Asymptotic densities for Packard Box rules Janko Gravner Mathematics Department University of California Davis, CA 95616 e-mail:
[email protected] David Griffeath Department of Mathematics University of Wisconsin Madison, WI 53706 e-mail:
[email protected] (Revised version, February 2009) Abstract. This paper studies two-dimensional totalistic solidification cellular automata with Moore neighborhood such that a single occupied neighbor is sufficient for a site to join the occupied set. We focus on asymptotic density of the final configuration, obtaining rigorous results mainly in cases with an additive component. When sites with two occupied neighbors also solidify, additivity yields a comprehensive result for general finite initial sets. In particular, the density is independent of the seed. More generally, analysis is restricted to special initializations, cases with density 1, and various experimental findings. In the case that requires either one or three occupied neighbors for solidification, we show that different seeds may produce many different densities. For each of two particularly common densities we present a scheme that recognizes a seed in its domain of attraction. 2000 Mathematics Subject Classification. Primary 37B15. Secondary 68Q80, 11B05. Keywords: additive dynamics, asymptotic density, cellular automaton, growth model. Acknowledgments. Experimental aspects of this research were conducted by a Collaborative Undergraduate Research Lab (CURL) at the University of Wisconsin-Madison Mathematics Department during the 2006–7 academic year. The CURL was sponsored by a National Science Foundation VIGRE award. We are particularly grateful to lab participants Charles D. Brummitt and Chad Koch for empirical analysis of the Box 12 rule. Support. JG was partially supported by NSF grant DMS–0204376 and the Republic of Slove- nia’s Ministry of Science program P1-285.