Vacuum Moduli Spaces of Supersymmetric Quiver Gauge Theories with 8 Supercharges

Total Page:16

File Type:pdf, Size:1020Kb

Vacuum Moduli Spaces of Supersymmetric Quiver Gauge Theories with 8 Supercharges University of London Imperial College of Science, Technology and Medicine Department of Physics Iter Geometria { Vacuum Moduli Spaces of Supersymmetric Quiver Gauge Theories with 8 Supercharges Anton Zajac Supervised by professor Amihay Hanany Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London and the Diploma of Imperial College, October 2020 Abstract Supersymmetric gauge theories have been at the heart of research in theoretical physics for the past five decades. The study of these theories holds not only the promise for the ulti- mate understanding of Nature, but also for discoveries of new mathematical constructions and phenomena. The latter results from a highly geometrical nature of these theories, which is prominently carried by the moduli space of vacua. This thesis is dedicated to the study of moduli spaces of supersymmetric quiver gauge the- ories with 8 supercharges. Typically, such moduli spaces consist of two branches, known as the Coulomb branch and the Higgs branch. Following a review of the Higgs and the Coulomb branch computational techniques in the first part of this thesis, it is shown how the study of Coulomb branches of 3d N = 4 minimally unbalanced theories is used for developing a classification of singular hyperK¨ahlercones with a single Lie group isometry. As another appli- cation, three-dimensional Coulomb branches are used to study Higgs branches of a stack of n M5 branes on an A-type orbifold singularity. Analysis of such systems gives rise to a discrete gauging phenomenon with importance for both physics and mathematics. From the physics per- spective, discrete gauging solves the problem of understanding the non-classical Higgs branch phases of the corresponding 6d N = (1; 0) world-volume theory, even when coincident subsets of M5 branes introduce tensionless BPS strings into the spectrum. From the mathematical perspective, discrete gauging provides a new method for constructing non-Abelian orbifolds with certain global symmetry. The thesis also includes an investigation of theories associated with non-simply laced quivers. Remarkably, the formalized analysis of the so-called ungauging schemes and the corresponding Coulomb branches reproduce orbifold relations amid closures of nilpotent orbits of Lie algebras studied by Kostant and Brylinski. Finally, three-dimensional Coulomb branches are employed to understand the Higgs mechanism in supersymmetric gauge theories with 8 supercharges in 3; 4; 5, and 6 dimensions. It is illustrated that the physical phenomenon of partial Higgsing is directly related to the mathematical structure of the moduli space, and in particular, to the geometry of its singular points. The developed techniques pro- vide a new set of algorithmic methods for computing the geometrical structure of symplectic singularities in terms of Hasse diagrams. i ii Declaration The results presented in chapters 3 and 4 are based on the research collaborations with Amihay Hanany and Santiago Cabrera. This work has been published in: • S. Cabrera, A. Hanany, and A. Zajac, "Minimally Unbalanced Quivers," JHEP 02 (2019) 180, arXiv: 1810.01495 [hep-th] • A. Hanany, A. Zajac, "Discrete Gauging in Coulomb branches of Three Dimensional N=4 Supersymmetric Gauge Theories," JHEP 08 (2018) 158, arXiv: 1807.03221 [hep-th] Material in chapter 5 is based on the publication: • A. Hanany, and A. Zajac, "Ungauging Schemes and Coulomb Branches of Non-simply Laced Quiver Theories," JHEP 09 (2020) 193, arXiv:2002.0571 [hep-th] Results in chapter 6 are based on a collaboration with Antoine Bourget, Santiago Cabrera, Julius. F. Grimminger, Amihay Hanany, Marcus Sperling and Zhenghao Zhong: • A. Bourget, S. Cabrera, J.F. Grimminger, A.Hanany, M. Sperling, A. Zajac and Z. Zhong, "The Higgs Mechanism - Hasse Diagrams for Symplectic Singularities", JHEP 01 (2020) 157, arXiv:1908.04245 [hep-th] To author's best knowledge the results and work of other researchers appearing in this thesis are properly cited and acknowledged. `The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or format. You may also create and distribute modified versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative works, for a commercial purpose. When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text. Where a work has been adapted, you should indicate that the work has been changed and describe those changes. Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law.' iii iv Acknowledgements Since the very moment when I first heard of String theory as a fresh undergraduate I have been drawn towards pursuing this field of physics. At that time, I had utterly no idea about what kind of mathematics and physics had been involved in the subject. After my undergraduate studies, I was given the opportunity to scratch the surface of string theory in the wonderful Quantum Fields and Fundamental Forces programme at ICL. I could not have been more fortunate as to have professor Amihay Hanany as my String theory lecturer and my supervisor. I remain extremely grateful to professor Amihay Hanany for guiding me into the beautiful world of String theories and quivers. Without him paving my path, I would have never had a chance to penetrate into the exciting realm of branes and quiver gauge theories. His playful approach to String Theory made it at times seem like a game - making one depressed when loosing, elevated when winning - but overall bringing a lot of joy from merely playing it. All humor aside, doing fundamental theoretical physics really is like playing a game of hide-and-seek with Nature. In this aspect, I consider the opportunity to join the game and the opportunity to be introduced to the game by professor Amihay Hanany the best I could have possibly wished for. The joy from the game was without the puniest doubt amplified by having a raft of outstanding co-players to whom I also wish to extend my deep gratitude. I would like to thank Santiago Cabrera whom I first met during QFFF programme and who since then kept on surprising me with his deep and clear insight into the world of branes and String theory. I am very thankful to Julius Grimminger for being there for me, always ready to help both as a friend and as a research partner. My gratitude also goes to Rudolph Kalveks for his immense help with computations, fruitful discussions and witty english humor. I also thank Antoine Bourget, who has been a big inspiration and help to me. I am also thankful to Marcus Sperling and Zhenghao Zhong and I value each discussion we had in various places all around the world. The entire Theory Group of Imperial College deserves to be praised for the exceptional research environment it creates and for being tremendously welcoming to every newcomer. A special thanks belongs to my parents, who were there with me the entire time, always supportive, always bestowing hope. I would like to say thank you for all that you have done and for believing in me. Without you I would never have found myself here - figuratively as well as literally. I would also like to thank my beloved Jarka for her support during the last year of my PhD and during the time this writing was taking place. v vi Dedication This thesis is dedicated to my parents and Jarka. vii \There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened." Douglas Adams, The Restaurant at the End of the Universe viii Contents Abstract i Acknowledgements v 1 Introduction 1 1.1 Historical Aper¸cu. 1 1.2 Gauge Theory and the Moduli Space of Vacua . 4 1.3 Outline of the Thesis . 8 2 Preliminary Background 11 2.1 Supersymmetry . 11 2.2 Moduli Space of Vacua . 13 2.2.1 Two Branches of the Moduli Space . 15 2.3 The Hilbert Series . 18 2.4 Computing Higgs branch via HyperK¨ahlerQuotient . 23 2.4.1 Hilbert series for the Higgs branch . 25 2.5 Computing Coulomb Branch using Monopole Formula . 29 2.5.1 Hilbert series for the Coulomb branch . 32 ix x CONTENTS 2.6 Quiver . 34 2.7 Branes . 36 2.8 Branes and the Moduli Space of 3d SQED with 8 Supercharges . 39 2.8.1 3d Mirror Symmetry . 42 3 Minimally Unbalanced Quivers 47 3.1 Introduction to MUQ . 47 3.2 Coulomb Branch with SU(N) isometry and a minimal set of generators . 50 3.2.1 Example: GF = SU(3) .............................. 51 3.2.2 Example: GF = SU(10) .............................. 53 3.3 Classification of Minimally Unbalanced Quivers . 54 3.4 Simply Laced Minimally Unbalanced Quivers . 57 3.4.1 G of Type AN ................................... 57 3.4.2 G of Type DN ................................... 64 3.4.3 G of Type EN ................................... 66 3.5 Concluding Comments for Minimally Unbalanced Quivers . 71 4 Discrete Gauging 73 4.1 Introduction to Discrete Gauging . 73 4.2 First Family: Quivers with central 2 node and a bouquet of 1 nodes . 81 4.2.1 Case: k=2, n=1 . 81 4.2.2 Case: k=2, n=2 . 95 n1 4.3 Second Family: Bouquet quivers with A1 × Dn2+1 global symmetry .
Recommended publications
  • JHEP05(2015)095 ) Gauge Springer N May 4, 2015 May 19, 2015 : : February 11, 2015
    Published for SISSA by Springer Received: February 11, 2015 Accepted: May 4, 2015 Published: May 19, 2015 Defects and quantum Seiberg-Witten geometry JHEP05(2015)095 Mathew Bullimore,a Hee-Cheol Kimb and Peter Koroteevb aInstitute for Advanced Study, Einstein Dr., Princeton, NJ 08540, U.S.A. bPerimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L2Y5, Canada E-mail: [email protected], [email protected], [email protected] Abstract: We study the Nekrasov partition function of the five dimensional U(N) gauge theory with maximal supersymmetry on R4 S1 in the presence of codimension two defects. × The codimension two defects can be described either as monodromy defects, or by coupling to a certain class of three dimensional quiver gauge theories on R2 S1. We explain how × these computations are connected with both classical and quantum integrable systems. We check, as an expansion in the instanton number, that the aforementioned partition functions are eigenfunctions of an elliptic integrable many-body system, which quantizes the Seiberg-Witten geometry of the five-dimensional gauge theory. Keywords: Supersymmetric gauge theory, Duality in Gauge Field Theories, Integrable Equations in Physics, Differential and Algebraic Geometry ArXiv ePrint: 1412.6081 Open Access, c The Authors. ⃝ doi:10.1007/JHEP05(2015)095 Article funded by SCOAP3. Contents 1 Introduction 1 2 Twisted chiral rings 3 2.1 The Nekrasov-Shatashvili correspondence 4 2.2 Quantum/classical duality 6 2.2.1 Electric frame
    [Show full text]
  • Matrix Factorizations, D-Branes and Homological Mirror Symmetry W.Lerche, KITP 03/2009
    Matrix Factorizations, D-branes and Homological Mirror Symmetry W.Lerche, KITP 03/2009 • Motivation, general remarks • Mirror symmetry and D-branes • Matrix factorizations and LG models • Toy example: eff. superpotential for intersecting branes, applications much more diverse instantons than for closed strings (world-sheet and D-brane instantons) 1 Part I Motivation: D-brane worlds Typical brane + flux configuration on a Calabi-Yau space closed string (bulk) moduli t open string (brane location + bundle) moduli u 3+1 dim world volume with effective N=1 SUSY theory What are the exact effective superpotential, the vacuum states, gauge couplings, etc ? (Φ, t, u) = ? Weff 2 Quantum geometry of D-branes Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius! M In fact, practically all of string Classical geometry: phenomenology deals with the cycles, gauge (“bundle”) boundary of the moduli space configurations on them (weak coupling, large radius) 3 Quantum geometry of D-branes Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius! “Gepner point” (CFT description) typ. symmetry between M 0,2,4,6 cycles ? “conifold point” extra massles states Classical geometry: Quantum corrected geometry: cycles, gauge (“bundle”) (instanton) corrections wipe out configurations on them notions of classical geometry 4 Quantum geometry of D-branes Classical geometry ("branes wrapping p-cycles", gauge bundle configurations on top of them) makes sense only at weak coupling/large radius! Need to develop formalism capable of describing the physics of general D-brane configurations (here: topological B-type D-branes), incl their continuous deformation families over the moduli space ....well developed techniques (mirror symmetry) mostly for non-generic (non-compact, non-intersecting, integrable) brane configurations branes only ! 5 Intersecting branes: eff.
    [Show full text]
  • Intersecting Surface Defects and 3D Superconformal Indices
    Published for SISSA by Springer Received: February 2, 2021 Accepted: April 19, 2021 Published: May 18, 2021 JHEP05(2021)155 Intersecting surface defects and 3d superconformal indices Junfeng Liu, Yiwen Pan and Hong-Hao Zhang School of Physics, Sun Yat-Sen University, Guangzhou 510275, China E-mail: [email protected], [email protected], [email protected] Abstract: We compute the 3d N = 2 superconformal indices for 3d/1d coupled systems, which arise as the worldvolume theories of intersecting surface defects engineered by Higgsing 5d N = 1 gauge theories. We generalize some known 3d dualities, including non-Abelian 3d mirror symmetry and 3d/3d correspondence, to some of the simple 3d/1d coupled systems. Finally we propose a q-Virasoro construction for the superconformal indices. Keywords: Duality in Gauge Field Theories, Supersymmetry and Duality ArXiv ePrint: 2101.05689 Open Access , c The Authors. https://doi.org/10.1007/JHEP05(2021)155 Article funded by SCOAP3. Contents 1 Introduction1 2 Higgsing and surface defects3 3 Intersecting surface defects on S4 × S1 6 3.1 Higgsing6 3.2 Index of intersecting gauge theory 10 JHEP05(2021)155 3.2.1 Reduction to 2d 12 4 3d dualities 13 4.1 3d mirror symmetry 13 4.1.1 U(1) 1 theory 14 4.1.2 3d mirror2 symmetry from fiber-base duality 16 4.2 3d/3d correspondence 21 5 q-Virasoro construction 24 A Special functions 28 B Instanton partition function 29 C Factorization of 3d index 31 1 Introduction Since the seminal work by Pestun [1], numerous exact results have been derived using the technique of supersymmetric localization for supersymmetric theories in different dimensions.
    [Show full text]
  • Extremal Chiral Ring States in Ads/CFT Are Described by Free Fermions for A
    DAMTP-2015-7 Extremal chiral ring states in AdS/CFT are described by free fermions for a generalized oscillator algebra David Berenstein Department of Applied Math and Theoretical Physics, Wilbeforce Road, Cambridge, CB3 0WA, UK and Department of Physics, University of California at Santa Barbara, CA 93106 Abstract This paper studies a special class of states for the dual conformal field theories associated with supersymmetric AdS X compactifications, where X is a Sasaki-Einstein manifold with additional 5 × U(1) symmetries. Under appropriate circumstances, it is found that elements of the chiral ring that maximize the additional U(1) charge at fixed R-charge are in one to one correspondence with multitraces of a single composite field. This is also equivalent to Schur functions of the composite field. It is argued that in the formal zero coupling limit that these dual field theories have, the different Schur functions are orthogonal. Together with large N counting arguments, one predicts that various extremal three point functions are identical to those of = 4 SYM, except for a N single normalization factor, which can be argued to be related to the R-charge of the composite word. The leading and subleading terms in 1/N are consistent with a system of free fermions for a generalized oscillator algebra. One can further test this conjecture by constructing coherent states arXiv:1504.05389v2 [hep-th] 4 Aug 2015 for the generalized oscillator algebra that can be interpreted as branes exploring a subset of the moduli space of the field theory and use these to compute the effective K¨ahler potential on this subset of the moduli space.
    [Show full text]
  • Quiver Asymptotics: Free Chiral Ring
    Journal of Physics A: Mathematical and Theoretical PAPER • OPEN ACCESS Quiver asymptotics: free chiral ring To cite this article: S Ramgoolam et al 2020 J. Phys. A: Math. Theor. 53 105401 View the article online for updates and enhancements. This content was downloaded from IP address 131.169.5.251 on 26/02/2020 at 00:58 IOP Journal of Physics A: Mathematical and Theoretical J. Phys. A: Math. Theor. Journal of Physics A: Mathematical and Theoretical J. Phys. A: Math. Theor. 53 (2020) 105401 (18pp) https://doi.org/10.1088/1751-8121/ab6fc6 53 2020 © 2020 The Author(s). Published by IOP Publishing Ltd Quiver asymptotics: = 1 free chiral ring N JPHAC5 S Ramgoolam1,3, Mark C Wilson2 and A Zahabi1,3 1 Centre for Research in String Theory, School of Physics and Astronomy, 105401 Queen Mary University of London, United Kingdom 2 Department of Computer Science, University of Auckland, Auckland, New Zealand 3 S Ramgoolam et al National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, Johannesburg, South Africa Quiver asymptotics: = 1 free chiral ring N E-mail: [email protected], [email protected] and [email protected] Printed in the UK Received 23 August 2019, revised 21 January 2020 Accepted for publication 24 January 2020 JPA Published 20 February 2020 Abstract 10.1088/1751-8121/ab6fc6 The large N generating functions for the counting of chiral operators in = 1, four-dimensional quiver gauge theories have previously been obtained N Paper in terms of the weighted adjacency matrix of the quiver diagram.
    [Show full text]
  • Brane Brick Models and Their Elliptic Genera
    2016 Current Topics in String Theory : CFT Brane Brick Models and their Elliptic Genera Dongwook Ghim Seoul National University 2016. 12. 15 @ KIAS, Seoul 2016. 12. 15. KIAS This talk is based on … • 1506.03818 – Construction of theories SF, DG, SL, RKS, DY • 1510.01744 – Brane Brick SF, SL, RKS • 1602.01834 – (0,2) Triality SF, SL, RKS • 1609.01723 – Mirror perspective SF, SL, RKS, CV • 1609.07144 – Orbifold reduction SF, SL, RKS • 1612. to appear – Elliptic genus SF, DG, SL, RKS Collaborators: Sebastian Franco (CUNY), Sangmin Lee (SNU), Rak-Kyeong Seong (Uppsala), Daisuke Yokoyama (King’s college), Cumrun Vafa (Harvard) 2016. 12. 15. KIAS 2 Brane Brick Model 2d (0,2) gauge theory as a world-volume theory of D1-branes probing toric Calabi Yau 4-fold cones 2d (0,2) quiver gauge theory with U(N) gauge groups Quiver diagram N D1-branes toric CY 4-fold Brane configuration Toric diagram 2016. 12. 15. KIAS 3 Relatives and ancestors D(9-2n)-branes In type-IIB string theory, D(9-2n)-branes probing toric CY n-folds toric CYn dim, T-dual Symmetry n # of SUSY configuration 2 6d, N=(1,0) Necklace quiver - 3 4d, N=1 Brane tiling Seiberg duality 4 2d, N=(0,2) Brane brick GGP triality 2016. 12. 15. KIAS 4 2d (0,2) quiver gauge theories Gauge Theory SUSY multiplets of 2d (0,2) theories multiplets superfield component fields vector V (va, χ , χ ,D) − − chiral Φij (φ, +) Quiver diagrams of Fermi ⇤ij (λ ,G) − 2d (0,2) gauge theories • 2d (0,2) field-strength multiplet with U(N) gauge group + + + Y = χ i✓ (D iF01) i✓ ✓ @+χ − − − − − Φ • 2d (0,2) chiral ij • 2d (0,2) Fermi ⇤ij J-term E-term For SUSY, 2016.
    [Show full text]
  • 3D Mirror Symmetry As a Canonical Transformation
    3d mirror symmetry as a canonical transformation Nadav Drukkera and Jan Felixb Department of Mathematics, King's College London The Strand, WC2R 2LS, London, UK Abstract We generalize the free Fermi-gas formulation of certain 3d = 3 supersymmetric Chern-Simons-matter theories by allowing Fayet-Iliopoulos couplingsN as well as mass terms for bifundamental matter fields. The resulting partition functions are given by simple modifications of the argument of the Airy function found previously. With these extra parameters it is easy to see that mirror-symmetry corresponds to linear canonical transformations on the phase space (or operator algebra) of the 1-dimensional fermions. arXiv:1501.02268v2 [hep-th] 13 Oct 2015 [email protected] [email protected] 1 Introduction and summary Supersymmetric localization leads to a dramatic simplification of the calculation of sphere partition functions (and some other observables) by reducing the infinite dimensional path integral to a finite dimensional matrix model [1,2] This matrix model can then be solved (sometimes) by a variety of old and new techniques to yield exact results. A particular application of this is to check dualities | two theories which are equivalent (or flow to the same IR fixed point) should have the same partition function. In practice, it is often very hard to solve the matrix models exactly, so dualities are checked by comparing the matrix models of the two theories and using integral identities to relate them. The first beautiful realization of this is in the Alday-Gaiotto-Tachikawa (AGT) correspondence, where the matrix models evaluating the partition functions of 4d = 2 theories were shown to be essentially identical to correlation functions of Liouville theoryN as expressed via the conformal bootstrap in a specific channel.
    [Show full text]
  • Topological Quiver Matrix Models and Quantum Foam
    Topological quiver matrix models and quantum foam Daniel L. Jafferis ∗ Jefferson Physical Laboratory Harvard University Cambridge, MA 02138 May 15, 2007 Abstract We study the matrix models that describe the BPS bound states of branes arising from the quiver picture of the derived category. These theories have a topological partition function that localizes to the Euler character of the anti-ghost bundle over the classical BPS moduli space. We examine the effective internal geometry of D6/D2 bound states in the local vertex geometry, using BPS 0-brane probes. The Kahler blowups of the Calabi-Yau that we find utilizing these quiver theories are a realization of A-model quantum foam in the full IIA theory. ∗E-mail: jaff[email protected] arXiv:0705.2250v1 [hep-th] 16 May 2007 1 1 Introduction The idea that the topological A-model involves quantized fluctuations of the Kahler geometry of a Calabi-Yau was introduced in [23]. They argued that the topological string partition function could be reproduced by summing over non-Calabi-Yau blow ups along collections of curves and points. The equivalent Donaldson-Thomas theory, given by a topologically twisted =2 U(1) gauge theory on the Calabi-Yau, involves a sum over singular instantons, which canN be blown up to obtain the fluctuations of the geometry. The connection between this theory of BPS bound states of D2 and D0 branes to a 6-brane was further explained in [13] by lifting to M-theory. The D6-brane lifts to a Taub-NUT geometry in 11 dimensions, and the Donaldson-Thomas theory results in precisely that repackaging of the Gopakumar-Vafa invariants counting bound states of D2/D0 at the center of the Taub-NUT which is required to reproduce the A-model.
    [Show full text]
  • Lectures on D-Branes, Gauge Theories and Calabi-Yau
    UPR-1086-T Lectures on D-branes, Gauge Theories and Calabi-Yau Singularities Yang-Hui He Department of Physics and Math/Physics RG University of Pennsylvania Philadelphia, PA 19104–6396, USA Abstract These lectures, given at the Chinese Academy of Sciences for the BeiJing/HangZhou International Summer School in Mathematical Physics, are intended to introduce, to the beginning student in string theory and mathematical physics, aspects of the rich and beautiful subject of D-brane gauge theories constructed from local Calabi-Yau spaces. arXiv:hep-th/0408142v1 18 Aug 2004 Topics such as orbifolds, toric singularities, del Pezzo surfaces as well as chaotic duality will be covered. ∗[email protected] Contents 1 Introduction 2 2 Minute Waltz on the String 5 2.1 The D3-brane in R1,9 ............................... 6 2.2 D3-branesonCalabi-Yauthreefolds . ...... 7 3 The Simplest Case: S = C3 8 4 Orbifolds and Quivers 10 4.1 ProjectiontoDaughterTheories. ..... 10 4.2 Quivers ...................................... 12 4.3 TheMcKayCorrespondence . 12 4.4 McKay, Dimension 2 and N =2......................... 15 4.5 N = 1 Theories and C3 Orbifolds ........................ 15 4.6 Quivers, Modular Invariants, Path Algebras? . ......... 17 4.7 MoreGames.................................... 17 5 Gauge Theories, Moduli Spaces andSymplectic Quotients 19 5.1 QuiverGaugeTheory............................... 20 5.2 An Illustrative Example: The Conifold . ...... 21 5.3 ToricSingularities.. .. .. ... 22 5.3.1 A Lightning Review on Toric Varieties . ... 23 5.3.2 Witten’s Gauged Linear Sigma Model (GLSM) . .. 23 5.4 TheForwardAlgorithm ............................. 24 5.4.1 Forward Algorithm for Abelian Orbifolds . ..... 25 5.5 TheInverseAlgorithm ............................. 28 5.6 Applications of Inverse Algorithm . ...... 29 5.6.1 delPezzoSurfaces ...........................
    [Show full text]
  • 1.3 Self-Dual/Chiral Gauge Theories 23 1.3.1 PST Approach 27
    Durham E-Theses Chiral gauge theories and their applications Berman, David Simon How to cite: Berman, David Simon (1998) Chiral gauge theories and their applications, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5041/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Chiral gauge theories and their applications by David Simon Berman A thesis submitted for the degree of Doctor of Philosophy Department of Mathematics University of Durham South Road Durham DHl 3LE England June 1998 The copyright of this tliesis rests with tlie author. No quotation from it should be published without the written consent of the author and information derived from it should be acknowledged. 3 0 SEP 1998 Preface This thesis summarises work done by the author between October 1994 and April 1998 at the Department of Mathematical Sciences of the University of Durham and at CERN theory division under the supervision of David FairUe.
    [Show full text]
  • Localization and Dualities in Three-Dimensional Superconformal Field Theories
    Localization and Dualities in Three-dimensional Superconformal Field Theories Thesis by Brian Willett In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2012 (Defended May 15, 2012) ii c 2012 Brian Willett All Rights Reserved iii Abstract In this thesis we apply the technique of localization to three-dimensional N = 2 superconformal field theories. We consider both theories which are exactly superconformal, and those which are believed to flow to nontrivial superconformal fixed points, for which we consider implicitly these fixed points. We find that in such theories, the partition function and certain supersymmetric observables, such as Wilson loops, can be computed exactly by a matrix model. This matrix model consists of an integral over g, the Lie algebra of the gauge group of the theory, of a certain product of 1-loop factors and classical contributions. One can also consider a space of supersymmetric deformations of the partition function corresponding to the set of abelian global symmetries. In the second part of the thesis we apply these results to test dualities. We start with the case of 7 ABJM theory, which is dual to M-theory on an asymptotically AdS4 × S background. We extract strong coupling results in the field theory, which can be compared to semiclassical, weak coupling results in the gravity theory, and a nontrivial agreement is found. We also consider several classes of dualities between two three-dimensional field theories, namely, 3D mirror symmetry, Aharony duality, and Giveon-Kutasov duality. Here the dualities are typically between the IR limits of two Yang-Mills theories, which are strongly coupled in three dimensions since Yang-Mills theory is asymptotically free here.
    [Show full text]
  • T Hooft Operators in Four-Dimensional Gauge Theories and S-Duality
    PHYSICAL REVIEW D 74, 025005 (2006) Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality Anton Kapustin* California Institute of Technology, Pasadena California 91125 USA (Received 14 May 2006; published 7 July 2006) We study operators in four-dimensional gauge theories which are localized on a straight line, create electric and magnetic flux, and in the UV limit break the conformal invariance in the minimal possible way. We call them Wilson-’t Hooft operators, since in the purely electric case they reduce to the well- known Wilson loops, while in general they may carry ’t Hooft magnetic flux. We show that to any such 2 2 operator one can associate a maximally symmetric boundary condition for gauge fields on AdSE S .We show that Wilson-’t Hooft operators are classified by a pair of weights (electric and magnetic) for the gauge group and its magnetic dual, modulo the action of the Weyl group. If the magnetic weight does not belong to the coroot lattice of the gauge group, the corresponding operator is topologically nontrivial (carries nonvanishing ’t Hooft magnetic flux). We explain how the spectrum of Wilson-’t Hooft operators transforms under the shift of the -angle by 2. We show that, depending on the gauge group, either SL 2; Z or one of its congruence subgroups acts in a natural way on the set of Wilson-’t Hooft operators. This can be regarded as evidence for the S-duality of N 4 super-Yang-Mills theory. We also compute the one-point function of the stress-energy tensor in the presence of a Wilson-’t Hooft operator at weak coupling.
    [Show full text]