
Myrmecological News 20 25-36 Online Earlier, for print 2014 The evolution and functional morphology of trap-jaw ants (Hymenoptera: Formicidae) Fredrick J. LARABEE & Andrew V. SUAREZ Abstract We review the biology of trap-jaw ants whose highly specialized mandibles generate extreme speeds and forces for predation and defense. Trap-jaw ants are characterized by elongated, power-amplified mandibles and use a combination of latches and springs to generate some of the fastest animal movements ever recorded. Remarkably, trap jaws have evolved at least four times in three subfamilies of ants. In this review, we discuss what is currently known about the evolution, morphology, kinematics, and behavior of trap-jaw ants, with special attention to the similarities and key dif- ferences among the independent lineages. We also highlight gaps in our knowledge and provide suggestions for future research on this notable group of ants. Key words: Review, trap-jaw ants, functional morphology, biomechanics, Odontomachus, Anochetus, Myrmoteras, Dacetini. Myrmecol. News 20: 25-36 (online xxx 2014) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 2 September 2013; revision received 17 December 2013; accepted 22 January 2014 Subject Editor: Herbert Zettel Fredrick J. Larabee (contact author), Department of Entomology, University of Illinois, Urbana-Champaign, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. E-mail: [email protected] Andrew V. Suarez, Department of Entomology and Program in Ecology, Evolution and Conservation Biology, Univer- sity of Illinois, Urbana-Champaign, 320 Morrill Hall, 505 S. -
Rainforest Canopy Ants: the Implications of Territoriality and Predatory Behavior Alain Dejean1,2* • Bruno Corbara3 • Jérôme Orivel2 • Maurice Leponce4
Functional Ecosystems and Communities ©2007 Global Science Books Rainforest Canopy Ants: The Implications of Territoriality and Predatory Behavior Alain Dejean1,2* • Bruno Corbara3 • Jérôme Orivel2 • Maurice Leponce4 1 CNRS-Guyane (UPS 2561 and UMRS-CNRS 5174), 16, avenue André Aron, 97300 Cayenne, France 2 Laboratoire d'Evolution et Diversité Biologique (UMR-CNRS 5174), Université Toulouse III, 118 route de Narbonne, 31062 Toulouse Cedex 9, France 3 Laboratoire de Psychologie Sociale de la Cognition (UMR-CNRS 6024), Université Blaise Pascal, 34 avenue Carnot, 63037 Clermont-Ferrand Cedex, France 4 Biological Evaluation Section, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, 1000 Brussels, Belgium Corresponding author: * [email protected] ABSTRACT After first being ground-nesters and predators or scavengers, ants became arboreal with the rise of angiosperms and provided plants a biotic defense by foraging for prey on their foliage. Plants induce ants to patrol on their leaves through food rewards (e.g., extra-floral nectar and food bodies), while ants attend hemipterans for their honeydew. Most arboreal-nesting ants build their own nests, but myrmecophytes, plants that offer hollow structures that serve as nesting places to specialized “plant-ants”, illustrate the tight evolutionary bonds between ants and plants. In tree-crop plantations and in some rainforest canopies territorially-dominant arboreal ants have large colonies with large and/or polydomous nests. Their territories are defended both intra- and interspecifically, and are distributed in a mosaic pattern, creating what has become known as “arboreal ant mosaics”. They tolerate non-dominant species with smaller colonies on their territories. Arboreal ant mosaics are dynamic because ant nesting preferences differ depending on the species and the size and age of supporting trees. -
Devonian Plant Fossils a Window Into the Past
EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson -
Native and Non-Native Ant Impacts on Native Fungi
State University of New York College at Buffalo - Buffalo State College Digital Commons at Buffalo State Biology Theses Biology 8-2021 Native and non-native ant impacts on native fungi Chloe Mokadam State University of New York College at Buffalo - Buffalo State College, [email protected] Advisor Robert J. Warren II, Ph.D., Associate Professor of Biology First Reader Christopher Pennuto, Ph.D., Professor of Biology Second Reader Olga Novikova, Ph.D., Assistant Professor of Biology Department Chair Daniel L. Potts, Ph.D., Chair and Associate Professor of Biology To learn more about the Biology Department and its educational programs, research, and resources, go to https://biology.buffalostate.edu/. Recommended Citation Mokadam, Chloe, "Native and non-native ant impacts on native fungi" (2021). Biology Theses. 45. https://digitalcommons.buffalostate.edu/biology_theses/45 Follow this and additional works at: https://digitalcommons.buffalostate.edu/biology_theses Part of the Biology Commons Native and non-native ant impacts on native fungi by Chloe Mokadam An Abstract of a Thesis in Biology Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts August 2021 Buffalo State College State University of New York Department of Biology 1 ABSTRACT OF THESIS Non-native ant impacts on native fungi Organisms produce weapons for defense against pathogens and competitors. In response, competitors and pathogens develop resistance to these weapons. However, when a species invades a new range, its “novel weapons” may be more effective against native species that did not co-evolve with them. Via specialized glands and microbial associates, ants produce antifungal weapons for defense against entomopathogenic fungi. -
New Lineages of Black Yeasts from Biofilm in the Stockholm Metro
University of Southern Denmark From the tunnels into the treetops New lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the chaetothyriales Réblová, M.; Hubka, V.; Thureborn, O.; Lundberg, J.; Sallstedt, Therese; Wedin, M.; Ivarsson, ML Published in: P L o S One DOI: 10.1371/journal.pone.0163396 Publication date: 2016 Document version: Final published version Document license: CC BY Citation for pulished version (APA): Réblová, M., Hubka, V., Thureborn, O., Lundberg, J., Sallstedt, T., Wedin, M., & Ivarsson, ML. (2016). From the tunnels into the treetops: New lineages of black yeasts from biofilm in the Stockholm metro system and their relatives among ant-associated fungi in the chaetothyriales. P L o S One, 11(10), [e0163396]. https://doi.org/10.1371/journal.pone.0163396 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download -
Azteca Ants Maintain Unique Microbiomes Across Functionally
Azteca ants maintain unique microbiomes royalsocietypublishing.org/journal/rspb across functionally distinct nest chambers Jane M. Lucas1, Anne A. Madden2, Clint A. Penick3, Mary Jane Epps5, Peter R. Marting4, Julia L. Stevens6, Daniel J. Fergus2, Robert R. Dunn2,7 Research and Emily K. Meineke8 1 Cite this article: Lucas JM, Madden AA, Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, USA 2Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA Penick CA, Epps MJ, Marting PR, Stevens JL, 3The Biomimicry Center, and 4School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA Fergus DJ, Dunn RR, Meineke EK. 2019 Azteca 5Department of Biology, Mary Baldwin University, Staunton, VA 24401, USA 6 ants maintain unique microbiomes across Bayer Crop Science Division, Saint Louis, MO 63146, USA 7Natural History Museum, University of Copenhagen, DK-2100 Copenhagen, Denmark functionally distinct nest chambers. 8Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA Proc. R. Soc. B 286: 20191026. JML, 0000-0002-3931-1864; AAM, 0000-0002-7263-5713; CAP, 0000-0002-5368-507X; http://dx.doi.org/10.1098/rspb.2019.1026 RRD, 0000-0002-6030-4837 The microbiome of built structures has considerable influence over an inhabitant’s well-being, yet the vast majority of research has focused on Received: 2 May 2019 human-built structures. Ants are well-known architects, capable of con- Accepted: 12 July 2019 structing elaborate dwellings, the microbiome of which is underexplored. Here, we explore the bacterial and fungal microbiomes in functionally dis- tinct chambers within and outside the nests of Azteca alfari ants in Cecropia peltata trees. -
Nest Site Selection During Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera Villosa (Hymenoptera: Formicidae)
insects Article Nest Site Selection during Colony Relocation in Yucatan Peninsula Populations of the Ponerine Ants Neoponera villosa (Hymenoptera: Formicidae) Franklin H. Rocha 1, Jean-Paul Lachaud 1,2, Yann Hénaut 1, Carmen Pozo 1 and Gabriela Pérez-Lachaud 1,* 1 El Colegio de la Frontera Sur, Conservación de la Biodiversidad, Avenida Centenario km 5.5, Chetumal 77014, Quintana Roo, Mexico; [email protected] (F.H.R.); [email protected] (J.-P.L.); [email protected] (Y.H.); [email protected] (C.P.) 2 Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, 31062 Toulouse, France * Correspondence: [email protected]; Tel.: +52-98-3835-0440 Received: 15 January 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: In the Yucatan Peninsula, the ponerine ant Neoponera villosa nests almost exclusively in tank bromeliads, Aechmea bracteata. In this study, we aimed to determine the factors influencing nest site selection during nest relocation which is regularly promoted by hurricanes in this area. Using ants with and without previous experience of Ae. bracteata, we tested their preference for refuges consisting of Ae. bracteata leaves over two other bromeliads, Ae. bromeliifolia and Ananas comosus. We further evaluated bromeliad-associated traits that could influence nest site selection (form and size). Workers with and without previous contact with Ae. bracteata significantly preferred this species over others, suggesting the existence of an innate attraction to this bromeliad. However, preference was not influenced by previous contact with Ae. bracteata. Workers easily discriminated between shelters of Ae. bracteata and A.