Delayed Star Formation in Isolated Dwarf Galaxies: HST Star
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distances to Local Group Galaxies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Distances to Local Group Galaxies Alistair R. Walker Cerro Tololo Inter-American Observatory, NOAO, Casilla 603, la Serena, Chile Abstract. Distances to galaxies in the Local Group are reviewed. In particular, the distance to the Large Magellanic Cloud is found to be (m M)0 =18:52 0:10, cor- − ± responding to 50; 600 2; 400 pc. The importance of M31 as an analog of the galaxies observed at greater distances± is stressed, while the variety of star formation and chem- ical enrichment histories displayed by Local Group galaxies allows critical evaluation of the calibrations of the various distance indicators in a variety of environments. 1 Introduction The Local Group (hereafter LG) of galaxies has been comprehensively described in the monograph by Sidney van den Berg [1], with update in [2]. The zero- velocity surface has radius of a little more than 1 Mpc, therefore the small sub-group of galaxies consisting of NGC 3109, Antlia, Sextans A and Sextans B lie outside the the LG by this definition, as do galaxies in the direction of the nearby Sculptor and IC342/Maffei groups. Thus the LG consists of two large spirals (the Galaxy and M31) each with their entourage of 11 and 10 smaller galaxies respectively, the dwarf spiral M33, and 13 other galaxies classified as either irregular or spherical. We have here included NGC 147 and NGC 185 as members of the M31 sub-group [60], whether they are actually bound to M31 is not proven. -
Publications for Geraint Lewis 2021 2020
Publications for Geraint Lewis 2021 R., Horner, J., Wright, D., Carter, B., Morton, T., Spina, L., Li, T., Koposov, S., Erkal, D., Ji, A., Shipp, N., Hilmi, T., Bland-Hawthorn, J., Hayden, M., Lewis, G., Sharma, S., Kuehn, K., Pace, A., Lewis, G., Mackey, D., Wan, Z., Bland- Simpson, J., et al (2021). The GALAH Survey: Using galactic Hawthorn, J., Sharma, S., et al (2021). Broken into pieces: archaeology to refine our knowledge of TESS target stars. ATLAS and Aliqa Uma as one single stream. The Astrophysical Monthly Notices of the Royal Astronomical Society, 504(4), Journal, 911(2), 149. <a href="http://dx.doi.org/10.3847/1538- 4968-4989. <a 4357/abeb18">[More Information]</a> href="http://dx.doi.org/10.1093/mnras/stab1052">[More Information]</a> Sharma, S., Hayden, M., Bland-Hawthorn, J., Stello, D., Buder, S., Zinn, J., Kallinger, T., Asplund, M., De Silva, G., D'Orazi, Oliver, W., Elahi, P., Lewis, G., Power, C. (2021). The V., Kos, J., Lewis, G., Lin, J., Zucker, D., Chen, B., Huber, D., hierarchical structure of galactic haloes: Classification and Kafle, P., Khanna, S., et al (2021). Fundamental relations for characterization with halo-optics. Monthly Notices of the Royal the velocity dispersion of stars in the Milky Way. Monthly Astronomical Society, 501(3), 4420-4437. <a Notices of the Royal Astronomical Society, 506(2), 1761-1776. href="http://dx.doi.org/10.1093/mnras/staa3879">[More <a href="http://dx.doi.org/10.1093/mnras/stab1086">[More Information]</a> Information]</a> Arentsen, A., Starkenburg, E., Aguado, D., Martin, N., Placco, Wiseman, P., Sullivan, M., Smith, M., Frohmaier, C., Vincenzi, V., Carlberg, R., Gonz�lez Hern�ndez, J., Hill, V., M., Graur, O., Popovic, B., Armstrong, P., Brout, D., Davis, T., Jablonka, P., Kordopatis, G., Lewis, G., Wan, Z., et al (2021). -
Science in the Urantia Papers
Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate". -
The Extragalactic Distance Scale
The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID -
Mid-Infrared Images of Stars and Dust in Irregular Galaxies
Mid-Infrared Images of Stars and Dust in Irregular Galaxies1 Deidre A. Hunter2, Bruce G. Elmegreen3, and Emily Martin2,4 ABSTRACT We present mid-infrared to optical properties of 22 representative irregular galaxies: 18 Im, 3 BCDs, and one Sm. The mid-IR is based on images from the Spitzer Space Telescope archives. The 3.6 and 4.5 µm bands and the UBVJHK images are used to examine disk morphology and the integrated and azimuthally averaged magnitudes and colors of stars. The non-stellar contribution to the 4.5 µm images is used to trace hot dust. The 5.8 and 8.0 µm images reveal emission from hot dust and PAHs, and both may contribute to these passbands, although we refer to the non-stellar emission as PAH emission. We compare the 8.0 µm images to Hα. Im galaxies have no hidden bars, and those with double- exponential optical light profiles have the same at mid-IR. Most galaxies have similar optical and mid-IR scale lengths. Four galaxies have super star clusters that are not visible at optical bands. Galaxies with higher area-normalized star formation rates have more dust and PAH emission relative to starlight. Hot dust and PAH emission is found mostly in high surface brightness H ii regions, implying that massive stars are the primary source of heating. Galaxies with intense, wide-spread star formation have more extended PAH emission. The ratio of PAH to Hα emission is not constant on small scales. PAHs are associated with shells and giant filaments, so they are not destroyed during shell formation. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
Una Aproximación Física Al Universo Local De Nebadon
4 1 0 2 local Nebadon de Santiago RodríguezSantiago Hernández Una aproximación física al universo (160.1) 14:5.11 La curiosidad — el espíritu de investigación, el estímulo del descubrimiento, el impulso a la exploración — forma parte de la dotación innata y divina de las criaturas evolutivas del espacio. Tabla de contenido 1.-Descripción científica de nuestro entorno cósmico. ............................................................................. 3 1.1 Lo que nuestros ojos ven. ................................................................................................................ 3 1.2 Lo que la ciencia establece ............................................................................................................... 4 2.-Descripción del LU de nuestro entorno cósmico. ................................................................................ 10 2.1 Universo Maestro ........................................................................................................................... 10 2.2 Gran Universo. Nivel Espacial Superunivesal ................................................................................. 13 2.3 Orvonton. El Séptimo Superuniverso. ............................................................................................ 14 2.4 En el interior de Orvonton. En la Vía Láctea. ................................................................................. 18 2.5 En el interior de Orvonton. Splandon el 5º Sector Mayor ............................................................ 19 -
School of Physics Publications 2007
School of Physics Publications 2007 Books Karnutsch, C 2007, Low threshold organic thin-film laser devices, Göttingen, 1 Ostrikov, K, Xu, S 2007, Plasma-Aided Nanofabrication: From Plasma Sources to Nanoassembly, Weinheim, Germany Book Chapters Beck, R, Gaensler, B M, Feretti, L 2007, SKA and the Magnetic Universe, Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century, Springer-Verlag Berlin Heidelberg, Berlin Heidelberg, 103-108 Bilek, M, Powles, R C, McKenzie, D R 2007, Treatment of polymeric biomaterials by ion implantation, Biomaterials and Surface Modification, Research Signpost, India, 205-248 Britton, S C, New, P B, Roberts, A L, Sharma, M D 2007, Investigating students' ability totransfer mathematics, Transforming a university: the scholarship of teaching and learning in practice, University of Sydney Press, NSW, Australia, 127-140 Dey, C J, Berger, C, Foran, B, Foran, M, Joske, R, Lenzen, M, Wood, R J 2007, Household environmental pressure from consumption: an Australian environmental atlas, Water Wind Art and Debate -How environmental concerns impacton disciplinary research, Sydney University Press, Sydney, 1, 280-314 Eggleton, B J, Slusher, R 2007, Nonlinear pulse propagation in one-dimensional photonic bandgap structures, Nonlinear photonic bandgap materials, Springer Khoukhi, M, Maruyama, S, Bosi, S G, Komiya, A 2007, A Simple Approach for Calculating the Optical Constants of a Clear Glass Window from 0.19 to 5 um, Recent Developments in Solar Energy, Nova Science Publishers, Inc, New York, 289-297 -
HST-ACS Photometry of the Isolated Dwarf Galaxy VV124=UGC 4879
A&A 533, A37 (2011) Astronomy DOI: 10.1051/0004-6361/201117275 & c ESO 2011 Astrophysics HST-ACS photometry of the isolated dwarf galaxy VV124=UGC 4879 Detection of the blue horizontal branch and identification of two young star clusters, M. Bellazzini1,S.Perina1, S. Galleti1, and T. Oosterloo2 1 INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands Received 17 May 2011 / Accepted 9 July 2011 ABSTRACT We present deep V and I photometry of the isolated dwarf galaxy VV124=UGC 4879, obtained from archival images taken with the Hubble Space Telescope – Advanced Camera for Surveys. In the color-magnitude diagrams of stars at distances greater than 40 from the center of the galaxy, we clearly identify a well-populated, old horizontal branch (HB) for the first time. We show that the distribution of these stars is more extended than that of red clump stars. This implies that very old and metal-poor populations 4 dominate in the outskirts of VV124. We also identify a massive (M = 1.2 ± 0.2 × 10 M) young (age = 250 ± 50 Myr) star cluster 3 (C1), as well as another of younger age (C2, ∼<30 ± 10 Myr) with a mass similar to classical open clusters (M ≤ 3.3 ± 0.5 × 10 M). Both clusters lie at projected distances less than 100 pc from the center of the galaxy. -
The Evening Sky
I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O e d b l A a r , a l n e O , g N i C R a , Z p s e u I l i C l r a i , R I S C f R a O o s C t p H o L u r E e E & d H P a ( o T F m l O l s u i D R NORTH x ” , N M n E a A o n O X g d A H a x C P M T e r . I o P Polaris H N c S L r y E E e o P Z t n “ n E . EQUATORIAL EDITION i A N H O W T M “ R e T Y N H h E T ” K E ) W S . T T E U W B R N The Evening Sky Map W D E T T . FEBRUARY 2011 WH r A e E C t M82 FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY O s S L u K l T Y c E CASSIOPEIA h R e r M a A S t A SKY MAP SHOWS HOW i s η M81 Get Sky Calendar on Twitter S P c T s k C A l e e E CAMELOPARDALIS R d J Sky Calendar – February 2011 a O http://twitter.com/skymaps i THE NIGHT SKY LOOKS s B y U O a H N L s D e t A h NE a I t I EARLY FEB 9 PM r T T f S p 1 Moon near Mercury (16° from Sun, morning sky) at 17h UT. -
The Hubble Catalog of Variables (HCV)? A
Astronomy & Astrophysics manuscript no. hcv c ESO 2019 September 25, 2019 The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1; 2; 3, P. Gavras4; 1, D. Hatzidimitriou1; 5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7; 8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12; 13; 1, C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14; 1, N. Laskaris15; 6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16; 1, E. Paraskeva1; 5, E. Pouliasis1; 5, A. Rest9; 11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1; 5, P. Taylor9, and K. Tsinganos5; 1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ. -
An Observer's Guide to the (Local Group) Dwarf Galaxies: Predictions for Their Own Dwarf Satellite Populations
An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Dooley, Gregory A. et al. “An Observer’s Guide to the (Local Group) Dwarf Galaxies: Predictions for Their Own Dwarf Satellite Populations.” Monthly Notices of the Royal Astronomical Society 471, 4 (August 2017): 4894–4909 © 2018 The Author(s) As Published http://dx.doi.org/10.1093/MNRAS/STX1900 Publisher Oxford University Press (OUP) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/121369 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ MNRAS 000,1{21 (2017) Preprint 6 September 2017 Compiled using MNRAS LATEX style file v3.0 An observer's guide to the (Local Group) dwarf galaxies: predictions for their own dwarf satellite populations Gregory A. Dooley1?, Annika H. G. Peter2;3, Tianyi Yang4, Beth Willman5, Brendan F. Griffen1 and Anna Frebel1, 1Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2CCAPP and Department of Physics, The Ohio State University, Columbus, OH 43210, USA 3Department of Astronomy, The Ohio State University, Columbus OH 43210, USA 4Institute of Optics, University of Rochester, Rochester, New York, 14627, USA 5Steward Observatory and LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA Accepted by MNRAS 2017 July 22. Received 2017 July 22; in original 2016 September 27 ABSTRACT A recent surge in the discovery of new ultrafaint dwarf satellites of the Milky Way has 3 6 inspired the idea of searching for faint satellites, 10 M < M∗ < 10 M , around less massive field galaxies in the Local Group.