Forest Restoration Using Variable Density Thinning: Lessons from Douglas-Fir Stands in Western Oregon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pre-Commercial Thinning Is a Method to Reduce the Number of Trees Per
Natural Resources Conservation Service Technical Forestry Note TX-FS-12-6 Pre-commercial thinning releases over-crowded pine or hardwood stands to prevent stagnation, decrease the risk of insects and disease, and increase the growth of remaining trees. Trees are typically removed by mowing, disking, chopping, cutting, spraying or prescribed burning. More details found in the text…. Pre-commercial thinning – Benefits/Costs? What is pre-commercial thinning? Pre-commercial thinning is a thinning method performed prior to trees reaching merchantable size, typically around 4.5 inches dbh (diameter at breast height measured at 4.5 ft. above the ground). The objective of a pre-commercial thinning is to release some trees in overstocked stands by reducing densities to prevent stagnation and increase the growth of the remaining trees. Many southern pine species regenerate by producing a great deal of seed, resulting in thousands of seedlings per acre. Loblolly pine, for example, can be a prolific seed producer under ideal conditions. Natural regeneration practices in even-aged systems through seed-tree or shelterwood methods often results in extreme overstocked conditions that, left untreated, can stagnate growth and lengthen rotation ages (Mann and Lohrey 1974). The decision to pre-commercially thin a stand is often difficult for many landowners because of the initial costs involved with implementing this treatment. However, allowing trees to continue growing in overstocked conditions will ultimately result in a stand of trees with small diameters and small crowns. Pine trees generally need about one-third of the total height in live crown to sustain effective growth rates over the span of the stand rotation. -
Evolution of Silvicultural Thinning: from Rejection to Transcendence
EVOLUTION OF SILVICULTURAL THINNING: FROM REJECTION TO TRANSCENDENCE Boris Zeide1 Abstract—Our views on a main tool of forestry, silvicultural thinning, have changed greatly since the beginning of forestry over 200 years ago. At first, thinning was rejected as something unnatural and destructive. It was believed that the densest stands were the most productive and any thinning only detracted from maximum growth produced by nature. This philosophy was still dominant during the second stage when the “fathers” of forestry developed the practice of light thinning from below. It took another 100 years to acknowledge the benefit of a less “natural” medium to heavy thinning. During the last 70 years, the consensus has been that, within a wide range of densities, stand growth remains more or less constant. Even better results can be achieved when density increases with age. Heavy thinning at the beginning speeds up growth, whereas higher stocking at the end secures a larger final harvest. The last stage takes the trend of progressively lighter thinning to its logical conclusion: to control density by planting only the trees we intend to harvest at the end of rotation. Wood quality and stem form can be improved by pruning. Specific management recommendations are provided. INTRODUCTION overlooks the critical difference between natural and planted Our attitude toward silvicultural thinning has evolved from regeneration–-us. Only few trees survive until maturity under total prohibition to the realization that thinning is not the best natural conditions and almost all when we control intra-and method to control stand density and maximize yield. Given interspecific competition. -
Simulations of Snag Dynamics in an Industrial Douglas-Fir Forest
Forest Ecology and Management 174 (2003) 521–539 Simulations of snag dynamics in an industrial Douglas-fir forest George F. Wilhere* Washington Department of Fish and Wildlife, Wildlife Program, 600 Capitol Way North, Olympia, WA 98501, USA Received 24 September 2001 Abstract Industrial silviculture is known to reduce snag density, but snag dynamics in industrial forests are poorly understood. I developed a simulation model that integrated a snag model and a well-known forest growth model, the forest vegetation simulator (FVS). A new snag model was developed by averaging the outputs of four independently created snag models. The four models were for Douglas-fir snags in forests west of the Cascade Crest in Oregon, Washington, and British Columbia. Forest growth and snag dynamics were simulated under a typical silvicultural regime and current occupational safety and environmental regulations. The results indicate that management practices like those simulated yield: (1) small and medium diameter snags at moderate densities (20 snags per hectare (sph)) for short periods of time (5–10 years); (2) a snag population with high temporal variation fluctuating between 4.2 and 22.5 sph; (3) mean densities of small, medium, and large snags equal to approximately 3.9, 6.2, and 0.1 sph/decade; and (4) a soft snag density of 0.1 sph/decade. Snag recruitment curves generated through simulations showed that to increase mean snag density per decade by 1 sph, the number of snags retained must be increased by about 1.4 sph. The mean density of snags per decade produced under the typical silvicultural regime was projected to be about 20% that found in unmanaged stands. -
Thinning Systems for Western Oregon Douglas-Fir Stands
STAND MANAGEMENT EC 1132 • Reprinted July 2003 $2.00 Thinning Systems for Western Oregon Douglas-fir Stands W.H. Emmingham and D. Green hinning is removing selected trees from a stand to allow others to Contents continue growing. Ordinarily, a woodland manager uses a thinning Tsystem that encourages the remaining trees to grow in a manner Basic stand growth ....................... 1 consistent with the manager’s objectives for those trees. Thinning options........................... 3 This publication will help you understand how to thin Douglas-fir. It also will help you choose the proper thinning system to achieve your Timing........................................3 objectives. You can apply the methods discussed here to all predominantly High and low thinning ..................3 even-age and well-stocked Douglas-fir stands west of the Cascade crest in Intensity and frequency ................4 Oregon. Thinning is the best way to maintain maximum diameter and board-foot Stocking guides............................ 5 volume growth in Douglas-fir stands. It can produce income at 5- to 10- How do you put it all together?...... 5 year intervals instead of at 30- to 50-year intervals without thinning. It also can lengthen the time span in which a stand produces income. What is best for you? ................... 6 Summary .................................... 7 For more information .................... 8 Basic stand growth A stand is a collection of living trees. It usually begins as hundreds of small seedlings per acre of land. As these trees grow, they eventually occupy all the growing space, crowd out lower growing plants, and compete with each other just as carrots compete in a garden. Unless some of the trees die or are removed, others cannot continue to grow. -
Developing Optimal Commercial Thinning Prescriptions: a New Graphical Approach
Developing Optimal Commercial Thinning Prescriptions: A New Graphical Approach KaDonna C. Randolph, USDA Forest Service Forest Inventory and Analysis, Knoxville, TN 37919; and Robert S. Seymour and Robert G. Wagner, Department of Forest Ecosystem Science, University of Maine, Orono, ME 04469. ABSTRACT: We describe an alternative approach to the traditional stand-density management diagrams and stocking guides for determining optimum commercial thinning prescriptions. Predictions from a stand-growth simulator are incorporated into multiple nomograms that graphically display postthinning responses of various financial and biological response variables (mean annual increment, piece size, final harvest cost, total wood cost, and net present value). A customized ArcView GIS computer interface (ThinME) displays multiple nomograms and serves as a tool for forest managers to balance a variety of competing objectives when developing commercial thinning prescriptions. ThinME provides a means to evaluate simultaneously three key questions about commercial thinning: (1) When should thinning occur? (2) How much should be removed? and (3) When should the final harvest occur, to satisfy a given set of management objectives? North. J. Appl. For. 22(3):170–174. Key Words: Nomogram, silvicultural system, financial analysis, FVS, simulation. Careful regulation of stand density through thinning North America in the late 1970s (Drew and Flewelling arguably distinguishes truly intensive management above 1979, Newton 1997a). SDMDs graphically depict the rela- all other silvicultural treatments (Smith et al. 1997), and in tionship between stand density and average tree size (either every important forest region, rigorously derived thinning quadratic mean dbh or stemwood volume, and frequently schedules are crucial in meeting production objectives. Typ- supplementary isolines depicting tree height; Newton ically thinnings are prescribed using stocking guides or 1997b, Wilson et al. -
Natural Disturbance and Stand Development Principles for Ecological Forestry
United States Department of Agriculture Natural Disturbance and Forest Service Stand Development Principles Northern Research Station for Ecological Forestry General Technical Report NRS-19 Jerry F. Franklin Robert J. Mitchell Brian J. Palik Abstract Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. Incorporating an understanding of natural disturbance and stand development processes more fully into silvicultural practice is the basis for an ecological forestry approach. Such an approach must include 1) understanding the importance of biological legacies created by a tree regenerating disturbance and incorporating legacy management into harvesting prescriptions; 2) recognizing the role of stand development processes, particularly individual tree mortality, in generating structural and compositional heterogeneity in stands and implementing thinning prescriptions that enhance this heterogeneity; and 3) appreciating the role of recovery periods between disturbance events in the development of stand complexity. We label these concepts, when incorporated into a comprehensive silvicultural approach, the “three-legged stool” of ecological forestry. Our goal in this report is to review the scientific basis for the three-legged stool of ecological forestry to provide a conceptual foundation for its wide implementation. Manuscript received for publication 1 May 2007 Published by: For additional copies: USDA FOREST SERVICE USDA Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073-3294 359 Main Road Delaware, OH 43015-8640 November 2007 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ INTRODUCTION Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. -
Do-It-Yourself Ways to Steward a Healthy, Beautiful Forest | Northwest Natural Resource Group | Take the Time to Become Familiar with Your Forest
You can do many simple things yourself to make your forest attract more wildlife, provide recreation, and contribute to its own upkeep. Our forests provide for us in many ways. Their While getting to know your forest, you can do a lot beauty inspires us. They clean the air, filter and store to improve its health and enhance its beauty. water, protect soil, and shelter diverse plants and wildlife. They sustain livelihoods and yield firewood, This guide focuses on common ways Northwest building materials, and edible and forest owners can steward their land to meet a range of goals. These practices include: medicinal plants. With all that forests do for us, a little care in Observing and monitoring the forest return will help our forests Making your forest more wildlife-friendly continue to sustain our well-being. Controlling invasive plants Keeping soil fertile and productive This guide is intended for forest Creating structural and biological diversity owners who are just getting started in stewarding their land. This is not an exhaustive manual with detailed NNRG put this information together based on years instructions on how to complete these DIY of experience working with families, small businesses, practices. Instead, it describes the most important and conservation groups across western Oregon and actions to help you start your journey of forest Washington. In conducting site visits, we’ve found stewardship. At the end of this booklet, you’ll find a that lands share common needs and owners share list of resources that can help you learn how common questions. to carry out each of these practices. -
Guidelines for Commercial Thinning
G UIDELINES for ..................................................................................................... Commercial Thinning July 1999 Ministry of Forests Forest Practices Branch Canadian Cataloguing in Publication Data Main entry under title: Guidelines for commercial thinning ISBN 0-7726-3934-5 1. Forest thinning – British Columbia. 2. Forest management – British Columbia. I. British Columbia. Forest Practices Branch. SD396.5.G84 1999 634.9'53'09711 C99-960223-3 1999 Province of British Columbia To view a copy online, see: www.for.gov.bc.ca/hfp/pubs.htm Preface Commercial thinning is an intermediate harvest where the merchantable wood removed should cover part or all of the cost of harvesting. It is defined as a thinning “in which all or part of the felled trees are extracted for useful products…” (Smith, 1986). Commercial thinning, when carried out on the right stands at the right time under appropriate stand conditions, is a valuable strategic management tool that increases the flexibility in the timing and quantity of wood flow available at the forest estate level. The Guidelines for Commercial Thinning were developed with input from industry (COFI), Ministry of Environment, Lands and Parks, MOF regions and districts, Research Branch, Economics & Trades Branch, Resource Tenures & Engineering Branch, Compliance and Enforcement, and Forest Practices Branch staff. These guidelines provide information to forest practitioners considering commercial thinning and those that are currently planning and implementing commercial thinning programs in BC. This document provides important information on: 1. the effects of commercial thinning on the growth of trees and stands 2. the importance of planning at the regional, landscape and stand levels 3. the guidance for inclusion of silviculture prescription data elements for commercial thinning 4. -
Thinning and Prescribed Fire and Projected Trends in Wood Product Potential, Financial Return, and Fire Hazard in New Mexico
United States Department of Agriculture Thinning and Prescribed Fire and Forest Service Projected Trends in Wood Product Pacific Northwest Research Station Potential, Financial Return, and General Technical Report Fire Hazard in New Mexico PNW-GTR-605 June 2004 Roger D. Fight, R. James Barbour, Glenn A. Christensen, Guy L. Pinjuv, and Rao V. Nagubadi Authors Roger D. Fight is a research forester, R. James Barbour is a research forest products technologist, Glenn A. Christensen is a research forester, and Guy L. Pinjuv and Rao V. Nagubadi were foresters, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, P.O. Box 3890, Portland, OR 97208; Pinjuv is currently a doctoral candidate, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand; Nagubadi is current- ly a post-doctoral fellow, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849. Abstract Fight, Roger D.; Barbour, R. James; Christensen, Glenn, A.; Pinjuv, Guy L.; Nagubadi, Rao V. 2004. Thinning and prescribed fire and projected trends in wood product potential, financial return, and fire hazard in New Mexico. Gen. Tech. Rep. PNW-GTR-605. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 48 p. This work was undertaken under a joint fire science project “Assessing the need, costs, and potential benefits of prescribed fire and mechanical treatments to reduce fire hazard.” This paper compares the future mix of timber projects under two treat- ment scenarios for New Mexico. We developed and demonstrated an analytical method that uses readily available tools to evaluate pre- and posttreatment stand conditions; size, species, and volume of merchantable wood removed during thinnings; size and volume of submerchantable wood cut during treatments; and financial returns of prescriptions that are applied repeatedly over a 90-year period. -
Guidelines for Growing and Marketing Christmas Trees in New Mexico
NewMnIco Department of Hatu,.1 RIIOUI'Cft Guidelines for December 1985 Growing and Marketing Christmas Trees In New Mexico Prepared by Forestry Division, and Department of Horticulture (Mora Research Center), New Mexico State University In cooperation with the United States Department of Agriculture, Forest Service ==rca Guidelines for December 1985 Growing and Marketing Christmas Trees In New Mexico Prepared by Forestry Division, and Department of Horticulture (Mora Research Center), New Mexico State University In cooperation with the United States Department of Agriculture, Forest Service Toney Anaya, Governor of New Mexico Leo Griego, Secretary Department of Natural Resources Raymond R. Gallegos, State Forester Forestry Division P.O. Box 2167 Santa Fe, New Mexico 87504-2167 Department of Horticulture (Mora Research Center) New Mexico State University U.S. Department of Agriculture Forest Service State and Private Forestry 517GoidSW Albuquerque, New Mexico 87102 • Table of Contents Introduction ..................................................... 1 Industry Trends-Market Outlook for New Mexico . 2 Characteristics of Good Christmas Trees. 3 Christmas Tree Grades. 5 Speclas for New Mexico ... 6 Site Selection. 12 Establishing a Plantation ........................................ ·· 13 How Much Land to Plant. 13 Site Preparation. .. .. .... .. ...... .. ...... ... ... .... ............. 13 Care of Planting Stock ...................................... , ... 14 Bareroot Stock.. .. ... .. .. ... ... .. ... ... ........ .... .. 14 Containerized -
Variable Retention Manual
Variable Retention Manual Division of Forest Research and Development Technical Report 5/2011 Robyn Scott, Mark Neyland and Sue Baker © Copyright Forestry Tasmania 79 Melville Street HOBART 7000 ISSN 1838-8876 March 2011 Scott, R.E. Neyland, M.G. and Baker, S.C. (2011) Variable Retention Manual Division of Forest Research and Development, Technical Report 5/2011, Forestry Tasmania, Hobart. Prepared with assistance from the Variable Retention Implementation Group. This manual describes aggregated retention (ARN), the approach to Variable Retention (an alternative to clearfelling) that Forestry Tasmania has developed for harvesting tall wet eucalypt forests. It is based on several years of operational experience, research and monitoring. Native Forests Branch of DFRD is always ready to assist Districts in establishing, harvesting and regenerating native forest coupes, and especially with variable retention operations. Please contact Robyn Scott, Variable Retention Silviculture Research Officer (6235 8108) with any questions regarding planning VR coupes, coupe design, or calculating influence and retention levels. Leigh Edwards (6235 8184) is always keen to assist with matters to do with regeneration (indicator plots, browsing transects, seed, seedbed). Sue Baker (6235 8306) can be contacted with any biodiversity questions. CONTENTS Contents ..................................................................................................................................3 Introduction .............................................................................................................................4 -
Sixth International Christmas Tree Research & Extension
Sixth International Christmas Tree Research & Extension Conference September 14 - 19, 2003 Kanuga Conference Center Hendersonville, NC Proceedings Hosted by North Carolina State University CONFERENCE SPONSORS Cellfor Inc. Mitchell County Christmas Tree Growers and Nurserymen's Association Avery County East Carolina University – Christmas Tree & Nurserymen's Association Department of Biology Monsanto – Makers of Roundup Agricultural Herbicides North Carolina State University – Ashe County Christmas Tree Association Christmas Tree Genetics Program College of Natural Resources North Carolina Christmas Tree Association Eastern North Carolina Christmas Tree Association North Carolina Forest Service Avery County Cooperative Extension Service Center and Master Gardeners North Carolina Department of Agriculture and Consumer Services Christmas Tree Council of Nova Scotia Proceedings of the 6th International Christmas Tree Research & Extension Conference September 14 - 19, 2003 Kanuga Conference Center Hendersonville, NC Hosted by North Carolina State University John Frampton, Organizer and Editor Forward During September 2003, North Carolina State University hosted the 6th International Christmas Tree Research and Extension Conference. This conference was the latest in the following sequence: Date Host Organization Location Country October Washington State Puyallup, USA 1987 University Washington August Oregon State Corvallis, Oregon USA 1989 University October Silver Fall State Silver Falls, Oregon USA 1992 Park September Cowichan Lake Mesachie Lake, Canada 1997 Research Station British Columbia July/August Danish Forest and Vissenbjerg Denmark 2000 Landscape Research Institute The conference started September 14th with indoor presentations and posters at the Kanuga Conference Center, Hendersonville, N.C., and ended September 18th in Boone following a 1½ day field trip. The conference provided a forum for the exchange of scientific research results concerning various aspects of Christmas tree production and marketing.