Aspects and Polymorphism in AspectJ Erik Ernst David H. Lorenz Dept. of Computer Science, College of Computer & Information Science, University of Aarhus Northeastern University Abogade˚ 34, DK8200 Arhus˚ N 360 Huntington Avenue 161 CN Denmark Boston, Massachusetts 02115 USA
[email protected] [email protected] ABSTRACT ¢ Polymorphic access: A name denotes an object whose dy- There are two important points of view on inclusion or subtype namic type is known only by an upper bound. For example, polymorphism in object-oriented programs, namely polymorphic the predefined reference self in a method in a class C de- access and dynamic dispatch. These features are essential for object- notes an instance of C or some subclass of C. The essence is oriented programming, and it is worthwhile to consider whether that the same code can operate on differently shaped objects they are supported in aspect-oriented programming (AOP). In AOP, because they all satisfy certain constraints (possibly made pieces of crosscutting behavior are extracted from the base code explicit in a statically declared type). and localized in aspects, losing as a result their polymorphic capa- ¢ Dynamic dispatch: When accessing an object polymorphi- bilities while introducing new and unexplored issues. In this paper, cally, a message-send may be resolved by late binding, i.e., we explore what kinds of polymorphism AOP languages should it may call different method implementations for different support, using AspectJ as the basis for the presentation. The results dynamic receiver types. The essence is that the meaning of are not exclusive to AspectJ—aspectual polymorphism may make a name (the method selector) is determined by dynamically aspects in any comparable AOSD language more expressive and selecting the “best” definition from a set of different avail- reusable across programs, while preserving safety.