Sixth International Christmas Tree Research & Extension

Total Page:16

File Type:pdf, Size:1020Kb

Sixth International Christmas Tree Research & Extension Sixth International Christmas Tree Research & Extension Conference September 14 - 19, 2003 Kanuga Conference Center Hendersonville, NC Proceedings Hosted by North Carolina State University CONFERENCE SPONSORS Cellfor Inc. Mitchell County Christmas Tree Growers and Nurserymen's Association Avery County East Carolina University – Christmas Tree & Nurserymen's Association Department of Biology Monsanto – Makers of Roundup Agricultural Herbicides North Carolina State University – Ashe County Christmas Tree Association Christmas Tree Genetics Program College of Natural Resources North Carolina Christmas Tree Association Eastern North Carolina Christmas Tree Association North Carolina Forest Service Avery County Cooperative Extension Service Center and Master Gardeners North Carolina Department of Agriculture and Consumer Services Christmas Tree Council of Nova Scotia Proceedings of the 6th International Christmas Tree Research & Extension Conference September 14 - 19, 2003 Kanuga Conference Center Hendersonville, NC Hosted by North Carolina State University John Frampton, Organizer and Editor Forward During September 2003, North Carolina State University hosted the 6th International Christmas Tree Research and Extension Conference. This conference was the latest in the following sequence: Date Host Organization Location Country October Washington State Puyallup, USA 1987 University Washington August Oregon State Corvallis, Oregon USA 1989 University October Silver Fall State Silver Falls, Oregon USA 1992 Park September Cowichan Lake Mesachie Lake, Canada 1997 Research Station British Columbia July/August Danish Forest and Vissenbjerg Denmark 2000 Landscape Research Institute The conference started September 14th with indoor presentations and posters at the Kanuga Conference Center, Hendersonville, N.C., and ended September 18th in Boone following a 1½ day field trip. The conference provided a forum for the exchange of scientific research results concerning various aspects of Christmas tree production and marketing. The 74 attendees represented 12 states as well as Canada (5), Denmark (9), Norway (2) and South Africa (1). Most attendees were professionals who support the Christmas tree industry. The wooded seclusion of the Kanuga Conference Center provided an ideal setting for the conference. The 35 talks and 27 posters were presented in the Balthis-Rodwell Building, but a favorite location for socializing and informal exchanges of ideas during breaks was the lounge’s rocking chair porch with its view of Kanuga Lake. Attendees lodged in the rustic comfort of cottages with living rooms and were spoiled by good food and unlimited servings at the dining hall. On the evening of September 16th, Gary Chastagner led a roundtable discussion on issues facing Christmas tree research and extension. Among the topics of discussion was the erosion of funding within the Cooperative Extension Service and from state appropriations. This predicament has been worsened by the recent decline in the use of real Christmas trees. A need to better understand Christmas tree markets and anticipate customer preferences was recognized. A related topic discussed was the need in the United States to develop a national research team to help identify and coordinate Christmas tree research on issues that have country-wide impact such as developing market strategies, improving convenience and addressing environmental concerns. Such a committee could help provide the National Christmas Tree Association with guidance on allocating resources from its recently established research endowment fund. Many in the group expressed a feeling of isolation with respect to Christmas tree colleagues and information. The group agreed that holding this conference biennially and that alternating hosts between North America and Europe would be beneficial. One hundred percent of attendees returning evaluation forms agreed that they gained valuable knowledge at the conference. And, perhaps equally important to the information learned at this meeting were new contacts made. Each of us left the conference with new friends and an expanded network of experts to call on, not to mention a head full of new ideas and approaches. The 7th International Christmas Tree Research and Extension Conference will be hosted by Michigan State University in 2005. I, for one, am looking forward to it. John Frampton Conference Organizer and Proceedings Editor Proceedings papers, abstracts and posters were submitted by the authors as electronic files. Format modifications were made for consistency in appearance and placement of figures and tables. Technical content remains the responsibility of the respective author(s). Copies of this publication may be obtained from: The National Technical Information Service Springfield, Virginia 22161 Phone: 703-605-6000 www.ntis.gov Table of Contents Oral Presentations .............................................................................................. 1 Christmas Tree Research and Extension – an Overview for North Carolina ............... 2 Propagation & Genetics ..................................................................................... 3 Breaking Dormancy in Tree Seeds, with Special Reference to Fir (Abies) Species ..... 4 Clonal Propagation of Christmas Trees through Somatic Embryogenesis, Why and How? ...................................................................................................................... 5 Cloning Abies Research and Commercial Possibilities. ............................................. 12 In vitro Plant Regeneration and Agrobacterium tumefaciens-mediated Transformation in Christmas Trees ............................................................................................... 13 Noble Fir Current Season Needle Necrosis in Denmark – Status for Genetic Variation and Effect of Site ................................................................................................. 17 Genetic Improvement of Virginia Pine for Christmas Tree Production ..................... 18 Genetic Variation in Fraser Fir ................................................................................... 19 Diseases .............................................................................................................. 20 Christmas Tree Diseases in Norway ........................................................................... 21 Managing Rhabdocline Needlecast on Douglas-fir in Pennsylvania .......................... 22 Heterobasidion annosum associated with Mortality of Christmas Trees in the Pacific Northwest ............................................................................................................. 26 Phytophthora Root Rot of Fir in Michigan ................................................................. 27 Phytophthora Root Rot Mortality in Fraser Fir: Genetic Variation in an Infested Progeny Test ........................................................................................................ 32 Susceptibility of Conifer Shoots to Infection by Phytophthora ramorum .................. 33 Arthropods & Weeds ........................................................................................ 34 The Di-Syston Project: Development of a Hand Operated Metered Closed System Applicator For Christmas Tree Producers in Western North Carolina ................ 35 Arthropod Pest Management in Christmas Trees in the Pacific Northwest ............... 41 Pest Management Control in Christmas Trees Grown in the Southern Appalachians 42 Achieving Results Through On Farm Research, A Case Study: Impact of Round-Up Original Applications on Fraser fir Foliage during Early Shoot Elongation ...... 51 Responses of Christmas Tree Species and Selected Weeds to Herbicides ................. 56 Nutrition ............................................................................................................. 57 Growing Christmas Tree with Reduced Environmental Impact from Fertilization: Alternative Fertilizers and Split Treatments ........................................................ 58 Growing Christmas Tree with Reduced Environmental Impact from Fertilization: Alternative Methods for Fertilizer Application ................................................... 60 Manganese Deficiency in Colorado Blue Spruce ....................................................... 61 Production ......................................................................................................... 62 Changes in Soil Physical Conditions Over Multiple Christmas Tree Cropping Cycles ............................................................................................................................. 63 Triazine and Mycorrhizae Observations over Multiple Christmas Tree Cropping Cycles .................................................................................................................. 72 Soil and Needle Nutrient Changes over Christmas Tree Cropping Cycles ................ 78 Evaluating the Potential of Abies Species in Eastern North Carolina ........................ 89 Shearing Fraser Fir Christmas Trees........................................................................... 90 Scotch Pine Shearing Regimes - Tree Grade Relationships ....................................... 92 Bud Manipulation as a Tool for Regulation of Crown Structure in Young Trees ...... 93 Terminal Bud Selection in Fraser Fir Christmas Trees .............................................. 96 The Dynamics of Labor in North Carolina’s Christmas
Recommended publications
  • Yellowstone National Park, Resources and Issues, Vegetation
    VEGETATION More than 1,300 plant taxa occur in Yellowstone National Park. The whitebark pine, shown here and found in high elevations in the Greater Yellowstone Ecosystem, is an important native species in decline. Vegetation The vegetation communities of Yellowstone National major disturbances. Yellowstone is home to three Park include overlapping combinations of species endemic plant species, at least two of which depend typical of the Rocky Mountains as well as of the on the unusual habitat created by the park’s thermal Great Plains to the east and the Intermountain region features. Most vegetation management in the park to the west. The exact vegetation community pres- is focused on minimizing human-caused impacts on ent in any area of the park reflects the consequences their native plant communities to the extent feasible. of the underlying geology, ongoing climate change, substrates and soils, and disturbances created by fire, Vegetation Communities floods, landslides, blowdowns, insect infestations, There are several vegetation communities in and the arrival of nonnative plants. Yellowstone: higher- and lower-elevation forests Today, the roughly 1,386 native taxa in the park and the understory vegetation associated with them, represent the species able to either persist in the area sagebrush-steppe, wetlands, and hydrothermal. or recolonize after glaciers, lava flows, and other Quick Facts Number in Yellowstone • Three endemic species (found only Management Issues Native plant taxa: more than 1,300: in Yellowstone): Ross’s bentgrass, • Controlling nonnative species, • Hundreds of wildfowers. Yellowstone sand verbena, which threaten native species, Yellowstone sulfur wild buckwheat. especially near developed areas; • Trees: nine conifers (lodgepole some are spreading into the Nonnative plant species: 225.
    [Show full text]
  • Pre-Commercial Thinning Is a Method to Reduce the Number of Trees Per
    Natural Resources Conservation Service Technical Forestry Note TX-FS-12-6 Pre-commercial thinning releases over-crowded pine or hardwood stands to prevent stagnation, decrease the risk of insects and disease, and increase the growth of remaining trees. Trees are typically removed by mowing, disking, chopping, cutting, spraying or prescribed burning. More details found in the text…. Pre-commercial thinning – Benefits/Costs? What is pre-commercial thinning? Pre-commercial thinning is a thinning method performed prior to trees reaching merchantable size, typically around 4.5 inches dbh (diameter at breast height measured at 4.5 ft. above the ground). The objective of a pre-commercial thinning is to release some trees in overstocked stands by reducing densities to prevent stagnation and increase the growth of the remaining trees. Many southern pine species regenerate by producing a great deal of seed, resulting in thousands of seedlings per acre. Loblolly pine, for example, can be a prolific seed producer under ideal conditions. Natural regeneration practices in even-aged systems through seed-tree or shelterwood methods often results in extreme overstocked conditions that, left untreated, can stagnate growth and lengthen rotation ages (Mann and Lohrey 1974). The decision to pre-commercially thin a stand is often difficult for many landowners because of the initial costs involved with implementing this treatment. However, allowing trees to continue growing in overstocked conditions will ultimately result in a stand of trees with small diameters and small crowns. Pine trees generally need about one-third of the total height in live crown to sustain effective growth rates over the span of the stand rotation.
    [Show full text]
  • Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
    Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa
    [Show full text]
  • Evolution of Silvicultural Thinning: from Rejection to Transcendence
    EVOLUTION OF SILVICULTURAL THINNING: FROM REJECTION TO TRANSCENDENCE Boris Zeide1 Abstract—Our views on a main tool of forestry, silvicultural thinning, have changed greatly since the beginning of forestry over 200 years ago. At first, thinning was rejected as something unnatural and destructive. It was believed that the densest stands were the most productive and any thinning only detracted from maximum growth produced by nature. This philosophy was still dominant during the second stage when the “fathers” of forestry developed the practice of light thinning from below. It took another 100 years to acknowledge the benefit of a less “natural” medium to heavy thinning. During the last 70 years, the consensus has been that, within a wide range of densities, stand growth remains more or less constant. Even better results can be achieved when density increases with age. Heavy thinning at the beginning speeds up growth, whereas higher stocking at the end secures a larger final harvest. The last stage takes the trend of progressively lighter thinning to its logical conclusion: to control density by planting only the trees we intend to harvest at the end of rotation. Wood quality and stem form can be improved by pruning. Specific management recommendations are provided. INTRODUCTION overlooks the critical difference between natural and planted Our attitude toward silvicultural thinning has evolved from regeneration–-us. Only few trees survive until maturity under total prohibition to the realization that thinning is not the best natural conditions and almost all when we control intra-and method to control stand density and maximize yield. Given interspecific competition.
    [Show full text]
  • Guide Alaska Trees
    x5 Aá24ftL GUIDE TO ALASKA TREES %r\ UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Agriculture Handbook No. 472 GUIDE TO ALASKA TREES by Leslie A. Viereck, Principal Plant Ecologist Institute of Northern Forestry Pacific Northwest Forest and Range Experiment Station ÜSDA Forest Service, Fairbanks, Alaska and Elbert L. Little, Jr., Chief Dendrologist Timber Management Research USD A Forest Service, Washington, D.C. Agriculture Handbook No. 472 Supersedes Agriculture Handbook No. 5 Pocket Guide to Alaska Trees United States Department of Agriculture Forest Service Washington, D.C. December 1974 VIERECK, LESLIE A., and LITTLE, ELBERT L., JR. 1974. Guide to Alaska trees. U.S. Dep. Agrie., Agrie. Handb. 472, 98 p. Alaska's native trees, 32 species, are described in nontechnical terms and illustrated by drawings for identification. Six species of shrubs rarely reaching tree size are mentioned briefly. There are notes on occurrence and uses, also small maps showing distribution within the State. Keys are provided for both summer and winter, and the sum- mary of the vegetation has a map. This new Guide supersedes *Tocket Guide to Alaska Trees'' (1950) and is condensed and slightly revised from ''Alaska Trees and Shrubs" (1972) by the same authors. OXFORD: 174 (798). KEY WORDS: trees (Alaska) ; Alaska (trees). Library of Congress Catalog Card Number î 74—600104 Cover: Sitka Spruce (Picea sitchensis)., the State tree and largest in Alaska, also one of the most valuable. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price $1.35 Stock Number 0100-03308 11 CONTENTS Page List of species iii Introduction 1 Studies of Alaska trees 2 Plan 2 Acknowledgments [ 3 Statistical summary .
    [Show full text]
  • '11/05/19 Tis the Season Christmas Auction
    09/24/21 10:05:18 '11/05/19 Tis The Season Christmas Auction Auction Opens: Wed, Oct 30 10:00am PT Auction Closes: Tue, Nov 5 5:30pm PT Lot Title Lot Title 0001 9'ft Artificial Multi-Mode Christmas Tree 0035 6 New 100 LED Miniature String Lights 0002 7.5' Pre-lit Artificial Multi-Mode Christmas 0036 6 New 100 LED Miniature String Lights Tree 0037 6 New 100 LED Miniature String Lights 0003 Massive Inflatable Tree, Santa & Snowman 0038 6 New 100 LED Miniature String Lights 0004 Fabric LED Mesh Train Decor, Over 6 1/2' 0039 6 New 100 LED Miniature String Lights Long! 0040 6 New 100 LED Miniature String Lights 0005 Fabric LED Mesh Train Decor, Over 6 1/2' Long! 0041 6 New 100 LED Miniature String Lights 0006 Fabric LED Mesh Train Decor, Over 6 1/2' 0042 6 New 100 LED Miniature String Lights Long! 0043 6 New 100 LED Miniature String Lights 0007 28" Polar Bear with LED Lantern Decor 0044 6 New 100 LED Miniature String Lights 0008 28" Polar Bear with LED Lantern Decor 0045 6 New 100 LED Miniature String Lights 0009 28" Polar Bear with LED Lantern Decor 0046 6 New 100 LED Miniature String Lights 0011 28" Polar Bear with LED Lantern Decor 0047 6 New 100 LED Miniature String Lights 0012 28" Polar Bear with LED Lantern Decor 0048 6 New 100 LED Miniature String Lights 0013 28" Polar Bear with LED Lantern Decor 0049 6 New 100 LED Miniature String Lights 0014 6'ft Musical LED Nutcracker 0050 6 New 100 LED Miniature String Lights 0015 NIB 6'ft Musical LED Nutcracker 0051 6 New 100 LED Miniature String Lights 0016 6 New 100 LED Miniature String Lights
    [Show full text]
  • Thinning Systems for Western Oregon Douglas-Fir Stands
    STAND MANAGEMENT EC 1132 • Reprinted July 2003 $2.00 Thinning Systems for Western Oregon Douglas-fir Stands W.H. Emmingham and D. Green hinning is removing selected trees from a stand to allow others to Contents continue growing. Ordinarily, a woodland manager uses a thinning Tsystem that encourages the remaining trees to grow in a manner Basic stand growth ....................... 1 consistent with the manager’s objectives for those trees. Thinning options........................... 3 This publication will help you understand how to thin Douglas-fir. It also will help you choose the proper thinning system to achieve your Timing........................................3 objectives. You can apply the methods discussed here to all predominantly High and low thinning ..................3 even-age and well-stocked Douglas-fir stands west of the Cascade crest in Intensity and frequency ................4 Oregon. Thinning is the best way to maintain maximum diameter and board-foot Stocking guides............................ 5 volume growth in Douglas-fir stands. It can produce income at 5- to 10- How do you put it all together?...... 5 year intervals instead of at 30- to 50-year intervals without thinning. It also can lengthen the time span in which a stand produces income. What is best for you? ................... 6 Summary .................................... 7 For more information .................... 8 Basic stand growth A stand is a collection of living trees. It usually begins as hundreds of small seedlings per acre of land. As these trees grow, they eventually occupy all the growing space, crowd out lower growing plants, and compete with each other just as carrots compete in a garden. Unless some of the trees die or are removed, others cannot continue to grow.
    [Show full text]
  • Site Basic Report 7/11/2006
    Site Basic Report 7/11/2006 Site Code BCD S.USIDHP*688 Site Class Standard site Name DOME LAKE Defining Managed Area DOME LAKE RNA State/Province Idaho Directions Dome Lake RNA lies at the northern end of the Bighorn Crags in the Salmon River Mountains, about 3 miles (4.8 km) south of the Salmon River, at a point about 17 miles (27.5 km) southwest of Shoup. | Access to the RNA is possible via several routes, none of which are quick and easy. One route follows: From the town of North Fork, head west on the Salmon River Road 033 for about 36 miles (58 km). The western trailhead for FS Trail 172 is on the south side of the Salmon River between river miles 201 and 202 (opposite of Colson Creek RNA), just west of the junction with FS Road 123 (Colson Creek Road). From the trailhead, FS Trail 172 heads south, switchbacking up the ridge west of Shell Creek and gaining about 5000 feet (1524 m) in elevation over about three air miles (4.8 km) as it climbs to an area just below the Horse Heaven Lookout. Just southeast of the lookout, FS Trail 172 joins the ridgeline that defines the western boundary of the RNA. Other routes include FS Trail 021 from Crags Campground, approximately a 10 mile hike (16 km), and the eastern trailhead of 172 which leaves from near the junction of the Salmon River Road 033 and Panther Creek Road 055. Minimum Elevation: 4,700 Feet 1,433 Meters Maximum Elevation: 9,316 Feet 2,840 Meters Site Description Dome Lake RNA contains the entire upper portion of the Lake Creek watershed.
    [Show full text]
  • Developing Optimal Commercial Thinning Prescriptions: a New Graphical Approach
    Developing Optimal Commercial Thinning Prescriptions: A New Graphical Approach KaDonna C. Randolph, USDA Forest Service Forest Inventory and Analysis, Knoxville, TN 37919; and Robert S. Seymour and Robert G. Wagner, Department of Forest Ecosystem Science, University of Maine, Orono, ME 04469. ABSTRACT: We describe an alternative approach to the traditional stand-density management diagrams and stocking guides for determining optimum commercial thinning prescriptions. Predictions from a stand-growth simulator are incorporated into multiple nomograms that graphically display postthinning responses of various financial and biological response variables (mean annual increment, piece size, final harvest cost, total wood cost, and net present value). A customized ArcView GIS computer interface (ThinME) displays multiple nomograms and serves as a tool for forest managers to balance a variety of competing objectives when developing commercial thinning prescriptions. ThinME provides a means to evaluate simultaneously three key questions about commercial thinning: (1) When should thinning occur? (2) How much should be removed? and (3) When should the final harvest occur, to satisfy a given set of management objectives? North. J. Appl. For. 22(3):170–174. Key Words: Nomogram, silvicultural system, financial analysis, FVS, simulation. Careful regulation of stand density through thinning North America in the late 1970s (Drew and Flewelling arguably distinguishes truly intensive management above 1979, Newton 1997a). SDMDs graphically depict the rela- all other silvicultural treatments (Smith et al. 1997), and in tionship between stand density and average tree size (either every important forest region, rigorously derived thinning quadratic mean dbh or stemwood volume, and frequently schedules are crucial in meeting production objectives. Typ- supplementary isolines depicting tree height; Newton ically thinnings are prescribed using stocking guides or 1997b, Wilson et al.
    [Show full text]
  • Study on Cone Formation Stage of Caucasian Fir (Abies Nordmanniana Ssp
    Kastamonu Üni., Orman Fakültesi Dergisi, 2012, Özel Sayı: 228-233 Kastamonu Univ., Journal of Forestry Faculty, 2012, Special Issue Study on Cone Formation Stage of Caucasian Fir (Abies nordmanniana ssp. nordmanniana) Deniz GÜNEY1, Şemsettin KULAÇ2, İbrahim TURNA1 1Department of Forest Engineering, Karadeniz Technical University, 61080 Trabzon, TURKEY 2Department of Forest Engineering, Duzce, 81620 Düzce, TURKEY Abstract Determination of the good seed year is important to obtain high quality and quantity seeds from stands. Also, pollination and fertilization need to be done without problems. Tree quality, health and good seed bearing capacity is related to climatic factors during flowering and seeding stage and related to site conditions. Healthy, high quality and enough number of seeds are required in order to have a successful natural regeneration. Observing the morphological characteristics of trees in the stand or as single trees is the fastest, easiest and cheapest way to characterize their health status. In this study, a tree species, Caucasian fir, from the Karadeniz Technical University campus was observed. Phenological changes of the male and female flowers will be observed periodically and photos of these changes will be provided. During the early months observations will be weekly but on later periods observations will be bi-weekly. Caucasian fir’s pollination, fertilization, cone formation, cone growth and seed fall will be determined based on observations and the study results. Key Words: Fir taxa, cone formation stages, male and female flowers Introduction high quality seed and seedlings along with Forests cover one third of the lands on intensive cultivation techniques should be Earth and also form more than three fourths used.
    [Show full text]
  • SC Trees & Shrubs
    Alaska Department of Natural Resources / Division of Forestry / Community Forestry Program 550 W. 7th Ave., Ste. 1450 / Anchorage, AK 99501 / 269-8466 / http://forestry.alaska.gov/community Trees & Shrubs for South Central Alaska The following trees and shrubs are growing successfully in south central Alaska. Each has specific requirements and should be planted where conditions and space allow it to be healthy and safe. For a complete list of plants, descriptions, limitations, requirements, and hardiness, see www.alaskaplants.org. For information on selecting and planting trees, see http://forestry.alaska.gov/community/publications.htm. Deciduous Trees Acer glabrum var. douglasii – Douglas maple Acer negundo – Boxelder Acer platanoides – Norway maple Acer rubrum – Red maple Acer tataricum var. ginnala – Amur maple Betula papyrifera – Paper birch Betula pendula – European white birch Crataegus – Hawthorn Fraxinus manshurica – Manchurian ash Fraxinus nigra – Black ash Fraxinus pennsylvanica – Green ash Larix – Larch, tamarack Malus – Apple, crabapple Populus balsamifera – Balsam poplar Populus tremula – Swedish columnar aspen Populus tremuloides, Aspen Populus trichocarpa – Cottonwood Prunus cerasus ‘Evans’ – Cherry Prunus maackii – Amur chokecherry Prunus pennsylvanica – Pin cherry Pyrus ussuriensis – Ussurian pear Quercus macrocarpa – Bur oak Sorbus aucuparia – Mountainash Syringa reticulata – Japanese tree lilac Tilia Americana – American linden, basswood Tilia cordata - Littleleaf linden Evergreen Tree Abies concolor – White fir Abies
    [Show full text]
  • TREES AS CROPS in ALASKA PROFILE with an EMPHASIS on SPRUCE Revised 2009
    TREES AS CROPS IN ALASKA PROFILE WITH AN EMPHASIS ON SPRUCE Revised 2009 Robert A. Wheeler Thomas R. Jahns Janice I. Chumley PRODUCTION FACTS Growing trees in Alaska can be difficult. This document addresses basic questions regarding growing tree seedlings as an agricultural crop. Whether growing a few seedlings or thousands, many of the basic production questions are the same. From the standpoint of tree seedling production there are three basic regions in Alaska: Southeast, South Central, and the Interior. Producing high quality tree seedlings is 4-H Tree Sale in Soldotna, AK May 2003 achievable in all three regions however care must (photo/Bob Wheeler). be taken to match tree species requirements with local environmental conditions. Through the efforts of the University of Alaska Fairbanks and the Agriculture and Forestry Experiment Station, many tree species have been evaluated over the past 100 years for their performance. Results from these species trials have led to the listing of tree species, growth characteristics, and site requirements found in Table 1. DEMAND Interest in tree production can vary from growing trees for your yard or property to full scale outdoor or greenhouse, bareroot, or container nurseries. Tree planting and tree sales continue to be of considerable interest to the public although there are no large-scale commercial tree nurseries currently operating in Alaska. A state tree nursery was once operated in the Matanuska Valley area, but it has been closed. Reasons for the closure were based upon the high cost of producing seedlings in Alaska versus what it would cost to import them from nurseries outside the state and also, the overall operational difficulties and risks associated with an Alaska nursery program.
    [Show full text]