Winners Sorted by Institute-Center
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bile Acid Receptor Farnesoid X Receptor: a Novel Therapeutic Target for Metabolic Diseases
Review J Lipid Atheroscler 2017 June;6(1):1-7 https://doi.org/10.12997/jla.2017.6.1.1 JLA pISSN 2287-2892 • eISSN 2288-2561 Bile Acid Receptor Farnesoid X Receptor: A Novel Therapeutic Target for Metabolic Diseases Sungsoon Fang Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea Bile acid has been well known to serve as a hormone in regulating transcriptional activity of Farnesoid X receptor (FXR), an endogenous bile acid nuclear receptor. Moreover, bile acid regulates diverse biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism and energy expenditure. Alteration of bile acid metabolism has been revealed in type II diabetic (T2D) patients. FXR-mediated bile acid signaling has been reported to play key roles in improving metabolic parameters in vertical sleeve gastrectomy surgery, implying that FXR is an essential modulator in the metabolic homeostasis. Using a genetic mouse model, intestinal specific FXR-null mice have been reported to be resistant to diet-induced obesity and insulin resistance. Moreover, intestinal specific FXR agonism using gut-specific FXR synthetic agonist has been shown to enhance thermogenesis in brown adipose tissue and browning in white adipose tissue to increase energy expenditure, leading to reduced body weight gain and improved insulin resistance. Altogether, FXR is a potent therapeutic target for the treatment of metabolic diseases. (J Lipid Atheroscler 2017 June;6(1):1-7) Key Words: Bile acids, Farnesoid X receptor, Metabolic diseases INTRODUCTION of endogenous bile acid nuclear receptor FXR proposes new perspectives to understand molecular mechanisms Bile acids are converted from cholesterol in the liver and physiological roles of bile acids and their receptors by numerous cytochrome P450 enzymes, including in various tissues to maintain whole body homeostasis. -
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
REV-Erbα Regulates CYP7A1 Through Repression of Liver
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/12/13/dmd.117.078105.DC1 1521-009X/46/3/248–258$35.00 https://doi.org/10.1124/dmd.117.078105 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:248–258, March 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics REV-ERBa Regulates CYP7A1 Through Repression of Liver Receptor Homolog-1 s Tianpeng Zhang,1 Mengjing Zhao,1 Danyi Lu, Shuai Wang, Fangjun Yu, Lianxia Guo, Shijun Wen, and Baojian Wu Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.) Received August 15, 2017; accepted December 6, 2017 ABSTRACT a Nuclear heme receptor reverse erythroblastosis virus (REV-ERB) reduced plasma and liver cholesterol and enhanced production of Downloaded from (a transcriptional repressor) is known to regulate cholesterol 7a- bile acids. Increased levels of Cyp7a1/CYP7A1 were also found in hydroxylase (CYP7A1) and bile acid synthesis. However, the mech- mouse and human primary hepatocytes after GSK2945 treatment. anism for REV-ERBa regulation of CYP7A1 remains elusive. Here, In these experiments, we observed parallel increases in Lrh-1/LRH- we investigate the role of LRH-1 in REV-ERBa regulation of CYP7A1 1 (a known hepatic activator of Cyp7a1/CYP7A1) mRNA and protein. -
Down Regulation of Membrane-Bound Neu3 Constitutes a New
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows IJC International Journal of Cancer Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells Chandan Mandal1, Cristina Tringali2, Susmita Mondal1, Luigi Anastasia2, Sarmila Chandra3, Bruno Venerando2 and Chitra Mandal1 1 Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt of India, 4, Raja S. C. Mullick Road, Kolkata 700032, India 2 Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, and IRCCS Policlinico San Donato, San Donato, Milan, Italy 3 Department of Hematology, Kothari Medical Centre, Kolkata 700027, India Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (230 to 40%) and enzymatic activity toward ganglioside GD1a (225.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (166%) and to a parallel decrease of lactosylceramide (255%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/ Bax ratio, the accumulation of Neu3 transfected cells in the sub G0–G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. -
The Legionella Kinase Legk7 Exploits the Hippo Pathway Scaffold Protein MOB1A for Allostery and Substrate Phosphorylation
The Legionella kinase LegK7 exploits the Hippo pathway scaffold protein MOB1A for allostery and substrate phosphorylation Pei-Chung Leea,b,1, Ksenia Beyrakhovac,1, Caishuang Xuc, Michal T. Bonieckic, Mitchell H. Leea, Chisom J. Onub, Andrey M. Grishinc, Matthias P. Machnera,2, and Miroslaw Cyglerc,2 aDivision of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892; bDepartment of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202; and cDepartment of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved May 1, 2020 (received for review January 12, 2020) During infection, the bacterial pathogen Legionella pneumophila Active LATS1/2 phosphorylate the cotranscriptional regulator manipulates a variety of host cell signaling pathways, including YAP1 (yes-associated protein 1) and its homolog TAZ (tran- the Hippo pathway which controls cell proliferation and differen- scriptional coactivator with PDZ-binding motif). Phosphorylated tiation in eukaryotes. Our previous studies revealed that L. pneu- YAP1 and TAZ are prevented from entering the nucleus by being mophila encodes the effector kinase LegK7 which phosphorylates either sequestered in the cytosol through binding to 14-3-3 pro- MOB1A, a highly conserved scaffold protein of the Hippo path- teins or targeted for proteolytic degradation (6, 8). Consequently, way. Here, we show that MOB1A, in addition to being a substrate the main outcome of signal transduction along the Hippo pathway of LegK7, also functions as an allosteric activator of its kinase is changes in gene expression (6). -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
Transport of Sugars
BI84CH32-Frommer ARI 29 April 2015 12:34 Transport of Sugars Li-Qing Chen,1,∗ Lily S. Cheung,1,∗ Liang Feng,3 Widmar Tanner,2 and Wolf B. Frommer1 1Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305; email: [email protected] 2Zellbiologie und Pflanzenbiochemie, Universitat¨ Regensburg, 93040 Regensburg, Germany 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Annu. Rev. Biochem. 2015. 84:865–94 Keywords First published online as a Review in Advance on glucose, sucrose, carrier, GLUT, SGLT, SWEET March 5, 2015 The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Soluble sugars serve five main purposes in multicellular organisms: as sources This article’s doi: of carbon skeletons, osmolytes, signals, and transient energy storage and as 10.1146/annurev-biochem-060614-033904 transport molecules. Most sugars are derived from photosynthetic organ- Copyright c 2015 by Annual Reviews. isms, particularly plants. In multicellular organisms, some cells specialize All rights reserved in providing sugars to other cells (e.g., intestinal and liver cells in animals, ∗ These authors contributed equally to this review. photosynthetic cells in plants), whereas others depend completely on an ex- Annu. Rev. Biochem. 2015.84:865-894. Downloaded from www.annualreviews.org ternal supply (e.g., brain cells, roots and seeds). This cellular exchange of Access provided by b-on: Universidade de Lisboa (UL) on 09/05/16. For personal use only. sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is criti- cal for plants, animals, and humans. -
Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
(19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes. -
Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling
UC Davis UC Davis Previously Published Works Title Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Permalink https://escholarship.org/uc/item/0nk8n7xb Journal Scientific reports, 6(1) ISSN 2045-2322 Authors Arabyan, Narine Park, Dayoung Foutouhi, Soraya et al. Publication Date 2016-07-08 DOI 10.1038/srep29525 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling Received: 09 February 2016 Narine Arabyan1, Dayoung Park2, Soraya Foutouhi1, Allison M. Weis1, Bihua C. Huang1, Accepted: 17 June 2016 Cynthia C. Williams2, Prerak Desai1,†, Jigna Shah1,‡, Richard Jeannotte1,3,§, Nguyet Kong1, Published: 08 July 2016 Carlito B. Lebrilla2,4 & Bart C. Weimer1 Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. -
Constitutive Androstane Receptor, Pregnene X Receptor, Farnesoid X Receptor ␣, Farnesoid X Receptor , Liver X Receptor ␣, Liver X Receptor , and Vitamin D Receptor
0031-6997/06/5804-742–759$20.00 PHARMACOLOGICAL REVIEWS Vol. 58, No. 4 Copyright © 2006 by The American Society for Pharmacology and Experimental Therapeutics 50426/3157478 Pharmacol Rev 58:742–759, 2006 Printed in U.S.A International Union of Pharmacology. LXII. The NR1H and NR1I Receptors: Constitutive Androstane Receptor, Pregnene X Receptor, Farnesoid X Receptor ␣, Farnesoid X Receptor , Liver X Receptor ␣, Liver X Receptor , and Vitamin D Receptor DAVID D. MOORE, SHIGEAKI KATO, WEN XIE, DAVID J. MANGELSDORF, DANIEL R. SCHMIDT, RUI XIAO, AND STEVEN A. KLIEWER Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas (D.D.M., R.X.); The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan (S.K.); Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania (W.X.); Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas (D.J.M., D.R.S.); and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas (D.J.M., D.R.S., S.A.K.) Abstract——The nuclear receptors of the NR1H and der the control of metabolic pathways, including me- NR1I subgroups include the constitutive androstane tabolism of xenobiotics, bile acids, cholesterol, and receptor, pregnane X receptor, farnesoid X receptors, calcium. This review summarizes results of structural, Downloaded from liver X receptors, and vitamin D receptor. The newly pharmacologic, and genetic studies of these receptors. -
Structural Basis for Autoinhibition and Its Relief of MOB1 in the Hippo
www.nature.com/scientificreports OPEN Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway Received: 10 February 2016 Sun-Yong Kim, Yuka Tachioka, Tomoyuki Mori & Toshio Hakoshima Accepted: 03 June 2016 MOB1 protein is a key regulator of large tumor suppressor 1/2 (LATS1/2) kinases in the Hippo pathway. Published: 23 June 2016 MOB1 is present in an autoinhibited form and is activated by MST1/2-mediated phosphorylation, although the precise mechanisms responsible for autoinhibition and activation are unknown due to lack of an autoinhibited MOB1 structure. Here, we report on the crystal structure of full-length MOB1B in the autoinhibited form and a complex between the MOB1B core domain and the N-terminal regulation (NTR) domain of LATS1. The structure of full-length MOB1B shows that the N-terminal extension forms a short β-strand, the SN strand, followed by a long conformationally flexible positively-charged linker and α-helix, the Switch helix, which blocks the LATS1 binding surface of MOB1B. The Switch helix is stabilized by β-sheet formation of the SN strand with the S2 strand of the MOB1 core domain. Phosphorylation of Thr12 and Thr35 residues structurally accelerates dissociation of the Switch helix from the LATS1-binding surface by the “pull-the-string” mechanism, thereby enabling LATS1 binding. The Hippo pathway is a key signaling cascade that ensures organ size and normal tissue growth by coordinating cell proliferation and differentiation, and has now been recognized as an essential tumor suppressor cascade1–6. In mammals, the core pathway components comprise two Ser/Thr protein kinases, mammalian Ste20-like 1 and 2 (MST1/2) kinases, members of the Ste20 group in the germinal center kinase II (GCK-II) subgroup, and large tumor suppressor 1 and 2 (LATS1/2) kinases, members of the AGC protein kinase family, in addition to transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ).